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Abstract—Detecting dim small targets in infrared image
is a critical aspect of infrared search and tracking systems.
However, the conventional detection algorithms are often limited
by the impact of complex background and noise. Therefore,
we propose an infrared dim small target detection model
that combines overlapping group sparse total variation and
Lp-norm constraints. The introduction of overlapping group
sparse total variation regularization effectively suppresses noise
in the image and enhances the detection capability for small
targets. Additionally, by incorporating the Lp-norm constraint,
the sparsity of the targets is enhanced, while the low-rank
component constraint is adaptively adjusted. During the
detection phase, the infrared image is initially into block-based
matrices, followed by optimization through the alternating
direction method of multipliers. Tests confirm that this detect
effectively infrared small targets, suppressing background noise
in challenging environments, and delivers a boost in detection
performance.

Index Terms—Infrared dim small target detection, nuclear
norm, overlapping group sparse total variation, Lp-norm.

I. INTRODUCTION

INFRARED dim small target detection is a critical
component in search and tracking systems [1, 2].

Detecting infrared targets amid complex backgrounds
remains an ongoing technical hurdle due to their diminutive
scale, minimal contrast, and weak signal relative to noise.
Compounding the difficulty, these targets often lack clear
features, combined with background clutter interference,
makes their detection a persistent challenge.

To address this challenge, extensive research has been
devoted to developing effective methods for identifying dim
and small infrared targets in various scenarios. Among
various detection techniques, suitable filtering methods can
enhance the ability to detect small targets [3]; in particular,
sparse low-rank matrix recovery methods are noteworthy.
Gao [4] introduced the infrared patch image (IPI) model,
employing nuclear along with L1-norms as optimal convex
approximations for rank functions and sparse features. Dai
[5] incorporating a locally adaptive kernel [6], developed
the weighted infrared patch image (WIPI) model. Dai [7]
proposed the non-negative infrared patch image (NIPPS)
model [8]. In [9], Wang employed the total variation
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framework [10] to isolate pronounced edges in infrared
imagery, a method termed TV-PCP. Zhang [11] used the
Lp-norm to describe the target and introduce a non-convex
optimization (NOLC) model using Lp-norm constraints.
Rawat [12] introduced a novel model utilizing Bi-nuclear
norm minimization (NNM). Despite the considerable success
of IPI model-based methods in recent research, they still face
challenges in effectively suppressing background interference
in complex environments.

This paper proposes a method for detecting infrared dim
small targets that incorporates overlapping group sparse
total variation (OGSTV) regularization alongside Lp-norm
constraints. Combining non-convex Lp-norm optimization
with the structured sparsity of OGSTV, the model achieves
background suppression and noise reduction for infrared
small target detection.

This paper makes the following primary contributions.
(1) A new model for detecting dim small targets in
infrared images combines OGSTV and Lp-norm constraints,
providing strong background suppression and effective
target extraction capabilities. (2) Non-convex optimization
is employed to overcome the limitations of traditional
convex optimization methods in sparse representation. (3)
The model is effectively resolved through the integration
of the majorization-minimization (MM) algorithm and
the alternating direction method of multipliers (ADMM)
optimization framework, ensuring computational efficiency.

II. METHOD

We begin by introduce two fundamental concepts and
then detail the proposed detection model along with its
optimization algorithm.

A. Basic Concepts

1) Lp-norm: Let B has a singular value decomposition
expressed as B = U ∗ S ∗ V T , S is a diagonal matrix of
singular values. The definition of the one norms of B is as
Eq. (1), where ∥B∥p denotes Lp-norm.

∥B∥p =

 m∑
h=1

n∑
f=1

|ahf |p
1/p

, 0 < p < ∞ (1)

Here, ahf denotes the pixel values in the hth row and f th
column of matrix B.

