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Detection in Complex Maritime Environments
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Abstract—This study presents an innovative high-precision
ship detection framework, named CTS, which combines the
Transformer architecture with CNN in an ingenious manner.
To address the challenges posed by intricate backgrounds
in ship images, our methodology adopts a dual-path feature
extraction mechanism, integrating CNN and Transformer
features via a novel fusion module, and subsequently employs
a semantic segmentation network for meticulous pixel-level
detection. Experimental outcomes underscore the superiority
of our approach over conventional methods, attaining a
Pixel Accuracy of 95.26%. The framework introduced in
this study marks a notable progression in leveraging remote
sensing techniques for ship detection, providing superior
feature characterization and improved detection precision in
challenging maritime environments.

Index Terms—Convolutional Neural Network, Transformer,
Semantic segmentation, Feature fusion.

I. INTRODUCTION

EMOTE sensing-based ship detection has garnered

increasing attention within the intelligent shipping
community due to its notable advantages, including a
wide field of view and minimal susceptibility to ground
interference. These characteristics render it an ideal and
highly efficient approach for ship detection across diverse
maritime environments [1]. Concurrently, advancements
in space technology have led to an exponential growth in
the volume of remote sensing data, providing abundant
technical resources and data support for ship target detection.
However, identifying ship targets in remote sensing images
has become progressively more challenging, primarily due
to the significant variations in ship size [2], a wide array of
categories, and intricate background features.

As computer vision technology rapidly advances, the
accuracy limitations of conventional object detection
techniques have become increasingly apparent [3]. Within
this domain, object detection techniques powered by
deep learning have become a focal point of research,
with frameworks like Fast R-CNN, SSD, and YOLO
demonstrating notable advancements. Research shows that
Zhou et al. [4] innovatively integrated the ECA mechanism
and the BiFPN into the YOLO V5 framework, achieving
a remarkable improvement in monitoring accuracy. Zhang
et al. [5], on the other hand, enhanced the SSD algorithm
by introducing the Dense RBF and LSTM networks, which
effectively improving detection accuracy and significantly
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strengthening the algorithm’s adaptability to complex
scenarios such as blurred images, target occlusion, and
partial cropping. However, existing methods primarily
rely on bounding box-annotated training samples for
feature learning, whitch may lead to misidentification
of background pixels as ship features, thereby affecting
detection performance.

To bridge this gap, semantic segmentation models
have become an important research direction for
suppressing object interference [6]. FCN-based architectures
[7] established the standard framework for semantic
segmentation algorithms. Subsequent classic algorithms,
such as UNet [8], SegNet [9], and PSPNet [10], effectively
addressed the challenges in semantic segmentation.
Additionally, the DeepLab series (including v1 [11], v2
[12], v3 [13], and v3+ [14]) advanced the field by improving
feature representation and segmentation accuracy. These
methods laid the foundation for pixel-level ship target
detection by providing robust frameworks for feature
extraction and pixel-wise classification.

Chen et al. [I15] proposed an FCN-based method,
termed SNFCN and SDFCN, which incorporates a densely
connected block structure to enhance feature propagation
and reuse across layers. In the SDFCN framework, three
additional mapping connections are introduced between
the encoder and decoder to facilitate effective gradient
backpropagation. Tian [16] integrated the strengths of FCN
and GAN to expand the model’s receptive field, significantly
improving semantic segmentation performance. Furthermore,
Chen et al. [17] proposed an enhanced DeepLab method,
which employs Conditional Random Fields (CRF) combined
with Recurrent Neural Networks (RNN) are employed to
fine-tune segmentation details, which considerably enhances
the mean Intersection over Union (mloU). Moreover,
attention mechanisms [18] [19] have emerged as a critical
research direction, enabling high-precision object detection
and segmentation by dynamically focusing on salient
features.

