
 

  

Abstract—Gene regulatory networks (GRNs) elucidate the 

mechanisms underlying gene expression regulation and play a 

pivotal role in understanding cellular functions and organismal 

development. The emergence of single-cell transcriptome 

sequencing technology has significantly improved the accuracy 

of GRN inference and the ability to analyze cell type-specific 

characteristics. However, the inherent sparsity, noise, and 

dropout events in single-cell transcriptome data present 

challenges in accurately identifying regulatory relationships. To 

address these limitations, we propose TCGRN, a hybrid deep 

learning framework combining Temporal Convolutional 

Networks (TCN) and Convolutional Neural Networks (CNN) 

for single-cell GRN inference. Our method initially 

preprocesses raw gene expression data into correlation vectors 

and images, which are subsequently fed into TCN to model 

temporal dependencies and CNN to extract spatial features, 

respectively. Subsequently, the attention mechanism 

dynamically integrates these multi-modal features for robust 

regulatory relationship prediction. We compare TCGRN with 

unsupervised and supervised methods on mouse hematopoietic 

stem cell datasets of various lineages and scales, and apply 

TCGRN on human datasets of different scales for experiments. 

The experimental results demonstrate that TCGRN 

outperforms existing approaches in prediction accuracy while 

demonstrating a certain degree of generalizability. 

 
Index Terms—Gene regulatory networks, single-cell RNA 

sequencing, hybrid network, deep learning 

I. INTRODUCTION 

ene regulatory networks (GRNs) consist of gene 

interactions within a cell or genome. These networks 

define regulatory relationships between transcription factors 

(TFs) and their target genes, governing transcriptional 

activity and modulating cellular processes [1]. Deciphering 

these biological GRNs enables the extraction of critical gene 

interaction patterns, which are fundamental for elucidating 

molecular mechanisms underlying key biological events such 
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as cell proliferation, DNA repair, and apoptosis [2-4]. With 

advancements in single-cell RNA sequencing (scRNA-seq) 

technology, numerous analytical approaches have been 

developed and applied to scRNA-seq data analysis [5-7]. 

These approaches primarily aim to resolve gene expression 

heterogeneity at single-cell resolution, thereby uncovering 

cell type- and state-specific GRNs. Nevertheless, due to 

inherent high dimensionality, technical noise, and data 

sparsity in scRNA-seq datasets, the precise reconstruction of 

GRNs remains a substantial challenge. 

GRNs serve as a critical tool for characterizing gene-gene 

interactions and transcriptional regulation processes [8]. The 

accurate reconstruction of GRNs plays a pivotal role in 

elucidating gene functions and cellular mechanisms [9, 10]. 

To overcome existing limitations in network inference, 

numerous computational methods have been developed for 

GRN reconstruction from gene expression data [11-15], 

primarily falling into unsupervised and supervised learning 

categories. Among these, unsupervised methods that deduce 

regulatory relationships solely from gene expression patterns 

[16-19] have gained widespread adoption in GRN inference. 

Specifically, information-theoretic approaches are widely 

used due to their simplicity, low sampling requirements, and 

minimal need for additional data preprocessing. They 

commonly utilize mutual information as a metric, such as the 

correlation network model proposed by Butte et al. [20], 

which employed mutual information to quantify gene 

associations. The NARROMI algorithm [21] integrates 

recursive optimization based on ordinary differential 

equations with mutual information, surpassing many existing 

methods in performance. However, since correlation 

measures inherently capture bidirectional relationships, 

networks inferred through these approaches frequently yield 

undirected relationships, as seen in PIDC [12]  and similar 

methods. To overcome parameter optimization difficulties, 

machine learning-based solutions have been proposed for 

network inference, primarily employing regression and 

classification techniques like those implemented in GENIE3 

[11] and GRNBoost2 [22]. 

