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Abstract—Security constitutes a foundational aspect of web
application development, primarily due to the need to safeguard
substantial volumes of sensitive data. Among the various
security threats, Cross-Site Scripting (XSS) attacks continue to
pose a significant risk to the integrity and security of
contemporary web applications. Traditional XSS detection
methods are hindered by limited detection coverage, difficulties
in adapting to highly dynamic web environments, and high false
positive rates. While deep learning-based approaches offer
advantages such as robust feature extraction, they still face
challenges related to dataset quality, class imbalance, and the
need for further improvements in accuracy. To overcome these
limitations, this paper proposes an XSS detection method that
integrates Convolutional Neural Networks (CNN), Long Short
Term Memory (LSTM) networks, and a Transformer based
multi-attention mechanism. Moreover, the AdaBoost algorithm
is integrated for the final classification decision. Empirical
evaluations conducted on two publicly available datasets
demonstrate that the proposed model surpasses existing
detection approaches, achieving accuracy rates of 99.73% and
99.52%, respectively.

Index Terms—Security, Cross-Site Scripting, Deep learning,
Transformer, AdaBoost.

I. INTRODUCTION

he current development of network technology has

greatly changed people's lives and has become an
indispensable and important tool. According to the Open
Web Application Security Project (OWASP), Cross-Site
Scripting (XSS) has consistently been classified within the
top 10 security vulnerabilities affecting web applications
worldwide, securing positions 4, 4, 1, 3, 7, and 3 in the years
2004, 2007, 2010, 2013, 2017, and 2021, respectively [1]. In
recent years, artificial intelligence (AI) techniques have
garnered significant attention, particularly in machine
learning (e.g., Decision Trees (DTs), Random Forests (RF),
and Support Vector Machines (SVM) [2]) and deep learning
(e.g., Convolutional Neural Networks (CNN) [3] and Long
Short-Term Memory Networks (LSTM) [4]), due to their
notable advantages in detecting attacks and intrusions.
Compared to traditional detection methods (e.g., input
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validation, static analysis, and dynamic analysis) [5,6], these
methods address certain drawbacks of traditional techniques,
enhancing both detection accuracy and adaptability. Despite
progress, detecting XSS attacks remains a challenge due to
factors such as reliance on single base classifiers, limited
dataset size, class imbalance, and the lack of model
interpretability. Ensemble learning techniques, which
effectively address these challenges, have shown superior
performance in detecting XSS attacks and other
cybersecurity threats [7]. Despite the widespread application
of deep learning models in XSS detection, many studies
overlook the advantages of combining multiple models to
harness their complementary strengths and improve
classification accuracy.

To improve the detection of XSS attacks, this research
introduces a framework that integrates deep learning
techniques with the AdaBoost ensemble algorithm. This
research makes the following key contributions: 1) We
integrate features extracted by CNN-LSTM and Transformer
models to construct an integrated model with a parallel
structure, significantly improving the model's overall
expressiveness and generalization capability. 2) Building on
this parallel-structured integrated model, we integrate the
AdaBoost classifier to enhance performance. Feeding the
extracted features into AdaBoost significantly improves the
model’s classification accuracy.

II. RELATED WORK

XSS, a form of client-side exploitation, allows attackers to
inject malicious JavaScript into web pages—thereby gaining

unauthorized access to sensitive user data such as session
tokens and login credentials. XSS vulnerabilities are
generally categorized into client-side and server-side
vulnerabilities [8].

Early studies primarily focused on analyzing web
application source code for XSS vulnerabilities using static
inspection techniques [9]. Static analysis methods rely on
source code inspection, providing efficient detection but
often resulting in false positives and false negatives [10]. In
contrast, dynamic detection methods simulate attacker
behavior to identify vulnerabilities [11].

Although these methods deliver high detection accuracy
without needing access to the source code, their effectiveness
is often constrained by specific attack vectors, which can
notably affect detection performance [12].

