
 

  

Abstract—The growing competitiveness and digitalization-

driven demand for faster logistics promote rapid and 

optimized ship design processes. To overcome this need, 

stakeholders are focusing on the development of safer and 

environmentally friendly vessels with shorter lead times and 

reduced Energy Efficiency Design Index (EEDI). Conventional 

iterative design methods, like the Spiral Design approach, are 

often time-consuming and prone to local optima. This study 

evaluates surrogate modelling approaches to simplify early-

stage ship design by predicting power and steel weight 

requirements—key metrics for sustainability and cost-

effectiveness. Three approaches are compared: individual 
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surrogate models (Polynomial Regression [PR], Kriging, K-

Nearest Neighbours [KNN]), ensemble models (weighted 

aggregation and stacking regressors integrating PR, Kriging, 

and KNN), and deep learning architectures. PR achieved the 

best accuracy with a Mean Absolute Error (MAE) of 106.75, 

Root Mean Square Error (RMSE) of 320.31, and near-perfect 

R² (0.999), outperforming all other methods. Ensemble models 

ranked second, leveraging the combined strengths of PR, 

Kriging, and KNN to deliver robust predictions and higher 

hypervolume in optimization tasks. While following PR and 

ensembles, deep learning models surpassed standalone Kriging 

and KNN, demonstrating strong nonlinear fitting capabilities, 

with optimization results improving 58% lower power 

requirements and 20% reduced steel weight compared to the 

original design. This study concludes that no universal 

surrogate model suits all ship design challenges. 

 
Index Terms— Deep learning, Ensemble learning, Surrogate 

model, Ship design, Optimization 

 

I. INTRODUCTION 

owadays, maritime transport is forced to undergo 

structural changes that include low emissions and clean 

energy (GHG), more robust supply chains and logistics, 

digitization, and data-driven business models. It must also 

adapt to changing demand and consumption patterns and 

increasingly fragmented, localized, or regionalized operating 

and trading settings. [1]. The COVID-19 pandemic 

accelerated shifts in consumer attitudes and behaviors, 

leading to a notable rise in online purchases of consumer 

goods, many of which are shipped in containers. Global e-

commerce accounted for 15% of all retail sales in 2019; by 

2021, that percentage had risen to 21% [2]. This trend is 

expected to continue as the disruption persists, and the 

growth of e-commerce demands near real-time delivery 

[3][4]. The increasing competitiveness of the shipping 

industry, in line with the need for fast logistics due to 

digitalization, is driving rapid changes in the field of ship 

design. One is the demand for safer and more 

environmentally friendly ships with shorter lead times and a 

lower Energy Efficiency Design Index (EEDI). Ship 

designers strive to reduce the ship's fit observed power 

requirements as much as possible to obtain a low EEDI 

value and reduce the ship's carbon emissions. through 

weight efficiency while minimizing resistance [5]. 

Meanwhile, calculating the Total Cost of Ownership (TCO) 

is also required to calculate economic feasibility when 

designing a ship. TCO on ships generally consists of 
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building costs (CAPEX) and operating costs (OPEX). 

Material costs heavily influence building costs and can be 

represented in the weight of steel required. Meanwhile, 

operating costs are also related to the speed of the vessel and 

the capacity of the cargo being moved, which determines the 

vessel's power requirements and subsequently affects fuel 

consumption. Therefore, minimizing the steel weight and 

the vessel's power requirement can reduce the vessel's TCO 

[6]. 

Several studies have been conducted to reduce the power 

and steel weight requirement. One study successfully 

determined that the optimized hull form, particularly one 

incorporating a bulbous design, proves more efficient power 

and offers superior sea-keeping performance. This finding 

underscores the significance of minimizing total resistance 

for fuel efficiency and onboard comfort [7]. In addition, 

research aimed at reducing ship power has utilized various 

machine learning methods and modifications to geometric 

algorithms. A study by [8] states that using machine 

learning (ML) and principal component analysis (PCA) for 

hull vane (HV) shape optimization offers efficiency gains. 