The sparsity of the solution in the context of Lp-norm is
directly tied to the value of p. Mathematically, the behavior
of Lp-norm function with different p values determines the
distribution of nonzero elements in the solution. As discussed
in [11], when p > 1, the norm tends to yield a solution with
a more uniform distribution of non-zero values, resulting in
a less sparse outcome. Conversely, when p ≤ 1, the function
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promotes values to focus on a small number of elements,
resulting to a sparse solution where two elements are zero
and the intersection point is located at the coordinate axes.
Hence, sparsity is achieved when p ≤ 1. The L1-norm
is a special case in this paper when Lp=1. Relative to
the L1-norm, adopting an Lp-norm regularization approach
markedly enhances the capability of the algorithm to recover
sparse signals [13, 14, 15, 16].

2) Overlapping group sparsity total variation: For a
matrix a ∈ Rn×n, we define a C × C point group at the
location (h, f) of a

ahf,C =


ah−m1,f−m1

· · · ah−m1,f+m2

ah−m1+1,f−m1 · · · ah−m1+1,f+m2

...
. . .

...
ah+m2,f−m1

· · · ah+m2,f+m2

 ∈ RC×C

(2)
Here, m1 = ⌊C−1

2 ⌋, m2 = ⌊C
2 ⌋. ⌊e⌋ denotes the greatest

integer not exceeding e. The matrix ãh,f,C is centered at
(h, f), and ah,f,C is obtained by vectorizing ãh,f,C , i.e.,
ah,f,C = ãh,f,C(:). Then the overlapping group sparsity total
variation regularizer can be expressed as follows:

OT (a) =
∑
h,f

||a(h, f)C ||2 (3)

Following the approach in [17], We define the
regularization functional OT (a) as follows:

OT (a) = OT (D(1)a) +OT (D(2)a) (4)

where OT (D(1)a) and OT (D(2)a) denote the finite
difference matrices for horizontal and vertical directions,
respectively.

B. Proposed Model

Traditional infrared image model is expressed as (5):

f(x, y) = fB(x, y) + fT (x, y) + fN (x, y) (5)

where f(x, y), fB(x, y), fT (x, y), fN (x, y) and (x, y)
represent the original image gray value, the background
region gray value, the target region gray value, the noise
region gray value, and the pixel location, respectively. The
target image can be effectively extracted from the infrared
data by characterizing the background, target, and noise with
different features, thus enabling accurate detection. Based on
this, IPI model[4] is formulated as shown in (6):

D = B + T +N (6)

Here, D, B, T , and N denote the original infrared patch
image, background patch image, target patch image and noise
patch image, respectively. The IPI model assumes that local
infrared background patches are highly correlated, modeling
them as a low-rank matrix, while small targets are treated
as sparse components. The methods for constructing and
reconstructing the IPI model refer to [4]. The detection
pipeline for infrared small targets using the IPI model, as
introduced in [4], is formulated as follows:

min
B,T

∥B∥∗ + λ∥T∥1, s.t. ∥D −B − T∥F ≤ δ (7)

where∥·∥∗ denotes the nuclear norm, ∥·∥1 denotes the L1

norm, ∥·∥F is the Frobenius norm, λ serves as a weighting
parameter.

As mentioned earlier, when the value of p < 1, the
Lp-norm is more effective than the L1-norm in enforcing
sparsity. It imposes a stronger penalties on non-zero elements
during optimization, driving more coefficients toward zero
and yielding a sparser solution. This is particularly
advantageous for processing images with significant noise or
complex backgrounds, as the Lp-norm better isolates small
targets.

In the IPI model, the low-rank assumption can lead to
significant blurring in background estimation when applied
to non-smooth and uneven backgrounds. This blurring effect
causes the loss of critical background details, such as edges
and corners, which in turn compromises detection accuracy.
To address this issue, the TV-PCP model incorporates a total
variation (TV) regularization term. However, traditional TV
regularization, when used in complex backgrounds or with
weak targets, may lead to over-smoothing or target blurring,
thereby reducing detection accuracy. To further improve
image processing, we introduce the OGSTV method. By
imposing overlapping group sparsity constraints on the image
gradient, OGSTV effectively preserves image details and
enhances the separation of targets.