With the advancements in machine learning, researchers
have proposed XSS detection techniques based on these
technologies to address the shortcomings of static and
dynamic methods [13]. Some integrated methods employ
supervised ensemble learning techniques, such as AdaBoost,
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Fig. 1. The CNN architecture

achieving detection accuracy as high as 99.8% [14].
However, these methods typically rely on manual feature
extraction, which can be both time-intensive and influenced
by personal judgment [15]. Unlike traditional machine
learning methods, deep learning autonomously extracts
textual features, overcoming their inherent limitations [16].
Compared to traditional methods, XSS detection powered
by deep learning offers greater automation, improved
accuracy, and reduced false positive rates [17].

Several deep learning models have achieved outstanding
accuracy in detecting XSS attacks: LSTM networks reached
99.25% [18], CNN-LSTM combinations attained 99.4%
[19], and LSTM with an attention mechanism achieved
99.11% [20].However, as attackers continue to innovate
their techniques to bypass detection, the primary challenge
in current research is optimizing deep learning models to
effectively detect the continuously evolving techniques used
in XSS attacks.

III. RESEARCH BACKGROUND

A. CNN architecture

The design of CNN is influenced by biological neurons in
the human and animal brain and shares similarities with
traditional neural networks. CNNs offer three primary
advantages: translation invariance, sparse interactions, and
parameter sharing [21]. A CNN, by design, includes
convolutional layers, pooling layers, and fully connected
layers, employing weight sharing and local connectivity to
enable automatic feature extraction, thereby enhancing the
efficiency and accuracy of visual recognition and
classification [22]. The structure is illustrated in Fig. 1.

For a one-dimensional Convolutional Neural Network
(1D-CNN), its mathematical formulation is expressed as
folows (where x denotes the input signal, n represents the
length of the input sequence, k signifies the size of the
convolutional kernel, % indicates the convolutional kernel, s
denotes the stride length, and y represents the output feature
map) [23].

%x(nﬂ')h(i),n:O
i=0 1)

k
> x(n+i+(s—1))h(i),otherwise
i=0

Yn =

24@16x16

Max-Pool Dense

B. LSTM architecture

LSTMs, as a specialized type of recurrent neural network,
offer enhanced capabilities for handling sequential data.
They incorporate multiple gating mechanisms and internal
states within their memory cells, effectively addressing the
gradient vanishing problem commonly encountered in
traditional RNNs [24]. Each gate processes the input and
modulates the flow of information from previous time steps
while maintaining the sequential processing nature of RNNs.
Fig. 2 depicts the architecture of LSTM.

Given the input at time step ¢, along with the previous
hidden state /’lH and cell state ¢, , , the calculations

performed within an LSTM cell are specified by the
following equations:
® The forget gate:

ft:O'(tht_l + fot +bf) ()
® The input gate:

C, = tanh(W,[h
® The update cell state:

151+ D) (4)

® The output gate:
0,_sigmoid (W, O [ht—l ,Xp 1+ by) 6)

w Iz W; ,W. and W, represent the weight matrices for

the forget gate, input gate, candidate cell state, and output
gate, respectively, while b I bi , b, and b, are their

respective bias terms.

C. Self-attention mechanism

The self-attention mechanism captures long-range
dependencies by enabling direct interactions between all
positions within a sequence. It primarily consists of scaled
dot-product attention and multi-head attention. In scaled
dot-product attention, attention weights are computed by
taking the dot product of the query and key vectors, dividing
by the square root of the key dimension to reduce gradient
instability, and applying a softmax function to obtain norma-
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Fig. 2. The LSTM structure diagram
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Fig. 3. The self-attention mechanism

lized attention scores. Multi-head attention divides the query,
key, and value matrices into multiple heads using separate
linear projections, performs attention in parallel across these
heads, and then concatenates the resulting outputs to
produce the final representation. By enabling the model to
focus on information from different representation
subspaces across various positions at the same time, this
structure enhances its ability to represent complex data.