Despite significant progress in deep learning for remote
sensing ship detection, limitations persist. CNNs face
limited receptive fields, requiring multiple layers to
capture global information. However deeper networks risk
gradient vanishing or information loss, reducing model
expressiveness. Additionally, CNNs struggle with feature
fusion, particularly integrating multi-scale or contextual
information. Transformers, successful in sequence modeling
tasks like speech processing [20], have gained traction
in computer vision for their ability to model long-range
dependencies [21], [22]. Their self-attention mechanism
efficiently captures global context, enhancing model
expressiveness [23]. However, Transformers lack the
translation invariance and localized feature extraction of
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Fig. 1: Feature extraction process of convolutional neural network

CNNs, making them less effective in data-limited scenarios
due to higher parameter complexity and weaker inductive
biases.

In summary, this paper presents a novel framework, CNN-
Trans-Segmentation (CTS), which combines Transformer
with CNNs to enable dual-path feature extraction and
encoding. During the decoding and segmentation stages,
features derived from both pathways are combined to form
a unified, end-to-end semantic segmentation framework that
delivers highly precise pixel-level ship detection. The main
contributions of this study are detailed below:

1) Global Context Modeling: Utilizing the Transformer
architecture, the self-attention mechanism efficiently
captures long-range relationships between every position in
the input sequence. This capability enhances the model’s
comprehension of the overall context and improves its
ability to extract distinctive features from ship targets.

2) Local Feature Enhancement: By leveraging the local
feature extraction capabilities of CNNs, the network’s
receptive field is expanded, which in turn strengthens its
ability to detect ship targets in remote sensing imagery while
enhancing the overall effectiveness of feature representation.

The remainder of this paper is organized as follows.
Section II reviews previous research on both conventional
CNN architectures and Transformer models. In Section
III, we describe the proposed network model, and Section
IV outlines the experimental setup, optimization strategy,
and performance evaluation. Lastly, Section V provides the
conclusions of the study.

II. RELATED WORK

In this study, we present an innovative method that
merges the benefits of both CNNs and Transformers, aiming
to deliver detection with enhanced accuracy and robustness.
We first conduct a comprehensive analysis of traditional
CNNs, with a focus on the VGG architecture. Subsequently,
we delve into the Transformer architecture, examining
its self-attention mechanism and global context modeling
capabilities, which are critical for enhancing detection
performance.

A. Transformer-based feature extraction

In the Transformer-based feature extraction process, the
input image X with height H and width W is first divided
into N = % X % parts. The values of C' = 3 and S = 16
are typical. The three-dimensional image is transformed into
a two-dimensional input(N, D), where D is the dimension
corresponding to each image patch. This involves performing
a linear transformation on each S? x C image patch to form
a sequence of N x (52 x C) [24].

Next, the segmented image sequence is fed into the
multi-head self-attention (MSA) module of the Transformer
encoder. This approach allows the model to concentrate on
various parts of the input patches and learn relationships
among them [27]. The input sequence is transformed using a
linear matrix, generating ¢, k, v. Attention operations are then
performed on ¢, k to obtain the weights «, and a weighted
sum is computed between « and v.

QikT
)

SA(Z;) = softmax( i

6]

The output is passed through a multi-layer perceptron
(MLP) to simulate complex nonlinear functions in a
fully connected manner. Finally, the output undergoes
normalization to obtain the final encoded sequence,
completing the Transformer process. Figure 1 illustrates this
process, with L set to 8.

Embedded
Patches

T
Norm

v VY

Multi-Head
Attention

XL

Fig. 2: Feature extraction process based on Transformer

To achieve fusion of features from the Transformer
and CNN, the output sequence from the Transformer
is transformed into parameters of size N x & x Y. An
upsampling process is then designed to generate featuremaps
of size % X % and % X %, which are subsequently fused
with the CNN feature layers for comprehensive feature
integration.
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TABLE I: Feature extraction layer of Transformer

Layer Input Size  Output Size

rashape HxW % X %
upsampling % X Tﬂé % X %
upsampling % X % % X %

B. CNN-based feature extraction

CNN-based feature extraction leverages convolutional
neural networks to automatically learn spatial and
hierarchical features from images. By employing
convolutional layers, pooling operations, and nonlinear
activation functions, CNNs incrementally derive increasingly
complex feature representations. The early layers are
responsible for detecting edges and textures, whereas the
deeper layers capture intricate patterns such as shapes and
parts of objects. This layered strategy yields advanced
representations that make CNNs particularly effective for
applications such as object recognition, segmentation, and
various other image processing applications. The process of
extracting features from ship targets is depicted in Figure 1.