PCA addresses dimensionality challenges, streamlining 

design space exploration. ML models, like artificial neural 

networks (ANN), accurately predict resistance even with a 

small dataset, which is crucial for HV shape optimization. 

To reduce ship emissions, in parallel with optimizing the 

hull form to minimize ship resistance, as mentioned earlier, 

another factor that can be fought for is the steel weight 

reduction of the ship itself. For the steel weight reduction of 

the vessel itself. 

 

 
Fig. 1.  Spiral concept of ship design. 

 

Regarding methodology, ship design has evolved from an 

iterative sequential process in the Spiral Design concept [9] 

to the more recent holistic design approach [10]. In the 

Spiral Design concept in Fig. 1, ship design components are 

optimized sequentially in an iterative manner in the design 

stages. Besides being considered time- and resource-

consuming, this approach is often trapped in local optima 

[11]. Previous studies on design optimization in several 

engineering design fields have used surrogate models 

(commonly called surrogate models or metamodels) to 

replace high-fidelity models [12], [13], [14]. Surrogate 

models are approximations to describe the relationship 

between optimization targets, design objectives, constraints, 

and design variables [15]. The higher the accuracy of the 

surrogate model, the closer the predicted values for the 

objective and constraints are to the actual conditions. The 

surrogate model must be trained to model multiple objective 

and constraint functions before using the optimization 

algorithm. 

In ship design problems, previous research used Kriging 

[6], [15], [16] as a surrogate model for the objective 

function and Radial Basis Function (RBF) [6] as a surrogate 

model for the constraint function. Some previous research 

compares several surrogate models individually as surrogate 

models of objective functions in ship design. Namely, the 

comparison of Kriging with Radial Basis Function Neural 

Network (RBFNN) and Support Vector Regression (SVR) 

[17]. In another study [18], Kriging was compared with 

Backpropagation – Particle Swarm Optimizer (BPNN-PSO) 

and Multi-layer Perceptron (MLP). These studies are similar 

because they use a single machine-learning method as the 

surrogate model.  

Besides surrogate modelling for optimization, machine 

learning has also been widely utilized to predict specific 

design parameters in ship design. For instance, Majnarić  
[19] applied MLP and Gradient Boosting to predict the 

principal dimensions of container ships, demonstrating the 

potential of machine learning in early-stage design 

predictions. Similarly, Cepowski [20] predicted ship-added 

resistance during the early design phase, emphasizing the 

role of machine learning in estimating performance metrics. 

However, recent research shows that using several 

surrogate models (ensemble), Polynomial Regression (PR), 

RBF, and Kriging [21] get better result accuracy than using 

one surrogate model. This is because the ensemble surrogate 

model can reduce the generalization error of the prediction 

[22]. Ensemble surrogate models are used to obtain the 

advantages of several surrogate models. In this way, the 

optimization algorithm can use the most suitable surrogate 

model for different problems, and the adaptability of the 

surrogate model to the problem can also be improved [23]. 

Despite these advancements, further analysis is necessary to 

investigate the effectiveness of surrogate models when 

comparing ensemble methods with deep-learning 

approaches. This study focuses primarily on comparing the 

performance of Deep Learning and ensemble surrogate 

models to predict power and steel weight requirements in 

the early stage of ship design. Ensemble methods such as 

Extra Trees, Gradient Boosting, Weighted Ensemble, and 

Stacking Regressor are considered, as they are robust for 

small datasets and can handle imbalanced distributions 

effectively [24]. Among these, Extra Trees and Gradient 

Boosting are particularly notable for their high variance 

reduction and ability to capture non-linear relationships 

[25]. Stacking Regressor combines the strengths of multiple 

base models, offering flexibility and improved predictive 

accuracy. 
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Machine learning methods such as Kriging, Polynomial 

Regression (PR), and K-nearest neighbour (KNN) are also 

used individually as surrogate models. Kriging is widely 

known for its ability to model spatially correlated data with 

high precision, while PR is chosen for its simplicity, 

interpretability, and low computational cost [21], [26]. 