Compared to unsupervised approaches, supervised 

methodologies can leverage known interactions for training, 

often outperforming unsupervised approaches [23, 24]. In 

recent years, substantial progress in deep learning for natural 

language processing has spurred the emergence of numerous 

innovative deep learning frameworks [25-27]. Specifically, 

CNNC [23] represents gene pairs as images—in the form of 

histograms—and applies convolutional neural network 

(CNN) to infer the relationships between the varying 

expression levels illustrated in these images. However, it 

overlooks the role of neighboring images. DeepDRIM [28] 

builds on CNNC by incorporating neighborhood images for 
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each gene pair to reduce false positives arising from transitive 

interactions between genes, but it requires substantial 

computational resources and a high-performance 

experimental environment. Zhao et al. [29] develop DGRNS, 

a hybrid deep learning framework that combines gated 

recurrent units (GRU) with CNN to process encoded raw data 

and identify putative gene interactions. However, feeding 

GRU outputs into CNN may result in the loss of certain 

biological information contained in the original data. 

Additionally, for CNN frameworks that learn spatial features, 

image-formatted data may prove more suitable. 

Some of the aforementioned supervised learning methods 

do not take into account the time characteristics of the data, 

while others rely on a single channel to extract both time and 

spatial information, which may result in the mutual 

overwriting of some information. To address these issues, we 

introduce TCGRN, a hybrid network that combines Temporal 

Convolutional Network (TCN) with CNN for inferring 

single-cell gene regulatory networks from transcriptomic 

data. First, raw data undergoes dual processing: (1) 

transformation into correlation vectors preserving temporal 

dynamics, and (2) conversion to image representations 

augmented with neighborhood contexts (images of gene pairs 

sharing common genes) to encapsulate spatial relationships. 

Second, a dual-channel architecture simultaneously 

processes these modalities: the TCN channel extracts 

temporal patterns from correlation vectors, while the CNN 

channel deciphers hierarchical spatial features from genomic 

images. These features are then adaptively fused via the 

attention mechanism for precise GRN inference. Third, 

comprehensive benchmarking across multi-species, 

multi-lineage, and multi-scale datasets validates TCGRN's 

superior performance against state-of-the-art methods. The 

key contributions of this paper are outlined below: 

1) The original data is processed from two perspectives: on 

one hand, it is converted into correlation vectors to serve 

as input for learning temporal features; on the other hand, 

it is transformed into images, and gene pair images 

(neighborhood images) that share a common gene with 

the target pair are incorporated as input for learning 

spatial features. 

2) A dual-channel model is employed, utilizing TCN to 

capture time features and CNN to extract spatial features. 

Subsequently, the attention mechanism is used to 

effectively integrate these features, and hence infer the 

gene regulatory network. 

3) Experimental results demonstrate the effectiveness of 

TCGRN in GRN inference by comparing it with other 

methods across datasets of varying species, lineages, and 

sizes. 

II. MATERIALS AND METHODS 

This section provides a detailed exposition of the TCGRN 

framework, encompassing its architectural design and 

methodological implementation pipeline. 

A. Datasets 

The experimental data were curated from scRNA-seq 

benchmarks in the BEELINE framework [30], with original 

data sourced from [31]. Our evaluation is based on four 

authentic single-cell transcriptomic datasets: three 

lineage-specific datasets of mouse hematopoietic stem cells 

(mHSC), representing the erythroid (E), lymphoid (L), and 

granulocyte-macrophage (GM) lineages, and one human 

embryonic stem cell (hESC) dataset [32], which are used to 

assess cross-species generalizability. 

For each independent dataset, we use a standard network 

based on non-specific ChIP-seq data [33-35]. Genes 

expressed in fewer than 10% of cells are filtered out, 

followed by variance stabilization and P-value calculation 

(using a threshold of P < 0.01), and then sorted in ascending 

order by P-value. From these datasets, we extract the top 500 

and 1000 most highly variable genes for downstream analysis. 

Datasets are annotated using the convention ‘original dataset 

name-network scale’. Detailed information about each 

dataset, including the number of genes and cells, is provided 

in Table 1. 