Therefore, to enhance target detection, we propose we
introduce a dim infrared small target detection model that
combines OGSTV and Lp-norm constraints. The resulting
OTLC objective function is presented in Eq. (8).

min
B,T

∥B∥∗ + λ1∥T∥p + λ2OT (T ),

s.t. ∥D −B − T∥F ≤ δ
(8)

Here,OT(·) denotes the OGSTV regularization term,
∥·∥p represents the Lp-norm, and λ1 and λ2 serves as
weighting parameters. The infrared target image is obtained
by solving Eq.(8). The target information is obtained by
simple post-processing of the target image. The overview
of the proposed method is presented in Fig.1.

C. Optimization Algorithm

The objective in (8) is reformulated as:

min ||B||∗ + λ1||T ||p + λ2(OT (D(1)T ) +OT (D(2)T )),

s.t. Z1 = D(1)T,Z2 = D(2)T, ∥D −B − T∥F ≤ δ
(9)

The Lagrangian function of Eq. (9) is given by (10).

LA =||B||∗ + λ1||T ||p + λ2(OT (Z1) +OT (Z2))

+ < µ1, D
(1)T − Z1 > +

β

2
∥D(1)T − Z1∥2F

+ < µ2, D
(2)T − Z2 > +

β

2
∥D(2)T − Z2∥2F

+ < Y,D −B − T > +
β

2
∥D −B − T∥2F

(10)

1) For the B subproblem:

Bk+1 = argmin
B

LA

= argmin
B

||B||∗ +
β

2
||B − (D + β−1Y k − T k)||2F

(11)
Soft thresholding [18] can be used to solved the convex

optimization problem Eq. (11).

Bk+1 = USβ−1(Σ)V T (12)
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Fig. 1: Detection flow of OTLC model.

Given the singular value decomposition of Y as Y =
UΣV T , the estimator x̂ is expressed as x̂ = USλ(Σ)V

T , and
Sλ(Σ) signifies the soft-thresholding operator implemented
on the diagonal matrix Σ. Specifically, Sλ[•] is defined as:

Sϵ[X] =

{
sign(X)(|X| − ϵ) if|X| > ϵ

0 otherwise
(13)

2) For the T subproblem:

T k+1 = argmin
T

LA

= argmin
T

λ∥T∥p +
β

2
∥T − (D + β−1Y k −Bk+1)∥2F

(14)
Due to the linear independence of the matrix elements,

the problem can be solved on a per-pixel basis [19]. The
optimization goal for each pixel is:

u∗ = min
u

1

2
(u− a)2 + λ|u|p (15)

We define the optimization function for each pixel as f(u).

f(u) =
1

2
(u− a)2 + λ|u|p (16)

We take the first derivative with respect to f(u).

f ′(u) = u− a+ λp|u|p−1 · sign|u| (17)

We take the second derivative with respect to f(u).

f ′′(u) = 1 + λp(p− 1) · |u|p−2 (18)

By examining the first, and second derivative of f(u), we
can get the minimum point of f(u), which is either 0 or u1.
We define k = λp(1 − p)

1
2−p and k1 = k + λp|k|p−1. The

solution to Eq. (15) can be written as follows:

u∗ =

{
0 a ≤ k1

argminu∈{0,u1} f(u) a ≥ k1
(19)

The solution u1 of f ′(u) = 0 within the interval k < u < a
can be obtained using the Newton iteration method, and the
iterative formula is presented in Eq. (20).

Un+1 = Un − f ′(u)

f ′′(u)
(20)

To solve the matrix formulation of (15), we introduce the
operator Qλ[•].

Qλ,p[M ] = argmin
U

λ∥U∥p +
1

2
∥U −M∥2F (21)

An optimal solution can be obtained through Eq. (19).
Thus, problem (14) is solved through the definition of Qλ[•].