In the CNN extraction process, X € RI*XWxC ig the
original image, where H is the height of image , W
represents the image’s width, C represents the image’s depth.
The pooling layer (typically max pooling or average pooling)
can reduce the feature map size, lowering computational
complexity while retaining important feature information.
With a pooling window of size 2, each 2 x 2 region is
reduced to a single value, Thus, the dimensions of the feature

maptspecifically are defined as & x % After two pooling

layers, the size is % X %. After tﬁree pooling layers, the size
is % X %. The LeNet architecture, initially introduced in
[25], laid foundational groundwork for convolutional neural
network. This foundational framework was subsequently
developed and refined. Notably, the AlexNet and VGG

architectures marked significant advancements.

C. VGGI9

VGG19 [26] was specifically designed to handle large-
scale image recognition tasks. It features an architecture
of 19 layers that uniformly utilizes convolution filters with
size 3 x 3 and pooling layers 2 x 2 to effectively extract
features at various depths. Its depth is a key strength,
enabling accurate object recognition and localization through
the capture of complex, hierarchical features. Moreover,
VGGI19 is often selected for transfer learning because its
pre-trained weights, derived from extensive datasets like
ImageNet, enable effective fine-tuning for new tasks, thereby
making it a versatile asset in computer vision applications. In
this study, the feature extraction process leverages the outputs
from the first four pooling layers of VGGI19, effectively
capturing low- to mid-level features essential for ship target
detection.

Tﬁ

Fig. 3: Feature extraction process of convolutional neural
network

TABLE II: Feature extraction layer of CNN

Kernel Filters Stride  Output Size
Convl_1  3x3 64 1 HxW
Convl 2  3x3 64 1 HxW
MaxPooll ~ 2x2 - 2 2%
Conv2_1  3x3 128 1 2%
Conv2_2  3x3 128 1 2%
MaxPool2 ~ 2x2 - 2 82w
Conv3_l  3x3 256 1 82w
Conv3_2  3x3 256 1 8w
Conv3_3  3x3 256 1 €W
MaxPool3  2x2 - 2 Ly
Conv4_1 3%3 512 1 Ly
Conv4_2 3%3 512 1 g%
Conv4_3 3x3 512 1 g%
MaxPool4 ~ 2x2 - 2 Hx¥

ITI. OUR METHOD
A. Overall Network Architecture of CTS

To accurately identify ship pixels in remote sensing
images, we propose a novel framework CTS that
integrates the strengths of both CNN and Transformer.
As shown in Figure 4, the CTS framework is structured
around four principal components: (1) Transformer-based
feature extraction and upsampling, which captures global
context through self-attention; (2) CNN-based feature
extraction, which extracts local spatial features; (3) fusion
of Transformer and CNN features through concatenation,
enabling the integration of global and local information;
and (4) upsampling of the fused features to restore spatial
resolution for pixel-level prediction.

The Transformer feature extraction and upsampling
section includes patch embedding, the Transformer encoder,
and an upsampling module (leftward arrow in Figure 4). The
CNN feature extraction module comprises convolutional
layers and downsampling operations (downward arrow in
Figure 4). Transformer and CNN features are fused through
element-wise multiplication and addition, integrating global
context and local details. The fused features are then
concatenated with CNN layer outputs and upsampled to
generate the final pixel-level detection results.
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Fig. 4: Overview for the Proposed Ship Target Detection Method CTS

B. Downsampling and Upsampling

The downsampling process uses Max Pooling, which not
only reduces spatial dimensions but also improves feature
robustness by preserving the most salient information. The
mathematical representation of Max Pooling is defined by
the expression:

O(i, 7) = max(Input(itm),(j+n)) )

m,n

where O(i, j) is the value at position (,5) in the output
feature map, and Input(;ym),j+n) represents the values in
the local window of the input feature map, with m and
ncorresponding to the dimensions of the pooling window.