Additionally, positional encoding is integrated to encode
word order information, addressing the sequence modeling
limitations of the self-attention mechanism. These attributes
together enhance the Transformer model's effectiveness and
scalability in processing sequential data [25]. Fig. 3 depicts
the self-attention mechanism.

D. AdaBoost classifier

The AdaBoost algorithm, introduced by Freund and
Schapire in 1995, is a widely adopted ensemble learning
technique based on the Boosting framework. It improves

Scaled Dot-Product
Attention

ear]‘ [Lin

r

K Q

predictive performance by sequentially training a series of
weak learners, typically decision trees, and aggregating
them into a strong classifier. During each iteration,
AdaBoost dynamically adjusts the sample weights based on
the misclassifications made by the preceding model,
assigning higher weights to incorrectly predicted instances.
This approach ensures that subsequent learners focus more
on difficult cases. The contribution of each weak learner is
determined by its classification error; a lower error results in
a higher contribution. Finally, the algorithm integrates the
outputs of all weak learners using weighted voting to
produce the final prediction [27].

IV. RESEARCH METHODS

A. Preprocessing

Data Collection: Given that Xssed.com is currently one of
the most comprehensive platforms for aggregating XSS
vulnerabilities, this study utilizes web crawling techniques
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Fig. 4. Visualization of word vector dimensionality reduction
to extract malicious samples from the site, which serve as 1)  http/https links
positive instances. These samples include a wide range of c- 2)  html tags < script>
ommonly observed XSS attack types, featuring both malfo- 3)  html tag beginning < hl
rmed and obfuscated payloads. In contrast, benign samples 4)  Parameter name topic=
are obtained from the DMOZ database and used as 5)  function body alert(
negativeinstances. 6) Mixed strings of characters and numbers

Data Preprocessing: In this study, the Word2Vec model is
utilized to train a vocabulary and produce the corresponding
word embeddings. To visualize the resulting embeddings,
t-distributed Stochastic Neighbor Embedding (t-SNE) is
used for dimensionality reduction. Specifically, the first 100
dimensions of the original 128-dimensional embeddings
arereduced to two dimensions for visualization, as shown in
Fig. 4.

Data Cleaning: To ensure data consistency and improve
model performance, all positive and negative samples
undergo a data cleaning process. The host and path
components are removed from URLs, leaving only the
malicious payload intact. Furthermore, all hyperlinks are
normalized by substituting them with a standardized
placeholder to ensure uniformity across the dataset.The
cleaned URLs are then encoded and stored in a CSV file for
subsequent processing.

Segmentation: Tokenization is applied to all samples.
Unlike typical natural language text, the experimental data
contains HTML tags, function bodies, parameter names, and
other programming-related structures. Therefore, custom
tokenization rules are established to handle these elements
appropriately. Specifically, the following components are
treated as separate tokens and enclosed in single quotation
marks:

Volume 52, Issue 8, Au

An effective word embedding model enables textual
content to be encoded as vectors within a continuous vector
space. The data preprocessing workflow is depicted in Fig.
5.

B.  Model Analysis and Architecture

XSS attack detection primarily involves the analysis of
textual data such as web requests, URLs, and form inputs,
which may contain malicious scripts exhibiting specific
paterns, including distinct tags, attributes, or embedded
JavaScript code. CNNs are effective in identifying localized
patterns within sequences, making them suitable for
detecting typical XSS attack signatures. However, more
advanced XSS attacks often consist of longer, obfuscated
payloads that exploit complex application logic. LSTM,
with their capacity to model long-range dependencies and
contextual semantics, are better suited for capturing such
complex patterns. Nonetheless, their inherent sequential
computation limits their ability to model distant
dependencies efficiently.