KNN, on the other hand, effectively captures local patterns 

within the dataset [27]. 

Additionally, deep learning models such as Multi-Layer 

Perceptron (MLP) and Autoencoders are explored as 

surrogate models. MLP is chosen for its simplicity and 

ability to model complex relationships in small datasets, 

while Autoencoders are used to uncover latent 

representations that improve prediction accuracy [28], [29]. 

By employing a diverse set of machine learning and deep 

learning techniques, this study comprehensively compares 

surrogate modelling approaches for early-stage ship design 

optimization. Its primary contribution lies in identifying the 

most effective surrogate models to support and simplify the 

iterative design process, as framed by the Spiral Design 

concept, through a holistic optimization strategy. Notably, 

the study utilizes actual ship performance data—rather than 

relying solely on design of experiments (DoE) data—to train 

the surrogate models, enhancing their practical relevance. 

Through this data-driven evaluation and cross-method 

comparison, the research offers valuable insights into the 

strengths, limitations, and suitability of different surrogate 

modelling techniques for complex engineering design tasks. 

 

II. RESEARCH METHODS 

This research aims to develop the most suitable surrogate 

model for application in the early stages of ship design. The 

surrogate model is trained to identify relationships, 

similarities, and patterns across a large dataset of ship 

designs. Ship designers define the dependent and 

independent variables, and the surrogate model learns the 

functional relationship between them during training. The 

primary objective is to accurately predict key performance 

metrics—such as power requirements and steel weight—

while satisfying various design constraints. As illustrated in 

Fig. 2, comparing deep learning and ensemble learning 

approaches in the context of hull shape optimization 

involves four key steps.  

The research begins with collecting ship-related data, 

including main dimensions, velocity, and engine 

specifications. The collected data undergoes a data-cleaning 

process to ensure quality and consistency. Afterwards, 

simulations are conducted to generate the response set Y, 

which serves as the output variables for surrogate modelling. 

Next is surrogate model development. In this step, three 

types of surrogate models are constructed: 

• Individual Surrogate Models (SM): Machine learning 

methods such as Kriging, Polynomial Regression, and 

K-Nearest Neighbours (KNN) are developed 

independently as surrogate models. 

• Ensemble Surrogate Models: Extra Trees, Gradient 

Boosting, Stacking Regressor and Weighted 

Ensemble. Stacking and Weighted methods combine 

multiple surrogate modelling techniques, such as 

Polynomial Regression, Kriging, and KNN, using 

weighted aggregation methods to enhance prediction 

accuracy. 

• Deep Learning Surrogate Models: Deep learning 

architectures like Multi-Layer Perceptrons (MLP) and 

Autoencoders are developed as alternative surrogate 

models to predict ship performance metrics. 

After the surrogate model is constructed, it is integrated 

into the optimization process using the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II). Two optimization 

approaches are employed. Using Ensemble Surrogate 

Models to approximate the objective functions. We also use 

Deep Learning Surrogate Models for the same purpose, 

allowing a comparative analysis of their optimization 

performance. The final stage evaluates the performance of 

the surrogate models and the optimization results. This 

includes Surrogate Model Evaluation, which assesses 

prediction accuracy, computational efficiency, and 

adaptability of each surrogate model. As for Optimization 

Evaluation, we compare the effectiveness of ensemble and 

deep learning surrogate models in achieving optimal ship 

design objectives. 

 

A. Collection of Data 

The 456-hull data analyzed in this study were obtained 

from the International Association of Classification 

Societies (IACS). The International Association of 

Classification Societies (IACS) is a technical-based non-

 
Fig. 2. Research Flow 
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governmental organization that regulates the strength of ship 

construction and machinery, quality assurance of marine 

materials, and supervises the construction, maintenance, and 

overhaul of ships by classification regulations [30]. The 

actual ship data collected includes five types of ships: bulk 

carriers, container ships, tankers, ore carriers, and RoRo 

ships. The data distribution per ship type is shown in Fig. 3. 