B. Overview 

We propose a hybrid TCN-CNN network, TCGRN, for 

inferring single-cell gene regulatory networks. The 

framework begins by transforming raw single-cell 

transcriptomic data into both correlation vectors and image 

representations, enabling comprehensive feature extraction 

from temporal and spatial perspectives. The architecture 

employs parallel TCN and CNN branches to process these 

distinct data modalities, subsequently utilizing an attention 

mechanism for feature fusion and GRN prediction. TCGRN 

frames GRN inference as a binary classification task to 

determine whether gene pairs have regulatory relationships. 

Fig. 1 illustrates the overall TCGRN framework, which 

comprises four main steps: (1) data preprocessing; (2) time 

feature learning through TCN; (3) spatial feature extraction 

using CNN; and (4) feature fusion and prediction. 

C. Data Preprocessing 

TCGRN preprocesses data from two distinct perspectives. 

On one hand, the original data is transformed into correlation 

vectors; on the other hand, each gene pair is converted into 

histogram images that are combined with neighborhood 

images for subsequent spatial feature extraction. Since the 

data we use is closely tied to the cell differentiation process, 

and each cell's differentiation stage reflects underlying time 

information, we employ pseudo-time to describe the relative 

progression of cells during differentiation. Pseudo-time 

analysis typically integrates a variety of computational 

methods and algorithms to infer cell differentiation 

trajectories. In this paper, we employ SlingShot [36] to 

compute pseudo-time; it maps cells into a low-dimensional 

space, constructs trajectories within that space, and thereby 

clearly determines each cell's position in the differentiation 

process. 

In processing the input data for the model, we are inspired 

by the data handling methods in DGRNS [29]. We extract a 

series of ordered correlation vectors that capture the 

relationships between gene pairs, using statistical criteria to 

quantify their correlations. A sliding window mechanism is 

employed to preserve pseudo-time information. This is 

elaborated in Equations (1)-(5). 

 , , 1 , 2 ,, ,...,
u u uu m u ml u ml u ml sZ Z Z Z+ + +=        (1) 

     , , l 1 , l 2 ,, ,...,
u v u v u vv n v ml n v ml n v ml nl sZ Z Z Z+ + + + + +=     (2) 
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Table 1. Detailed Information of Single-Cell Transcriptomic Datasets 

Datasets Genes Cells Number of TFs Regulation Network density 

mHSC-GM-500 108 889 17 154 0.0839 

mHSC-L-500 114 847 22 147 0.0586 

mHSC-E-500 169 1071 21 279 0.0786 

hESC-500 188 758 22 236 0.0571 

mHSC-GM-1000 321 889 48 566 0.0367 

mHSC-L-1000 403 847 63 845 0.0333 

mHSC-E-1000 355 1071 45 677 0.0424 

hESC-1000 541 758 55 808 0.0272 
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Fig. 1. TCGRN Framework. Initially, the original data is converted into correlation vectors and input into TCN to capture time features. Simultaneously, gene 

pairs are transformed into histogram images and combined with neighborhood images, which are input into CNN to capture spatial features. These features are 
subsequently integrated using the attention mechanism to infer the gene regulatory network. 
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where Z represents the gene expression vector arranged by 

pseudo-time, ,u mZ  denotes the data segment of TF u  

captured by the sliding window m , ul  expresses the interval 

of the sliding window corresponding to the TF, ,v nZ

 represents the data segment of target gene v  captured by 

sliding window n , and vl  represents the interval of the 

sliding window for the target gene. Furthermore, 

{0,1,2, , 1}m i − , i  is the number of related vectors, 

{0,1,2, , 1}n j − , j  is the length of each vector. For each 

intercepted data segment of TF and target gene, their Pearson 

correlation coefficients are calculated respectively to 

characterize the correlation between gene pairs. 