On the other hand, Transformer architectures utilize
self-attention mechanisms to facilitate global interactions
among sequence elements, enabling the direct modeling of
long-range dependencies without relying on stepwise state
propagation.This global perspective strengthens the model's
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Fig. 5. Data preprocessing process
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Fig. 6. Framework Diagram of the Proposed Model

capacity to capture intricate semantic structures, leading to
improved detection accuracy for advanced XSS variants.

Moreover, XSS detection is typically framed as an
imbalanced classification problem, where benign samples
far outnumber attack samples. Class imbalance presents a
challenge in further improving performance beyond a
certain accuracy threshold. AdaBoost, an ensemble learning
method, effectively addresses this issue by iteratively
training multiple weak classifiers (typically decision trees)
and adjusting the weights of misclassified instances, thereby
enhancing the identification of minority-class samples.

Leveraging this advantage, the proposed framework
adopts a multi-branch architecture that seamlessly integrates
both sequential and attention-based neural models with
AdaBoost, thereby significantly improving classification
accuracy, robustness, and overall performance.

The overall architecture of the proposed model, as
illustrated in Fig. 6, consists of three main components. First,

preprocessed input data is fed into two parallel feature
extractors: a CNN-LSTM hybrid and a Transformer-based
encoder. The CNN-LSTM model adopts a sequential design,
where CNN layers capture local features followed by LSTM
layers that learn global sequential dependencies. In parallel,
the Transformer encoder includes positional encoding to
preserve order information and a multi-head self-attention
mechanism, implemented with eight attention heads and two
encoding layers. Both models independently produce
classification outputs. The second component fuses the
features from both models and conducts an intermediate
classification on the merged representations.

Finally, AdaBoost is applied in the third component to
perform the final classification, harnessing the combined
deep feature representations to enhance both robustness and
accuracy. This effectively boosts the model's ability to
generalize on unseen data, ensuring stable and reliable
performance across diverse scenarios.
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TABLE I
EXAMPLES OF SAMPLE FEATURES FOR THE TWO DATASETS

Datasetl

Dataset2

<tt onmouseover="alert(1)">test</tt>

<caption draggable="true" ondragleave="alert(1)">test</caption>

<button onmouseover="alert(1)">test</button>

<caption onpointerdown=alert(1)>XSS</caption>

<figcaption onpointerleave=alert(1)>XSS</figcaption>

symbol%3D%3Ch1%3E%3Cscript%3Ealert%28/hacked/%29%3C/script%
3E%3C/h1%3E%261d%3D58873%22%27

RequestCookies%3D%26Requestdate%3D%26refer%3D%22%3E%3Cscri
pt%3Ealert%28%27/xssed/%27%29%3C/script%3E

page%3Dsearch%26q%3D%22%3E%3Cscript%3Ealert%281%29%3C/scri
pt%3E%26qmatch%3D0%26¢ntr%3D0%26domain%3D0%26find%3Dall
%_26from%3D%26t0%3D

phrase%3D%27%3E1%3C/a%3E%3Cscript%3Ealert%28document.cookie
%29%3C/script%3E

siteSect%3D880%26searchString%3D%22%3E%3 Cscript%3Ealert%28%2
2Fugitif%22%29%3C/script%3E

V. EXPERIMENTS AND RESULTS

A. Dataset

This study employs two publicly available datasets. The
first dataset (Dataset 1) is an XSS corpus specifically curated
for deep learning applications, as provided by [28]. It
includes 6,313 benign samples and 7,373 malicious samples,
collected from sources such as PortSwigger, OWASP, and
the XSS Cheat Sheet. The second dataset (Dataset 2) is
constructed using data from the DMOZ directory and the
XSSed database, containing 34,500 benign samples and
30,110 malicious samples [29]. To ensure a balanced
evaluation, each dataset was randomly partitioned, with 70%
allocated for training and 30% for testing. Table I presents
representative feature examples from each dataset.