T k+1 = Qβ−1λ1,p

[
D + β−1Y k −Bk+1

]
(22)

3) For the Z1 and Z2 subproblem:

Zk+1
1 = argmin

Z1

LA

= argmin
β

2
||Z1 − (D(1)T k+1 + β−1µk

1)||2F
+ λ2OT (Z1)

(23)

Zk+1
2 = argmin

Z2

LA

= argmin
β

2
∥Z2 − (D(2)T k+1 + β−1µk

2)∥2F
+ λ2OT (Z2)

(24)

Referring to [20], we can use MM algorithm to solve
the problem (22) and (23). Refer to [17] for the detailed
process of solving related problems. This can be formalized
in Lemma 1 as follows:

Lemma 1: Let us consider the following minimization
problem: minν R(ν) = β

2 ||ν − ν0||2F + λΦ(ν), where β
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and λ are positive parameters and the functional Φ(v) =∑
h,f ||a(h, f)C ||2. Applying the MM algorithm to minimize

R(ν), the estimate is updated at each iteration by

νk+1 = (I +
λ

β
Λ(νk)TΛ(νk))−1ν0 (25)

The specific process of solving problem (10) combined
with ADMM algorithm is shown in Algorithm 1.

Algorithm 1 Solving algorithm to OTLC model

Input: D, λ1, λ2, p
Output: T and B

1: Initialization parameters: B0 = D, T 0 = 0, Z0 = 0,
Y 0 = 0, µ0

1 = 0, µ0
2 = 0, β0 = 1

5∗std(D)
2: while not converged do
3: Update Bk+1 by solving Bk+1 = argminB LA

4: Bk+1 = USβ−1(Σ)V T

5: Update T k+1 by solving T k+1 = argminT LA

6: T k+1 = Qβ−1λ1,p

[
D + β−1Y k −Bk+1

]
7: Compute Zk+1

1 and Zk+1
2 according to Eq.(25)

8: Update Y k+1 and βk+1

9: Y k+1 = Y k + βk(D −Bk+1 − T k+1) ,
10: βk+1 = 1.5 ∗ βk

11: Update µk+1
1 and µk+1

2

12: µk+1
1 = µk

1 + βk(D(1)T k+1 − Zk+1
1 ),

13: µk+1
2 = µk

2 + βk(D(2)T k+1 − Zk+1
2 )

14: Judge whether it has converged
15: stopCriterion = ∥D−Bk+1−Tk+1∥F

∥D∥F

16: if stopCriterion < 10−7 then
17: converged and stop iteration
18: end if
19: end while

To validate the proposed model, experiments are carried
out with different parameter settings and compared with other
methods.

III. RESULTS AND DISCUSSION

The experimental configuration is described in this section,
along with an analysis of parameter sensitivity in relation
to detection performance. A series of experiments are
performed to demonstrate the robustness and accuracy of the
OTLC method, especially under cluttered backgrounds and
noise.

A. Experimental Setting

Patch size is a critical parameter that significantly affects
detection performance, as its optimization can enhance target
sparsity. However, smaller patch sizes often lead to higher
computational costs. In our experiments, patch sizes of 30,
40, and 50 are evaluated. Fig. 2 presents the 3D visualizations
associated with these patch sizes. The results indicate that
a patch size of 30 provides an optimal balance between
detection accuracy and computational efficiency.

Similarly, we further adjust the step size to improve
performance. With the patch size fixed at 30 × 30, step
sizes of 5, 10, and 15 are investigated. The 3D visualizations
corresponding to these step sizes are shown in Fig. 3, which
indicate that a step size of 10 yields the optimal result.

In the proposed algorithm, the parameters are configured
as follows: a patch size of 30 × 30, a sliding step of 10, L =
1, and p = 0.3. The regularization parameter λ1 is defined
as L/

√
max(size(D)), while λ2 is empirically determined

and generally set around 0.01. In our experiments, we set
λ2 = 0.04. To evaluate detection and tracking performance,
six real-world infrared sequences featuring dim and small
aircraft targets in diverse complex backgrounds are selected
as datasets.