Upsampling is a critical step to restore the spatial
resolution of feature maps, ensuring the output matches
the input image dimensions for pixel-level classification.
In our model, we employ Transposed Convolution for
upsampling, which not only reconstructs spatial dimensions
but also leverages learnable parameters to enhance feature
representation. This approach improves segmentation
performance by effectively capturing spatial dependencies
and fine-grained details in the data.

k=1 k-1
O(i/,j/) = Z Z Input(i/—l—m-S,j/—&—n-S)W(m,n) 3)

m=0n=0

Where, O(i, j') refers to the value at the (i, ) position
of the output feature map, while Input indicates the feature
map undergoing upsampling. The transposed convolution
kernel is characterized by the weights W (m,n), with k
representing its size and s denoting the stride that governs
the intervals at which the kernel is applied.

Transposed convolution is a widely used upsampling
technique in CNNs. It uses learnable weights to upscale
low-resolution feature maps. During training, these weights
are optimized to capture complex patterns like textures and
edges, allowing the network to better distinguish image
regions and enhancing segmentation performance.

C. Fusion Module

The parallel fusion strategy operates both CNN and
Transformer branches simultaneously, merging their features
in a way that maximizes the strengths of each. This approach
enables a complementary integration of local features from

CNN with global information from Transformer, effectively
leveraging the unique advantages of both architectures.

We implement feature fusion using feature multiplication,
enabling a complementary combination of CNN and
Transformer features by modeling fine-grained interactions
between the features from both branches. The multiplication
effectively integrates the strengths of each approach,
enabling the model to recognize intricate patterns and
dependencies through robust feature representations. This
fusion strategy is particularly beneficial for tasks requiring
detailed feature integration.

IV. EXPERIMENT RESULTS AND ANALYSIS
A. Dataset and Evaluation

The experiment utilizes the instance segmentation
portion of the HRSC2016 dataset, which encompasses
444 segmented instances of targets such as aircraft
carriers and military ships. The segmentation data employs
different colors to distinguish individual instances within
the same category, which are converted to grayscale for
simplified processing. Prior to the experiment, the dataset is
preprocessed and cleaned to enhance data quality.

To begin with, elements such as coastlines that do
not represent ships are classified as background, while
ship targets depicted in color are identified as foreground
objects, as illustrated in Figure 5. In the first row, the
unprocessed images are displayed, whereas the second row
presents the initial segmentation outcomes layered on top
of these images, and the third row displays the refined
semantic segmentation outcomes designed to improve ship
detection accuracy. During experimentation, three images
with inaccurate pixel-level labels from the original dataset
were removed to ensure the remaining labels were more
accurate and reliable.

Following initial enhancements, a set of 441 high-quality
remote sensing images featuring ships was retained,
representing over 1,200 vessels and averaging 2.7 ships per
image. The dataset is augmented by applying horizontal
and vertical flips, as well as random affine transformations
(translation, rotation, and scaling). This results in a new ship
detection dataset, providing a more diverse set of training
samples for developing robust detection models.

The training and testing processes utilize a 64-bit Ubuntu
18.04 system, RTX 3060 GPU, CUDA 11.4, and PyTorch
1.10.2, along with various graphics processing and display
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Fig. 5: Adjustment of ship detection data set

libraries, enabling effective training process analysis and
observation. Around 70% of the dataset was utilized for
training purposes, with the remaining 30% allocated for
testing. The model was trained and tested using the PyTorch.