The actual data analyzed in this research is taken from 12 

IACS members, including the American Bureau of 

Shipping, Bureau Veritas, Croatian Register of Shipping, 

China Classification Society, DNV, Indian Register of 

Shipping, Lloyd's Register, Korean Register of Shipping, 

Nippon Kaiji Kyokai, Polish Register of Shipping, Registro 

Italiano Navale, and Türk Loydu  [31]. 

The data collected includes the type of vessel, the 

International Maritime Organisation (IMO) number of the 

vessel [32], the year the ship was built, LOA (Length 

Overall), LWL (Length at the Waterline), BOA (Breadth 

Over All), D (Depth), T (draft), DWT (Dead Weight), GT 

(Gross Tonnage), V (speed), V_max (maximum speed), P 

(Power). The actual ship data focuses on vessels constructed 

after the year 2000. Fig. 4 illustrates the main dimensions of 

a ship commonly used during the preliminary design phase. 

These dimensions include the LOA, which measures the 

vessel's entire length from bow to stern, and the LWL, 

which specifies the ship's length at the waterline when 

afloat. The picture also shows the T, which is the vertical 

distance between the waterline and the lowest point of the 

hull, indicating how deep the vessel is in the water. Height 

(H) is the vertical distance from the waterline to the ship's 

tallest point, sometimes including the superstructure.  

 

B. Problem Formulation 

Engineering design optimization problems typically have 

decision variables, objectives, and constraint functions. 

When optimization has more than one objective, it can be 

stated as a Multi-objective Problem (MOP), as in Equation 

1. 

 

                  (1) 

 

where  is a vector function, with  design objectives, and  

is a decision variable vector. A decision variable vector 

consists of n variables, , and is part of the 

feasible solution  ∈ Ω.  
Decision variables in ship design problems are numerical 

values that can be adjusted during optimization [6]. These 

variables are usually denoted as , where , 

where  represents one decision variable. The vector  is 

then represented by: 

           (2) 

 

 In this study, the decision variables used are variables 

related to the main dimensions of the ship: Length (L), 

Breadth (B), Height (H), Draught (T), and Velocity (V). 

Constraints are frequently viewed as hard goal functions that 

must be met before minimizing the remaining soft objective 

functions. The feasible region Ω contains all solutions that 

satisfy some given constraints, including the bounds of 

variables and inequality constraints [33]: 

 

                       (3) 

                  (4) 

 

The search space Ω represents all potential combinations 

between a preset lower and upper bound of  These upper 

and lower bounds were obtained from the ship dataset, as in 

Table 1. The table also defines the constraints that limit the 

boundaries of the ship design related to the main dimensions 

of the ship used in this study [34]. Due to the constraints, 

not all combinations will result in a feasible solution. 

The objectives in the ship design optimization problem 

are usually contradictory. Consequently, there is hardly a 

perfect solution, but rather a group of alternatives known as 

non-dominated solutions. This ship design problem has two 

objectives: minimizing the effective power requirement 

 

 
Fig. 4. Main dimensions of the vessel 

 
  

 

 
Fig. 3. Data Distribution per Ship Type 
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(  and the weight of the ship's steel ( . 

 
TABLE I 

CONSTRAINTS USED IN THIS STUDY 

Constraint Range 

Variable Limits 23 ≤ LOA ≤ 400  

22 ≤ LOA ≤ 399  

6 ≤ B ≤ 65  

3 ≤ D ≤ 62  

2 ≤ T ≤ 25  

9 ≤ V ≤ 28 

Froude Number Fn ≤ 0.32 

 
3.5 ≤ L/B ≤ 10 

 
1.8 ≤ B/T ≤ 5 

 
10 ≤ L/T ≤ 30 

 
L/D ≤ 15 

 30 ≤ DWT ≤ 403,000 

Type of ship Bulk Carrier, Container 

Ship, Tanker, Ore 

Carrier, and RoRo Ship 

 