Simultaneously, we convert gene pairs into histogram 

images, inspired by the DeepDRIM [28], considering 

potential neighboring pairs of genes. We generate 32x32 

pixel images ( ,u vG ) for genes u and v, along with 

neighborhood images for genes u and v, which include: （1）

1 2 1 2, , , , , ,, , , , }{ , , ,
r ru p u p u p v q v q v qG G G G G G ， where 

1 2 ), ,( , rp p p  and 1 2 ), ,( , rq q q  are the top r genes with 

strong positive covariance with genes u and v, respectively ( r 

defaults to 10); (2) two self-images ,u uG  and ,v vG . 

Specifically, we generate 2r+2 neighborhood images of 

genes with strong positive covariance with the gene pair and 

input these images along with the main image into CNN to 

comprehensively extract spatial information from the data. 

D. Time feature learning 

To capture temporal dynamics in the data, we employ TCN, 

an architecture that combines parallel processing capabilities 

with dilated convolutional operations. TCN efficiently 

models temporal dependencies through its unique ability to 

process sequences in parallel while systematically expanding 

the receptive field using exponentially increasing dilation 

rates. The dilated convolution can be expressed as Equation 

(6). 

            
1

0

[ ] [ ] [ ]
k

i

y t w i x t d i
−

=

=  −            (6) 

Here, [ ]y t  represents the output at time step t, w is the 

convolution kernel, [ ]w i  denotes the i -th weight of the 

kernel, and [ ]x t d i−   states the value of the input sequence 

at time step t d i−  . The size of the convolutional kernel k 

determines the number of input elements involved in each 

convolution operation, while the dilation rate d dictates the 

number of elements the kernel skips over in the input 

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2557-2565

 
______________________________________________________________________________________ 



 

sequence. Dilated convolution expands the receptive field by 

introducing gaps in the kernel, allowing for the capture of 

longer time dependencies. In this work, we use three different 

dilation rates to capture time dependencies at various scales. 

E. Spatial Feature Learning 

We deliberately extract spatial features from an image 

perspective, as image data possesses distinct spatial 

properties and structures that CNN can effectively exploit for 

efficient and accurate feature extraction. The filters in CNN 

share the same weights across all positions in the image, 

which reduces the number of model parameters, improves 

training efficiency, and enhances the model's translational 

invariance. By stacking convolutional and pooling layers, 

CNN can progressively extract features at low, mid, and high 

levels from images. 

In our framework, the CNN architecture consists of two 

convolutional layers with 3×3 filters, generating feature maps 

with 32 channels, a max pooling layer with a 2×2 pool size, 

and a fully connected layer with 128 nodes, as illustrated in 

Fig. 2. 

 

Fig. 2. Main Structure of the CNN 

F. Feature Fusion 

To effectively integrate spatiotemporal features for GRN 

inference, we employ an attention mechanism. Specifically, 

we use dot-product attention to compute the attention weights 

for the outputs of both the TCN and CNN, as shown in 

Equation (7). In this equation, a denotes the attention weight, 

e is the TCN output, c is the CNN output, and the “⋅” symbol 

denotes the dot product operation. 

            
T

a softmax
 

=   
 

e c

e c
            (7) 

The computed attention weights are then applied to e and c 

to generate their weighted feature representations, as 

demonstrated in Equations (8) and (9). Here, 1h  stands for 

the weighted output of the TCN and 2h  for that of the CNN, 

with “ ” indicating element-wise multiplication. 

                 a=
1

h e                 (8) 

                 a=
2

h c                  (9) 

These weighted features are subsequently concatenated to 

produce the final fused feature representation. Finally, a 

sigmoid activation function is applied, and the model is 

trained using binary cross-entropy loss as described in 

Equation (10). 

    
1

1
log( ( )) (1 ) log(1 ( ))

N

i i i i

i

BCE y p y y p y
N =

= − + − −      (10) 

where N denotes the number of samples, iy  represents the 

label of sample i  , and ( )ip y  represents the probability of 

sample i  being predicted as a positive label by the sigmoid 

function. 

G. Model Pseudocode 

For a comprehensive overview of the TCGRN framework, 

Algorithm 1 formally presents the complete computational 

workflow, where u,v
P  denotes the predicted probability of a 

regulatory interaction between gene u and gene v. 