To further confirm the efficacy of our approach, We
conducted a quantitative analysis utilizing metrics like Pixel
Accuracy (PA), Dice Ratio (DR), and Intersection over Union
(IoU) [29]. The definitions of PA and IoU are provided
below:

k
Z Dii
=0

PA= = @)
2 2 Dij
=0 35=0
2xTP
PR = o TP+ FP 1 FN ©)
_area(C)Narea(G)
[l = area(C)Jarea(G) ©

In Equation (4), P;; represents the count of pixels that
truly belong to class ¢ but have been classified as class j. In
Equation (5), TP indicates the number of genuine positive
identifications, FP denotes the instances incorrectly marked
as positive, and FN refers to the positive instances that
were erroneously classified as negative. In Equation (6), P;;
denotes the count of pixels that have been correctly identified.
Meanwhile, Pj; represents the number of background pixels
that were incorrectly classified as targets, and P;; is the
number of background pixels correctly recognized.

B. Ablation Experiments

In remote sensing image processing, integrating CNN and
Transformer into feature fusion modules is essential for
enhanced performance. CNNs capture local details such as
edges and textures, while Transformers model long-range
dependencies via self-attention. Combining these strengths
yields efficient and robust feature representations, which are
crucial for accurate remote sensing models.

There is a significant difference between the features
extracted by CNN and Transformer, yet both can be
aligned in terms of spatial dimensions after appropriate
processing. Based on this, this paper proposes strategies
for feature fusion, including pointwise multiplication,

addition, and elementwise multiplication followed by
elementwise addition, and validates their effectiveness
through comparative experiments. Specifically, elementwise
multiplication is applied to highlight the most relevant
features from both models. This method integrates the
CNNs capability of extracting local features with the
Transformers proficiency in global modeling, thereby
improving both the precision and breadth of feature
representation.

During the Transformer feature extraction process, smaller
patch sizes (8 x 8) preserve more local detail, but increase
the number of patches and computational cost. Conversely,
larger patch sizes (32 x 32) capture more global information
but may lose some finer details. To balance preserving local
details with capturing global information, this paper sets the
patch size to 16 x 16. Based on this, the input image size is
configured as 256 x 192.

In comparative experiments, we evaluated several fusion
methods and analyzed their impact on model performance.
Based on three key metrics-Dice ratio, IOU, and Pixel
accuracy-we conducted an analysis. The metrics curves for
different epochs are shown in Figures 6, 7, 8.
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Fig. 6: Dice Ratio curves of trans
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Fig. 8: Pixel Accuracy curves of trans

Table 2 presents the average accuracy and average loss
values for different feature fusion modules, including
pointwise multiplication, addition, and elementwise
multiplication followed by addition, on the test dataset.

TABLE III: The segmentation results of different
transformer and CNN feature fusion

Dice Ratio ToU Pixel Accuracy
mul 0.6659 0.5569 94.99%
plus 0.6726 0.5652 95.27%
mul+plus 0.6644 0.5561 95.10%

In general, the performance differences among the three
fusion methods are relatively small with respect to Dice
Ratio, IoU, and Pixel Accuracy. However, multiplication-
based feature fusion achieves better performance in all three
evaluated criteria compared to the other two approaches. In
our method, the use of multiplication for feature integration
accentuates common significant attributes between the
two branches while diminishing the influence of irrelevant

information. This fusion technique improves the model’s
ability to focus on significant areas, resulting in higher
accuracy and better generalization.

To further preserve unique information from both
branches, CTS concatenates CNN and Transformer features
after multiplication. This retains local details from CNN
and global context from Transformer, enabling the model
to exploit complementary information. This dual strategy
enhances performance on complex tasks such as ship target
segmentation in remote sensing images.

C. Comparative Experiments

This study evaluates the effectiveness of the proposed
method by comparing it with two widely recognized
semantic segmentation techniques, SegNet and UNet, which
are noted for their broad utilization and proven performance.
Qualitative segmentation results are shown in Figure 9.

Based on the segmentation results compared to the ground
truth labels (GT), both SegNet and UNet fail to accurately
capture the complete edges of targets. Additionally,
individual targets are frequently split into multiple instances,
indicating a need for better handling of target density
and clustering. Furthermore, both methods exhibit a high
number of false positives and missed detections, particularly
in dense target regions.