It is significant to mention that the first dataset employed
in this study consists of HTML-encoded XSS samples
featuring complete front-end tag structures, which are
intended to simulate executable attack code within realistic
web environments. In contrast, the second dataset comprises
URL encoded XSS payloads, designed to model attack
vectors as they occur in actual network communications.
The selection of these two distinct types of datasets is
motivated by the need to comprehensively capture the
diverse manifestations of XSS attacks: the first dataset
facilitates the modeling of client-side attack behaviors
within rendered web pages, whereas the second captures the
obfuscation characteristics of payloads transmitted through
backend systems. This complementary dataset design
enhances the generalization capability and robustness of the
detection model across a wide range of real-world
application scenarios.

B. Experimental environment and parameter settings

The experimental platform and hyper parameter settings
used in this study are provided in Table II.

TABLE II
EXPERIMENTAL PLATFORM ENVIRONMENT AND
HYPERPARAMETER SETTINGS
Designation Versions/parameters
Operating System Windows 11
GPU NVIDIA RTX3080
CPU 19-13900
RAM 32G
framework Pytorch
CUDA version 12.6
Python 3.8.19
Batch size 64
Convolution filters 64
The kernel size of the filter 3
LSTM hidden units 64
Attention head 8
Feedforward network dimension 128
Fully connected layer 64
Activation function ReLu
Classification function Sigmoid
Optimizer Adam
Learning rate 0.01
Estimators 50
Epochs 10

C. Experimental design

In this study, the proposed model is compared with
several leading approaches, all evaluated using the same
dataset, including the LSTM model from [18], the
CNN-LSTM model from [19], and the LSTM-Attention
model from [20]. Furthermore, an experiment was
conducted to empirically assess the performance
improvements gained by integrating AdaBoost into the
proposed model.

The selection of these models is motivated by their status
as widely recognized baselines in the field of XSS attack
detection. Comparing the proposed method against these
well-established models enables a more rigorous and
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meaningful assessment of its effectiveness and potential
improvements.

D. Experimental results and Analysis

In this study, the evaluation of the proposed model is
based on four primary metrics: accuracy, precision, recall,
and Fl-score. Accuracy (Acc) refers to the proportion of
correctly classified samples out of the total. Precision (P), on
the other hand, measures the fraction of predicted malicious
instances that are truly positive. Similarly, recall (R)
quantifies the model's ability to correctly identify actual
malicious samples. The Fl-score, which is the harmonic
mean of precision and recall, provides a more balanced view
of model performance.In terms of classification results, True
Positive (TP) indicates the number of correctly classified
positive instances, while True Negative (TN) refers to
correctly identified negative instances. On the contrary,
False Positive (FP) represents negative instances
misclassified as positive, and False Negative (FN) refers to
positive samples incorrectly classified as negative. The
evaluation metrics are computed as follows, with accuracy
calculated by the formula:

7P
ACC = ®)
TP+ FN + 1N + FP
Precision is defined as the following equation:
P
P=——- ©)
TP + FP
Recall is defined as the following equation:
TP
R=——— (10)
TP + FN
1-score is defined as the following formula:
2TP
Fl-score =———— (11)
2TP + FN + FP

Table III presents the confusion matrix [30] for each
evaluation parameter mentioned above.

TABLE III
CONFUSION MATRIX
Determination of Predicted to be .
.. .. Predicted as normal
maliciousness malicious
Actual malicious TP FN
Actual Normal FP TN

In the training process, a learning rate of 0.01 is used for
the proposed model, with the stochastic gradient descent
(SGD) algorithm and a binary cross-entropy loss function
applied.