Algorithm 1: Overview of the TCGRN Algorithm 

Algorithm 1: Gene Regulatory Network Inference Algorithm Based on 

Hybrid TCN-CNN Architecture. 

Input： Correlation vector ,m n , histogram images and neighborhood 

images of gene pairs 
,u vG , 

 
1 2 1 2, , , , , ,, ,..., , , ,...,

r ru p u p u p v q v q v qG G G G G G , ,u uG , ,v vG  

Output:   Prediction of gene regulatory relationships 
u,vP  

1：     begin 

2：     Initialize parameters 

3：     Extract time features e using TCN 

4：     Extract spatial features c using CNN 

5：     Obtain attention weights a for e and c 

6：     Apply a to weight e and obtain weighted output 1h  

7：     Apply a to weight c and obtain weighted output 2h  

8：     Concatenate 1h  and 2h  

9：     Output gene regulatory relationship predictions 
u,vP  through a fully 

connected layer 

10：  Calculate loss using binary cross-entropy and update model 

parameters 

11：    end 

 

III. EXPERIMENTAL AND RESULTS 

To evaluate TCGRN's performance, we conduct 

comparative experiments with state-of-the-art unsupervised 

and supervised GRN inference methods across diverse mouse 

hematopoietic stem cell datasets. To further assess each 

component’s contribution, we perform a series of ablation 

experiments to validate the effectiveness of the attention 

mechanism for feature integration and confirm the suitability 

of image-formatted data for CNN to extract spatial features. 

Additionally, we extend our evaluation to human datasets of 

different sizes, which underscores the generalizability of 

TCGRN. Finally, the datasets are partitioned into training, 

testing, and validation sets at multiple ratios to examine the 

impact of different data splitting strategies. 

A. Model Training and Validation 

Based on the standardized reference network, we designate 

documented TF target gene pairs as positive samples, while 

gene pairs lacking known regulatory interactions or 

annotations are classified as negative samples. As indicated 

by the network density in table 1, the GRN is notably sparse, 

with positive instances being substantially outnumbered by 
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negatives. To comprehensively assess the model's 

performance, we partition each dataset into training, 

validation, and test sets in a 3:1:1 ratio, ensuring that the 

positive-to-negative distribution remains consistent with that 

of the original dataset. 

B. Evaluation Metrics 

Given the inherent imbalance between positive and 

negative samples in sparse GRN, we evaluate model 

performance using both the area under the receiver operating 

characteristic curve (AUROC) and the area under the 

precision-recall curve (AUPRC). 

AUROC evaluates a model's binary classification 

capability by measuring the true positive rate (TPR) against 

the false positive rate (FPR) across all classification 

thresholds. Equation (11) presents the formula for computing 

AUROC. 

          
1

0

( )AUROC TPR FPR dFPR=            (11) 

AUPRC is used to evaluate model performance under 

imbalanced class conditions by computing the area under the 

precision-recall curve, which reflects the classifier’s 

effectiveness in predicting positive samples. 

 

Fig. 3. A comparison of TCGRN and unsupervised methods across all datasets. 

 

Fig. 4. A comparison of TCGRN and supervised methods across all datasets. 
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Fig. 5. Comparison of TCGRN-C and TCGRN methods. 

 

Fig. 6. Comparison of TCGRN-IM and TCGRN methods.  

C. Comparison with Baseline Methods 

To assess the effectiveness of TCGRN in GRN inference, 

we employ three unsupervised learning algorithms and three 

supervised learning algorithms as benchmark methods. 

Among various unsupervised algorithms, we select PIDC 

[12], GENIE3 [11], and GRNBoost2 [22] as comparison 

models. PIDC is based on multivariate information theory 

and partial information decomposition (PID), and it identifies 

regulatory interactions among genes by analyzing the 

statistical dependencies among gene triplets in single-cell 

gene expression data. GENIE3 is a random forest-based 

ensemble method that infers regulatory relationships through 

feature importance scores derived from regression trees. 