C. Surrogate Model 

Before we train the surrogate model, we acquire a 

response set , for each data point using manual 

simulations. A manual simulation is a thorough computation 

carried out by a ship designer manually. As previously 

mentioned in the spiral design concept, this manual 

simulation typically takes a long time to complete. It takes a 

naval architect days to gather information and run manual 

simulations for preliminary computations. The collected 

data (decision variables and associated response set) is then 

trained independently using five distinct surrogate models: 

Deep Learning, PR, Kriging, KNN, and an ensemble of PR-

Kriging-KNN. three distinct types of surrogate models: 

• Individual Surrogate Models (SM): Kriging, 

Polynomial Regression, and K-Nearest Neighbors 

(KNN). 

• Ensemble Surrogate Models: Extra Trees, Gradient 

Boosting, Weighted Ensemble Method, and Stacking 

Regressor combine 3 surrogate models: Polynomial 

Regression, Kriging, and KNN. 

• Deep Learning Surrogate Models: Deep learning 

architectures like Multi-Layer Perceptrons (MLP) and 

Auto-Encoders  

 

Polynomial Regression (PR) 

Polynomial Regression - Polynomial regression is a 

technique that can model the relationship between multiple 

independent variables (  and ) to the dependent variable 

( ) through a non-linear relationship Click or tap here to 

enter text.[35]. The following is equation 1 of polynomial 

regression: 

 

         (5) 

 

where  is the coefficient set,  is the polynomial degree, 

and  is the unobserved random error. 

Kriging 

A widely recognized surrogate model employed to 

approximate computationally intensive functions is the 

Kriging model. The Kriging approach was initially 

introduced by Daniel G. Krige [36]. Later, the Kriging 

methodology was also called the stochastic process model 

for designing and analyzing computer experiments (DACE). 

Kriging - is a supervised learning method that combines 

polynomial model  i.e.  and localized deviation  i.e. 

 [37] as in equation 2. 

 

           (6) 

 

where  is a normally distributed Gaussian random 

process with zero mean and non-zero covariance. In the 

above equation,  is the polynomial function of the 

RSM, which gives the 'global' model and is fixed. 

 

K-nearest neighbour (KNN) 

The fundamental concept underlying nearest neighbour 

methods is approaching the training set as the model and 

predicting new points according to their proximity to those 

in the training set [38]. Choosing the  value, distance 

metric, and decision rule are three fundamental 

hyperparameters of the KNN method, a basic classification 

and regression technique [39]. 

In the given training set of  and the 

corresponding target values  (where " " 

represents any feature in yi), the prediction in a new point qp 

can be achieved by initially locating a set of  nearest 

neighbors in the training set. Subsequently, that  is 

calculated as a weighted average of  nearest neighbours 

[40]. 

 

                       (7) 

 

Where  represents the weight of the  neighbour, 

it should be noted that the greater the weight assigned to a 

point, the closer it is to the predicted point.  is defined as 

 

 

 
Fig. 5. Multi-layer perceptron architecture 
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                    (8) 

 

where  represents a distance function, denoted as  or 

 

 

                      (9) 

 

                 (10) 

 

Multi-Layer Perceptron (MLP) 

Deep learning used in this study is fully connected neural 

networks or multi-layer perceptron (MLP) and 

Autoencoders. MLP is frequently employed for applications 

involving regression and classification. Except for the 

possibility of several hidden layers, the architecture of MLP 

is comparable to conventional neural networks, as in Fig. 5 

[41]. Every node links input ( ) to outputs ( ); it then adds 

up the inputs, applies the weighting factors ( ), and 

modifies the data. The network's weights are then updated 

via the backpropagation technique [18]. The final weights 

are defined as an approximate output following training. We 

employ five hidden layers for MLP in this work, with two 

output layers and 64 hidden nodes for each hidden layer. 