Fig. 7 illustrates the accuracy trend throughout the
training process on the first dataset, while Fig. 8 displays the
corresponding loss trend. After 10 training epochs, the
model achieves an accuracy of 99.76% on the test set, with
the loss value reduced to 0.0069, demonstrating the
remarkable capability of the proposed model in detecting
XSS attacks based on HTML structure and JavaScript event
triggers. For URL encoding and complex XSS attacks, the
proposed model achieves an accuracy of 99.52% on the test
set, with the loss value reduced to 0.0187, as shown in Fig. 9
and Fig. 10. The experimental results indicate that the propo-

sed model effectively simulates security detection in real
world scenarios.

Fig. 11 and Fig. 12 present the performance evaluation
results of the model on two different datasets. The results of
the experiments confirm that the proposed model surpasses
the comparison models in performance on both datasets.

The first dataset consists of common HTML statements,
which are relatively simple in structure and easy to parse. On
this dataset, the proposed model achieves a precision of
99.73%, a recall of 99.77%, and an Fl-score of 0.9975.
These results, consequently, highlight the model's capability
to efficiently extract key information from HTML
statements while achieving a strong balance between
prediction accuracy and coverage.

Compared to the simpler structure of the first dataset, the
second dataset comprises more challenging, URL-encoded
complex statements. These inputs are not only structurally
intricate but also often contain substantial extraneous
content, posing greater demands on the model’s parsing and
recognition capabilities. On this dataset, the proposed model
achieves an accuracy of 99.79%, reflecting a very low false
positive rate and effectively preventing the misclassification
of benign traffic. With a recall of 99.18%, the model
successfully identifies the vast majority of malicious or
anomalous instances. The F1-score of 0.9948 underscores its
ability to maintain an optimal equilibrium between precision
and recall, demonstrating robust adaptability in handling
complex XSS scenarios.

TABLE IV
PERFORMANCE COMPARISON ON DATASET 1

Accuracy  Precision Recall
model % 9% % Fl-score
[18] 99.61 99.63 99.63 0.9963
[19] 99.41 99.23 99.68 0.9946
[20] 99.41 99.95 98.96 0.9945
Proposed g9 73 99.73 99.77 0.9975
model

TABLE V
PERFORMANCE COMPARISON ON DATASET 2

Accuracy  Precision Recall
model % % % Fl-score
[18] 99.36 99.74 98.90 0.9932
[19] 99.31 99.40 99.13 0.9926
[20] 99.34 99.80 98.78 0.9929
Proposed —gq 5, 99.79 99.18 0.9948
model

Tables IV and V provide a comparative summary of
model performance on Dataset 1 and Dataset 2.

On Dataset 1, the model from [18] achieves an accuracy
0f 99.61% and an F1-score of 0.9963; the model from [19]
achieves 99.41% accuracy and an Fl-score of 0.9946; and
the model from [20] achieves 99.41% accuracy with an F1-
score 0f 0.9945. In comparison, the proposed model outperf-
orms others, with an accuracy of 99.73%, precision of 99.73
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Fig. 7. Accuracy of the proposed model on Dataset 1
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Fig. 8. Loss of the Proposed Model on Dataset 1
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Fig. 9. Accuracy of the proposed model on Dataset 2
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Fig. 11. Comparison of the proposed model with other models on Dataset 1

(]
st
o
Q
n

1.0000

0.9975
0.9950
0.9925
0.9900
0.9875
0.9850
0.9825

0.9800

Recall
Precision
F1 score

LSTM CNN-LSTM  LSTM-Attention Proposed Model
Models

Precision Recall F1 Score

Fig. 12. Comparison of the proposed model with other models on Dataset 2
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Fig. 13. Comparison of model results without and with AdaBoost on Dataset 1

1.000

Accuracy / F1score
0.9951 \ /
g
= 0.9901
=
0.9851
0.980

I Precision

With AdaBoost

Models

Recall F1 Score

Precision

Accuracy |  Recall
0.995 | F1 score
\ /
S
E 0.990+
0.9851
0.980

Without AdaBoost

Accuracy

Fig. 14. Comparison of model results without and with AdaBoost on Dataset 2

%, recall 0 99.77%, and an F1-score 0f 0.9975 on Dataset 1.