B. Quantitative Evaluation

To demonstrate the proposed model outperforms nine
baseline approaches under noisy and complex conditions,
we perform comparative experiments. These include the
Maxmedian method [21], the local contrast measure
(LCM) method [22], the Tophat model [23], the IPI
model, the TV-PCP model, the NIPPS model, the NOLC
model, the nonconvex tensor low-rank approximation model
(ASTTV-NTLA) [24], and the 4-D tensor ring (4-D TR)
model [25]. The parameter configurations for all compared
algorithms are summarized in Table I.

Fig. 4 shows the detection results of six sequences
of single images across ten different methods. The
experimental outcomes suggest that the OTLC approach
achieves the effective detection performance in infrared
small target scenarios involving noise and scene complexity.
In Seq1 to Seq6, OTLC effectively identifies the target
while significantly reducing background interference. Even
under substantial noise, OTLC maintains accurate target
identification.

Fig. 5–8 presents a 3D display comparing various infrared
small target detection algorithms across different sequences.
In some sequences, the Maxmedian and Tophat methods
fail to effectively extract the target signal, resulting in
signal blurring or confusion with the background. Although
the LCM, IPI, and TV-PCP methods suppress background
signals to some extent in certain sequences, residual
background signals remain prominent. While the NIPPS,
NOLC, and ASTTV-NTLA methods demonstrate a strong
ability to suppress noise, background fluctuations persist
in multiple sequences, indicating that noise removal is
incomplete. In Seq2, the 4-D TR method exhibits a slight
advantage over OTLC; nonetheless, OTLC outperforms it
when considering overall detection performance. In Seq1 to
Seq6, OTLC successfully detects weak targets and exhibits
superior background noise suppression capabilities.

To highlight the robustness and effectiveness of the
OTLC method, we introduce zero-mean Gaussian noise into
Seq6 and compare the performance of OTLC with the
ASTTV-NTLA and 4-D TR methods. Fig. 9 shows the results
for noise variances of 0.001. The OTLC method consistently
demonstrates stable detection performance even at increased
noise levels and effectively suppressing background noise.

Similarly, to further evaluate the robustness of OTLC
under different noise conditions, we introduce Poisson
noise into Seq5 and compare its performance with the
ASTTV-NTLA and 4-D TR methods. Fig. 10 presents the
detection results under Poisson noise conditions. Unlike
Gaussian noise, which maintains a constant variance across
all pixel intensities, Poisson noise exhibits signal-dependent
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(a) Seq1 (b) Seq2 (c) Seq3
Fig. 2: 3D displays of Seq1 to Seq3 with patch sizes of 30×30, 40×40, and 50×50, shown in the first to third rows.

TABLE I: Baseline methods and primary parameter settings

Methods Primary parameter settings

Maxmedian Support size: 5× 5

Tophat Structure size: 5× 5

LCM Window radius: 1, 2, 3, 4

IPI Patch size: 50× 50; Sliding step: 10;λ = L/
√

max(m,n); L = 1

TV-PCP λ1 = 0.005;λ2 = L√
min(m,n)

; L = 1; β = 0.025; γ = 1.5

NIPPS Patch size: 50× 50; Sliding step: 10; λ = L/
√

min(m,n); L = 2;

NOLC Patch size: 30× 30; Sliding step: 10; λ = L/
√

max(m,n); L = 1; p = 0.4

ASTTV-NTLA L=3; H=6;λtv = 0.005;λs = H√
max(m,n)∗L

; λ3 = 100

4-D TR Patch size: N1 ×N2 = 70× 70; Temporal size: N3 = 15; L = 2; λ1 =
∑l

i=1
L√

max
(∏n+l−1

i=n Ni,
∏n−1

i=n+l
Ni

)

characteristics, whereby higher intensity regions experience stronger noise fluctuations while lower intensity regions
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(a) Seq1 (b) Seq2 (c) Seq3

Fig. 3: 3D displays of Seq1 to Seq3 with sliding steps of 5×5, 10×10, and 15×15, shown in the first to third rows.

remain relatively unaffected. In contrast, the OTLC
method consistently shows stable detection performance
and effectively suppresses noise. These experiments further
highlight the superior detection capabilities of the OTLC
method.