Auto-Encoders 

The concept of Auto-Encoders (AEs) was first introduced 

by Rumelhart et al. [42] as a neural network designed to 

learn from unlabeled datasets unsupervised. An AE consists 

of two main components: an encoder and a decoder, as 

shown in Fig. 6 [29]. The encoder compresses the input data 

into a reduced representation, known as the encoding, while 

the decoder reconstructs the original input from this encoded 

representation with minimal error. In between, there are 

latent variables, a compact bottleneck representation of the 

input data containing its critical information. The primary 

goal of an AE is to achieve this reconstruction with the 

lowest possible loss, typically measured as the mean squared 

error between the input data  and its reconstructed output 

. 

 

Extra Trees 

 The Extra Tree Regression (ETR) algorithm, introduced 

by Geurts et al.,[43] is an ensemble method derived from the 

Random Forest (RF) model. Like RF, it constructs multiple 

decision or regression trees but introduces greater 

randomization. Unlike RF, which searches for optimal split 

thresholds, ETR selects split points randomly [44]. 

Additionally, ETR typically uses the entire dataset to train 

each tree instead of relying on bootstrapping. For regression 

tasks, ETR predicts by averaging the outputs of all trees, 

making it computationally efficient and robust to overfitting 

[45]. 

Gradient Boosting 

 Gradient Boosting (GB) is an ensemble learning method 

that builds a strong predictor by combining multiple weak 

learners, typically decision trees. It optimizes a cost function 

by iteratively fitting new models to the residual errors of 

previous ones, effectively minimizing prediction errors 

using functional gradient descent [19], [24]. Due to its 

robustness and interpretability, Gradient Boosting is widely 

used in both regression and classification tasks, making it a 

powerful tool for various machine-learning applications 

[46]. 

 

Stacking Regressor 

Stacking regression is an ensemble learning method 

combining multiple base models (referred to as "level 0" 

learners) to enhance predictive performance. Base learners 

can include algorithms such as linear regression, support 

vector machines, gradient boosting, and random forests [47]. 

While each base model may focus on different features or 

patterns in the data, the stacking framework combines their 

predictions into a more accurate and robust final output. 

However, the effectiveness of stacking depends on the 

diversity and quality of the base learners, as redundant or 

overly noisy models can harm overall accuracy rather than 

improve it [48]. 

 

Weighted Ensemble 

Ensemble methods are often developed to overcome the 

shortcomings of individual surrogate models. Several 

ensemble surrogate model methods have been developed, 

often based on error correlation or prediction variance [21]. 

For example, [49] used errors from cross-validation (CV) to 

calculate ensemble weights and proposed an ensemble 

surrogate model approach for single objective optimization, 

also using Root Mean Square Error (RMSE) to calculate 

ensemble weights. The methods used are PR, KNN, and 

Kriging. The final output of the ensemble surrogate model is 

obtained using: 

 

            (6) 

 

is where  is -th output from each member, and   is 

a weight from  output which defined as: 

 

                   (7) 

 

Where  is Root Mean Square Error (RMSE) from -th 

model, and later calculated by weighted aggregation 

method. 

 

D. Optimization 

Python library PyMOO [41]is used for the optimization 

algorithm (NSGA-II). Hyperparameters used include: 

population size N = 100, number of generations τ = 300, 

SBX crossover probability pc = 0.95, polynomial mutation 

probability pm = 1/n (where n is the number of variables), 

For Kriging, the parameter used is Kernel, which defines the 

covariance function that determines the shape of the 

 
Fig. 6. Auto-encoder architecture 
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Gaussian process before and after. This study used 

ConstantKernel from sklearn with a value = 1.0 and bounds 

= (1e-3, 1e3). For polynomial regression, a degree = 3 was 

used to determine the degree of power. 

 

E. Performance Evaluation 

This section will evaluate the efficacy of the several 

surrogate models discussed in this research. First, the 

relationship between the input parameters and the response 

was examined by analyzing the local sensitivity curves. 

Local sensitivity analysis is computationally more efficient 

since it concentrates on a particular area of parameter space 

or set of variables. This localized method addresses specific 

questions that necessitate thoroughly comprehending the 

model's behavior in a given area. It makes it possible to do 

focused research on how minor adjustments to input 

parameters impact model outcomes in that area [50]. 