GRNBoost2 is a regression-based inference method that 

predicts the expression profile of each gene by training 

tree-based regression models, generating partial GRN. These 

resulting partial GRNs are subsequently ranked and 

integrated based on their importance, ultimately yielding the 

complete GRN. 

The comparison results between TCGRN and 

unsupervised methods on six mouse hematopoietic stem cell 

datasets are shown in Fig. 3. As illustrated in the figure, 

TCGRN achieves the best performance across all six datasets 

in terms of both AUROC and AUPRC metrics. On the 

mESC-E-500 dataset, the AUROC score of TCGRN is 

approximately 24% higher than that of the second-best 

unsupervised method. Due to the class imbalance in the 

datasets, all methods exhibit relatively low AUPRC values. 

However, on the mESC-E-500 dataset, the AUPRC of 

TCGRN still exceeds that of the second-best unsupervised 

method by around 18%. These experimental results 

demonstrate that TCGRN effectively learns data features, 

thereby enhancing the accuracy of GRN inference. 

Among various supervised GRN inference methods, we 

select CNNC [23], DeepDRIM [28], and DGRNS [29] as 

comparative models. CNNC transforms each gene pair into a 
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histogram and employs CNN to analyze expression-level 

relationships between genes. DeepDRIM extends the 

conventional histogram representation of gene pairs by 

incorporating neighborhood images for each pair, thereby 

mitigating false positives induced by transitive gene 

interactions. DGRNS adopts a hybrid learning framework 

that encodes the original data and integrates recurrent neural 

networks (RNNs) with CNN to determine whether gene pairs 

exhibit regulatory relationships. 

Fig. 4 presents the comparative results between TCGRN 

and supervised methods on six mouse hematopoietic stem 

cell datasets. The experimental results demonstrate that 

TCGRN achieves performance improvements in both 

AUROC and AUPRC metrics across all datasets when 

compared to other models. On the mHSC-GM-1000 dataset, 

TCGRN achieves an AUROC approximately 13% higher 

than the second-best method, DGRNS. On the mHSC-E-500 

dataset, TCGRN’s AUPRC is about 11.5% higher than that of 

DGRNS. These results validate the effectiveness of TCGRN 

in GRN inference. 

D. The role of the attention mechanism 

To verify the effectiveness of the attention mechanism in 

integrating time and spatial features to enhance model 

performance, we design a set of comparative experiments. 

Specifically, we replace the attention mechanism in the 

feature integration module of TCGRN with simple 

concatenation and compare this method with TCGRN on 

mouse hematopoietic stem cell datasets of varying lineage 

sizes, using AUROC and AUPRC as evaluation metrics. 

The experimental results are presented in Fig. 5, where 

TCGRN-C denotes the model in which the attention 

mechanism is replaced by simple concatenation. As shown in 

the figure, TCGRN achieves higher AUROC and AUPRC 

values than TCGRN-C on all experimental datasets. For 

example, on the mHSC-L-500 dataset, the AUROC of 

TCGRN is approximately 5% higher than that of TCGRN-C, 

and its AUPRC is improved by about 6%. These results 

demonstrate that the attention mechanism can better capture 

the complex relationships between temporal and spatial 

features, thereby enhancing the model's inference 

performance.

 

 

Fig. 7. Experiments on hESC datasets of varying sizes.  

 

Fig. 8. Experiments on TCGRN with various data split ratios. 

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2557-2565

 
______________________________________________________________________________________ 



 

E. Effectiveness of image-format data input 

To validate the impact of image-formatted data on spatial 

feature learning and overall model performance, we 

conducted ablation experiments to analyze the role of 

histogram-image representations in feature extraction. 

Specifically, while keeping all other operations unchanged, 

we replace the CNN input in TCGRN with the corresponding 

vectors instead of image data, and compare this method with 

TCGRN across mouse hematopoietic stem cell datasets of 

varying lineage sizes. 