C. Quantitative Evaluation

The effectiveness is further verified through quantitative
experiments using two evaluation metrics: the signal-to-noise
ratio gain (SNRG) and the background suppression factor
(BSF).

SNRG is a metric used to evaluate the improvement in
the signal-to-noise ratios (SNR) after applying a processing
algorithm, particularly in signal detection tasks such as
infrared small target detection. Higher SNRG values imply
stronger noise suppression and better target signal retention,
which contribute to enhanced detection results. SNRG is
defined as

SNRG = (SNRout/SNRin) (26)

where SNRin and SNRout respectively denote the SNR of
the original infrared image and the processed image.

The BSF serves as an important criterion for measuring
the effectiveness of background interference suppression
in target detection algorithms. It evaluates the efficacy of
background suppression by contrasting the signal intensities
of the background and target areas. A higher BSF value is
associated with stronger background signal suppression by
the algorithm. BSF is defined as

BSF = Cin/Cout (27)

where Cin and Cout denote the background standard
deviation in the input and output images, respectively.

Based on the above definitions of SNRG and BSF,
we carried out experiments on various sequences, the
corresponding results are detailed in Table II. Experimental
results reveal that the OTLC method consistently performs
excellently in both the SNRG and the BSF across different
sequences. Across all six sequences, the OTLC algorithm
yields the highest mean BSF values. Although OTLC falls
slightly behind 4-D TR in terms of average SNRG for Seq
2, it maintains leading performance across the rest of the
sequences. This indicates that OTLC effectively enhances
the SNR while exhibiting excellent background suppression
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TV-PCP
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4-D TR

OTLC
Fig. 4: Detection results of the Seq1 to Seq6 for multiple methods.
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Maxmedian

Tophat

LCM

IPI

TV-PCP

(a) Seq1 (b) Seq2 (c) Seq3
Fig. 5: 3D display of the Seq1 to Seq3 for multiple methods: Maxmedian, Tophat, LCM, IPI, and TV-PCP.

capabilities.
To evaluate the detection accuracy of the OTLC algorithm,

we draw the receiver operating characteristic (ROC) curve
with the true positive rate (TPR) and the false positive rate
(FPR).

TPR =
number of detected true targets
total number of actual targets

(28)

FPR =
number of detected false pixels

total number of pixels in images
(29)

ROC curves are commonly employed to assess the
performance of infrared small target detection algorithms.
Its horizontal axis represents the TPR, indicating the fraction
of actual targets correctly identified, while the vertical axis
corresponds to the FPR, reflecting the fraction of background
elements misclassified as targets. Consequently, an ROC
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Maxmedian

Tophat

LCM

IPI

TV-PCP

(a) Seq4 (b) Seq5 (c) Seq6

Fig. 6: 3D display of the Seq4 to Seq6 for multiple methods: Maxmedian, Tophat, LCM, IPI, and TV-PCP.

curve that near the top-left corner indicates superior detection
capability. Additionally, the area under the ROC curve (AUC)
is a key indicator: a larger AUC value generally signifies
more effective target detection.

Fig. 11 displays the ROC curves for the six sequences
using ten different methods. The ROC curves for the OTLC
model cluster near the top-left corner, demonstrating that

a higher TPR is achieved for a given FPR. Despite its
slightly inferior AUC in sequence 1 compared to NIPPS, the
OTLC method achieves superior AUC performance across
sequences 2 to 6. Overall, the OTLC method consistently
maintains a high detection rate across different sequences.
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NIPPS

NOLC

ASTTV
-NTLA

4-D TR

OTLC

(a) Seq1 (b) Seq2 (c) Seq3

Fig. 7: 3D display of the Seq1 to Seq3 for multiple methods: NIPPS, NOLC, ASTTV-NTLA, 4D-TR, and OTLC.