Additionally, local sensitivity analysis helps in factor 

prioritization by confirming or measuring the impact of each 

component. This strategy narrows the scope of the 

investigation and saves time and resources, especially when 

computational power is limited. 

Then, two prevalent model error metrics are employed to 

gauge the accuracy of the models: Maximum Absolute Error 

(MAE) and Root Mean Square Error (RMSE) [51]. R-

squared ( ), mean absolute error (MAE), and root mean 

squared error (RMSE) are quantitative performance metrics 

utilized in regression modelling. In predicting future 

instances of the output, the model demonstrates greater 

precision as the MAE decreases. The standard deviation of 

the response variable constitutes the RMSE.  values vary 

between 0 and 1, with 1 indicating an optimal fit and 0 

indicating that there is no advantage to employing the model 

compared to solely utilizing fixed background response 

rates. The one with the highest  and the lowest RMSE and 

MAE is favoured when comparing models [52]. MAE 

model criteria in equation 8, RMSE criteria in equation 9, 

and  criteria in equation 10 [51], [52], [53]. 

                   (8) 

                  (9) 

                          (10) 

Where MAE represents mean absolute error; RMSE 

denotes mean square error;  represents the number of 

datasets in the dataset;  signifies the actual value of the 

output variable;  signifies the predicted value of the output 

variable; and  represents that age value of all output 

variables in the dataset. 

After obtaining the ensemble model and DNN, data 

generation and evolution were conducted using NSGA-II as 

the optimization algorithm. This optimization was 

performed by comparing each of the two surrogate models. 

Subsequently, the hypervolume values were calculated. The  

Hypervolume (HV) metric is a tool for evaluating 

optimization outcomes. It represents the volume enclosed 

between a fixed reference point and the Pareto front, 

offering a measure of solution quality in multi-objective 

problems where solutions are not dominated by others 

(Pareto fronts), as depicted in Fig. 7. A Reference Point is 

utilized, derived from a fixed point that dominates all points 

in the effectiveness set [6][20]. Generally, a higher HV 

suggests superior algorithm performance for the given 

problem. 

In addition to HV, the Pareto front's dispersion is 

considered. This dispersion refers to how points are 

distributed along Pareto front approximations. A shorter 

distance between points in these approximations suggests a 

more evenly distributed set of solutions [54]. 

III. RESULTS AND DISCUSSION 

This section discusses the experiment results, from the 

sensitivity analysis and surrogate model accuracy. 

A. Sensitivity Analysis 

A correlation matrix was built to see the reaction and how 

it is related to other parameters. Stated differently, it is 

necessary to ascertain the factors that exhibit both strong 

and weak correlations with the design response. For this 

objective, all data were employed to filter along the 

correlation value using Pearson's rank correlation [46]. The 

 
Fig. 8. Correlation matrix 

 
Fig. 7. Hypervolume ilustration 
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viewer may observe which factors have the strongest 

association with the response variable by looking at the 

correlation matrix in Fig. 8. It visually depicts the 

correlations. The factors that should be prioritized for 

optimization or additional research can be determined using 

the information provided. Each cell represents the 

correlation coefficient between this matrix’s corresponding 

row and column variables. The outcome was a colour-coded 

matrix that showed how strongly each component and the 

response variable correlated. The colour-coded matrix 

resulting from this analysis indicated the strength of the 

correlation between each factor and the response variable. A 

stronger relationship is expected when the value is closer to 

the absolute value of 1. 

According to the matrix, LOA, LPP, B, D, T, DWT, and 

GT most influence  with a correlation value above 0.8. 

These same parameters also significantly influence . The 

year the ship was built shows varying degrees of correlation 

with other variables. This could reflect changes in ship 

design standards and technology advancements over time. 

The Froude number (Fn) has an interesting pattern of 

correlations. It shows a strong negative correlation with 

some dimensions, such as D and B. This is important for 

hull design, as it influences the hydrodynamic efficiency of 

the vessel.  (total resistance) and  have moderate 

correlations with design parameters, reflecting the impact of 

design choices on the ship’s operational efficiency. 