The experimental results are shown in Fig. 6, where 

TCGRN-IM denotes the model variant in which the CNN 

input is changed from images to vectors. As shown in the 

figure, across all datasets, the AUROC and AUPRC values of 

TCGRN-IM are significantly lower than those of the TCGRN 

model. For instance, on the mHSC-GM-1000 dataset, 

TCGRN’s AUROC is approximately 12% higher than that of 

TCGRN-IM; on the mHSC-GM-500 dataset, TCGRN’s 

AUPRC is about 16% higher than that of TCGRN-IM. The 

experimental results demonstrate that transforming the raw 

data into histogram images and inputting them into the CNN 

allows for more effective utilization of spatial structural 

information, enabling the model to learn more complex and 

globally correlated features. 

F. Experiments on human datasets 

Many deep learning models may achieve exceptional 

performance on specific types of data but perform less 

effectively on others. With this in mind, we evaluate TCGRN 

on hESC datasets of varying sizes. As illustrated in Fig. 7, 

TCGRN achieves consistent superior performance on 

multiple hESC datasets of varying sizes, outperforming all 

benchmark models in both AUROC and AUPRC metrics. On 

the hESC-500 dataset, TCGRN achieves an AUROC 

approximately 9% higher and an AUPRC about 10% higher 

than the second-best model, DGRNS. These results 

demonstrate TCGRN's generalization capability for handling 

complex and diverse data. 

G. Experiments with varying split ratios 

To investigate the impact of training, validation, and test 

set ratios on model performance, we conduct experiments on 

mHSC datasets of varying sizes as well as on hESC datasets. 

In these experiments, each dataset was partitioned into 

training, validation, and test sets according to the ratios 8:1:1, 

3:1:1, and 4:3:3. The experimental results, shown in Fig. 8, 

reveal that when the training set proportion is high (8:1:1), 

the model achieves the highest AUROC values. This 

indicates that a larger training set facilitates the learning of 

more robust and comprehensive features, thereby enhancing 

overall inference capability. Conversely, when the training 

set proportion is low (4:3:3), the model is unable to obtain 

sufficient training data, resulting in poor AUROC 

performance across all datasets. When the ratio is 3:1:1, the 

model achieves second-best AUROC results on all datasets. 

On the hESC-1000 dataset, the model achieves the highest 

AUPRC under the 4:3:3 split, possibly due to the class 

imbalance in the data. Similarly, on the mHSC-GM-1000 and 

mHSC-E-1000 datasets, the model's AUPRC under the 4:3:3 

split is higher than that under the 3:1:1 split, likely for the 

same reason. 

IV. DISCUSSION 

To address the sparsity issue in single-cell sequencing data, 

TCGRN integrates multiple forms of data information. 

Specifically, it constructs correlation vector matrices and 

feeds them into TCN to capture time features. 

Simultaneously, it transforms the joint expression of 

transcription factors and genes into histogram images, 

including neighborhood images of gene pairs, which are then 

input into CNN to extract spatial features. Additionally, 

TCGRN leverages the attention mechanism to effectively 

integrate the time and spatial features captured by TCN and 

CNN. We conduct a comprehensive analysis of TCGRN on 

multiple single-cell transcriptome datasets, evaluating its 

performance using the standard metrics AUROC and 

AUPRC. The experimental results demonstrate that TCGRN 

consistently excels in both AUROC and AUPRC across all 

datasets, significantly enhancing the accuracy of GRN 

inference. This provides a solid theoretical foundation and 

technical support for subsequent biological research and 

applications. 

In the future, we plan to enhance and extend TCGRN by 

incorporating multimodal data sources, for example, 

integrating single-cell Assay for Transposase-Accessible 

Chromatin using sequencing (scATAC-seq) and scRNA-seq, 

to construct more comprehensive GRN. Moreover, exploring 

more interpretable and biologically meaningful approaches to 

understanding and applying the inferred GRN will be an 

important direction for future research. 
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