D. Sensitivity Analysis

To substantiate the robustness and stability of our
approach, we examined the sensitivity of the model with
respect to λ2 and p, investigating the effects of different
parameter settings on SNRG and BSF. We adjusted λ2 and

p, and recorded the corresponding SNRG and BSF values for
each parameter configuration. The parameter λ2 controls the
degree of target sparsity and background suppression, while
p determines the extent to which the Lp-norm constraint
enforces sparsity.

During the experiments, all other parameters remained
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NIPPS

NOLC

ASTTV
-NTLA

4-D TR

OTLC

(a) Seq4 (b) Seq5 (c) Seq6

Fig. 8: 3D display of the Seq1 to Seq3 for multiple methods: NIPPS, NOLC, ASTTV-NTLA, 4D-TR, and OTLC.

fixed while p was assigned values of 0.1, 0.2, 0.3, 0.4,
and 0.5. Fig. 12 presents the variations in SNRG and BSF
with different p values. The experimental results indicate that
when p is set to 0.3, the algorithm achieves the best balance
between detecting target and suppressing background across
every test sequences.

Similarly, we set λ2 to 0.01, 0.02, 0.03, and 0.04,
respectively. Excessively large values of λ2 may lead to the
loss of target signals. Fig. 13 illustrates the variations in
SNRG and BSF with different λ2 values. It is observed that
setting λ2 to 0.04 yields optimal target detection and stronger
suppression of background noise.
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(a) (b) (c) (d)
Fig. 9: Comparison for Gaussian noise images in Seq6 (variance = 0.001): (a) noisy image; (b) ASTTV-NTLA result; (c)

4-D TR result; (d) OTLC result.

(a) (b) (c) (d)
Fig. 10: Comparison for Poisson noise images in Seq5: (a) original Poisson noise image; (b) ASTTV-NTLA result; (c)

4-D TR result; (d) OTLC result.

TABLE II: The average SNRG and BSF of six sequences.

Methods
Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6

SNRG BSF SNRG BSF SNRG BSF SNRG BSF SNRG BSF SNRG BSF

Maxmedian 2.634 2.442 3.460 3.369 2.110 1.885 2.719 3.736 4.032 3.109 7.936 6.383

Tophat 2.937 2.659 3.279 2.862 2.076 2.890 4.072 4.502 2.981 2.564 6.633 4.804

LCM 1.812 1.205 2.791 1.837 0.793 1.193 1.623 2.303 2.409 1.358 4.300 2.406

IPI 7.470 4.610 26.149 16.732 9.719 6.969 21.583 14.888 24.240 12.473 31.615 19.052

TV-PCP 5.637 7.666 12.333 15.660 9.305 16.974 23.362 37.473 12.040 16.974 20.780 16.398

NIPPS 18.393 24.708 28.005 55.995 15.923 54.907 30.953 53.382 42.022 47.443 56.064 45.610

NOLC 30.093 58.176 39.542 59.520 33.189 70.551 37.323 86.602 44.830 52.952 53.163 41.152

ASTTV-NTLA 18.124 50.283 12.130 38.867 28.898 94.512 26.828 136.955 33.838 73.171 35.880 58.760

4-D TR 34.707 17.365 75.382 37.819 36.587 18.300 47.728 23.885 47.416 23.721 53.101 26.596

OTLC (ours) 39.634 133.075 74.642 367.278 41.149 201.858 47.881 678.928 47.412 82.853 62.619 61.997
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Fig. 11: ROC curves illustrating the detection results for six sequences.
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Fig. 12: SNRG and BSF values corresponding to different p values for six sequences.

Fig. 13: SNRG and BSF values corresponding to different λ2 values for six sequences.

IV. CONCLUSIONS

This paper introduces a new model for detecting infrared
dim small targets, with its optimization solved through
ADMM. The model combines OGSTV with Lp-norm
regularization. Experiments confirm that the OTLC model
obtains superior detection performance while effectively
suppressing background noise.
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