This study compares CTS with four high-performance
CNN-based segmentation networks, including PSPNet,
DenseASPP, DeepLabV3, and DeepLabV3+. These networks
have consistently excelled in semantic segmentation while
also achieving outstanding results in object detection,
instance segmentation, and image classification. Their robust
performance stands as a credible benchmark that attests to
the efficacy and benefits of CTS.

In our experiments, we evaluated network performance
using three key metrics: Dice Ratio (DR), Intersection over
Union (IoU), and Pixel Accuracy (PA). The corresponding
performance curves are shown in Figures 10, 11, and 12.

—=—UNet
——SegNet
08 ——DeeplLabV3
: ——DeeplLabV3plus
DenseASPP
° FastFCN
= 0.6 —+—PSPNet
x trans+CNN
[0}
o
no4
0.2 {1
ok
0 50 100
epoch

Fig. 10: Dice Ratio curves of different methods
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Fig. 9: Ship semantic segmentation performance comparison under different models
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Fig. 12: Pixel Accuracy curves of different method

Compared to traditional CNN-based segmentation
methods, CTS demonstrates superior performance in key
aspects, including target completeness and edge accuracy.

This is evidenced by higher Dice Ratio and Intersection
over Union (IoU) values, as well as more accurate edge
detection and target representation.

In remote sensing ship images, ship targets often appear
partially occluded or incomplete, complicating accurate
identification and analysis. To address this, advanced
segmentation techniques can break down targets into
manageable segments, improving tracking accuracy and
core position determination.

Figure 13 demonstrates that the proposed method
outperforms the original ground truth labels in recognizing
cropped targets (as shown in subfigures (a), (b), and (c))
and ensuring target completeness (as shown in subfigures

(d), (e), and (f)).

During the training process, the training accuracy curve
continued to increase after 100 epochs. To further optimize
the model’s performance, we increased the number of
epochs to 200 to allow for more thorough convergence. The
experimental results are shown in Tables IV and V.

TABLE IV: Performance of segmentation results when
epoch is 100

Method Dice Ratio IoU Pixel Accuracy
UNet 0.2524 0.2031 92.72%
SegNet 0.4159 0.3139 90.20%
PSPNet 0.3957 0.2944 92.59%
DenseASPP 0.5001 0.3836 93.48%
DeepLabV3 0.4528 0.3415 92.84%
DeepLabV3plus 0.3694 0.2776 89.19%
CTS 0.6722 0.5707 95.38%

After extending the training period to 200 epochs, the
model’s loss gradually stabilized, and performance metrics
such as Dice Ratio and IoU showed improvement.
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Fig. 13: Ship semantic segmentation performance in details

TABLE V: Performance of segmentation results when
epoch is 200

Method Dice Ratio ToU Pixel Accuracy
UNet 0.3190 0.2661 94.15%
SegNet 0.5311 0.4292 93.84%
PSPNet 0.4785 0.2728 93.43%
DenseASPP 0.5103 0.4008 93.38%
DeepLabV3 0.4747 0.3681 92.84%
DeepLabV3plus 0.5153 0.4143 92.28%
CTS 0.6725 0.5652 95.26 %

Overall, CTS outperforms other cutting-edge techniques.
Specifically, our method achieves 1.1% higher Pixel
Accuracy than the previous best method, along with
substantial gains of approximately 0.14 in both Dice Ratio
and IoU. These quantitative improvements indicate that
our method is more effective and robust in complex ship
segmentation tasks.

V. CONCLUSION

To efficiently identify remote sensing ship targets in
complex environments, this paper combines the advantages
of CNNs and Transformers to propose a novel detection
method calls CTS. The CNN channel feature extraction
is based on specific layers of VGGI19. Experimental
results indicate that this method achieves high detection
performance and segmentation accuracy, as measured by
Dice Ratio and IoU, on ship datasets. Although the algorithm
performs well, there is still potential for enhancement due to
the intricate ship backgrounds, a wide range of classes and
angles, as well as difficulties in accurately detecting ships
located near shores or on land. Future research will focus on
developing more precise detection methods, incorporating
advanced data augmentation, multi-scale feature fusion, and
optimized real-time processing to handle diverse maritime
environments.
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