On Dataset 2, the model from [18] attains an accuracy of
99.36% and an Fl-score of 0.9932; the model from [19]
reaches an accuracy of 99.31% with an F1-score of 0.9926;
and the model from [20] achieves an accuracy of 99.34%
with an F1-score of 0.9929. In contrast, the proposed model
achieves an accuracy of 99.52%, precision of 99.79%, recall
of 99.18%, and an Fl-score of 0.9948 on Dataset 2, again
outperforming the other models.

The proposed model's outstanding performance in
precision and recall across both datasets highlights its
robustness and adaptability, making it highly effective for
detecting XSS attacks in different contexts.

The superiority of the proposed model was demonstrated
across various metrics in the experiments above.To further
evaluate the contribution of each module, an ablation
experiment was conducted, with a particular focus on the
AdaBoost module. In this experiment, the AdaBoost module
was removed while keeping all other components intact.
This setup enabled the quantification of AdaBoost's impact

I Precision

With AdaBoost

Models

Recall F1 Score

on model performance and provided a more detailed
analysis of its contribution to the evaluation metrics.

Fig. 13 and Fig. 14 show the performance of AdaBoost
with two different datasets, respectively. The figures
illustrate that the AdaBoost algorithm significantly enhances
the model's performance across various datasets, improving
accuracy, precision, recall, and Fl-score. It shows that the
integration of AdaBoost algorithm significantly enhances
the ability of the model to identify positive class samples.

Figure. 15 presents the confusion matrix of the model
evaluated on Dataset 1 without the integration of AdaBoost,
showing 2,154 TP, 8 FN, 13 FP, and 1,921 TN.

Figure. 16 illustrates the results following the integration
of AdaBoost, where TP increases to 2,206, FN decrease to 6,
FP drop to 5, and TN exhibit only slight variation.

Figure. 17 displays the confusion matrix for Dataset 2 in
the absence of AdaBoost, yielding 10,270 TP, 33 FN, 87 FP,
and 8,938 TN.

Fig. 18 demonstrates the outcome following AdaBoost
integration on Dataset 2, with TP increasing to 10,291, FN
dropping to 19, FP declining to 74, and TN improving to 8,
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Taken together, the results indicate that AdaBoost
enhances the model's classification performance across both
datasets. Through adaptive weight adjustment, AdaBoost
allows the model to prioritize boundary and misclassified
instances, reducing false positives and missed detections,
while improving overall accuracy. As a result, AdaBoost
shows exceptional robustness and broad applicability in
various attack detection scenarios, particularly when
handling complex and diverse attack patterns. Its adaptive
focus on misclassified instances enhances the model's
effectiveness, making it an essential tool for improving
detection accuracy in real-world applications.
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Fig. 15. The confusion matrix of the model without AdaBoost on Dataset]
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Fig. 16. The confusion matrix of the model with AdaBoost on Datasetl
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Fig. 17. The confusion matrix of the model without AdaBoost on Dataset2
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Fig. 18. The confusion matrix of the model with AdaBoost on Dataset2

VI. CONCLUSION

An XSS attack detection model that integrates deep
learning with the AdaBoost ensemble learning algorithm is
proposed in this paper. Initially, a Word2Vec model is
utilized to generate word embeddings from the text data,
thereby providing a robust and high-quality representation
of the word vectors. A preprocessing step is conducted to
verify the data's validity and ensure its consistency. The
trained word vectors are then input into the deep learning
model for feature extraction and classification. The output of
the deep learning model is subsequently optimized using the
AdaBoost classifier to enhance classification performance.
This approach leverages the strengths of both deep learning
and ensemble learning, resulting in improved detection
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accuracy. Extensive experiments demonstrate that the
proposed model achieves accuracy rates of 99.73% and
99.52% on two distinct datasets, highlighting its superior
efficacy in detecting XSS attacks.
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