Strong positive correlations exist among the ship's main 

dimensions, such as LOA, LPP, and B. This indicates that as 

one of the dimensions increases, the others also tend to 

increase. There is a noticeable positive correlation between 

V and . This is intuitive as higher speeds generally 

require more power. Furthermore, the correlation between 

the Froude number and other design parameters highlights 

the importance of hydrodynamic considerations in achieving 

efficient ship designs. By minimizing resistance through 

optimized hull shapes, designers can significantly enhance 

the ship's overall performance and reduce environmental 

impact 

 

B. Surrogate Model Accuracy 

The dataset, which has 456 data, is divided 70:30 between 

training and test data. Table II presents the performance 

comparison of various surrogate models evaluated based on 

three metrics: Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and the coefficient of determination 

(R²). The models include Polynomial Regression (PR), 

Kriging, K-nearest neighbours (KNN), Extra Trees, 

Gradient Boosting, Stacking Regressor, Weighted 

Ensemble, Multi-layer Perceptron (MLP), and Autoencoders 

(AE). Among the models, PR performs the best, achieving 

the lowest MAE (102.19) and RMSE (248.34) along with 

the highest R² value of 0.99, indicating its superior accuracy 

and reliability in predictions. 

The Stacking Regressor and Weighted Ensemble also 

perform well, with R² values of 0.989 and 0.97, respectively, 

suggesting the effectiveness of combining multiple models 

to enhance prediction accuracy. On the other hand, KNN 

shows the weakest performance, with the highest MAE 

(702.24) and RMSE (1236.11), along with an R² of 0.90, 

indicating that it may not be suitable for this particular 

 
Fig. 9. Comparison Actual vs Predicted Values for Individual and Ensemble Surrogate Model 

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2593-2604

 
______________________________________________________________________________________ 



 

problem. Other models, such as Gradient Boosting, Extra 

Trees, and Kriging, achieve moderate performance, with R² 

values ranging from 0.91 to 0.976, showing that they can 

capture underlying patterns but with some limitations in 

accuracy. 

 
TABLE II 

SURROGATE MODEL PERFORMANCE RESULTS 

 

 Interestingly, the MLP and AE models achieve 

competitive R² values of 0.986 and 0.984, respectively, 

highlighting their effectiveness in handling complex 

relationships in the data. However, their RMSE and MAE 

values indicate they are slightly less accurate than PR and 

the ensemble methods. Overall, the results demonstrate that 

ensemble models and Polynomial Regression are more 

suitable for this task, offering a balance between accuracy 

and reliability. These findings align with prior research 

indicating the robustness of ensemble approaches and 

polynomial methods in surrogate modelling tasks. 

Higher  often denotes better accuracy and Quality of 

Fit. As noted in Table II, the PR Quality of Fit (e.g.,  = 

0.999) is stronger, so the PR model is preferable. Simply 

put, the Quality of Fit measures how well the observation 

points are fitted statistically based on the surrogate model 

coefficients. This technique is called optimization using 

local surrogate models. In the meantime, cross-validation 

and Root Mean Square Error (RMSE) can be used to 

evaluate the interpolation model to provide a more precise 

approximation over the design points. It also addressed this 

argument, and the technique used was called global 

surrogate model-based optimization. The quality of fit is 

higher when the RMSE value is closer to zero. Since the 

error is caused by model inadequacies rather than noise, the 

present error estimates were derived using bias error rather 

than noise.  

The performance results from Table II align well with the 

visualization in the comparison plot of actual versus 

predicted values across different surrogate models as shown 

in Fig 9. The plot illustrates the predictive accuracy of each 

model by showing how closely its predictions align with the 

actual data points. 

Polynomial Regression (PR), which achieved the best 

scores in Table II, shows the plot's closest alignment 

between predicted and actual values. This consistency 

reinforces its superior ability to capture the underlying 

patterns in the dataset accurately. Similarly, the Stacking 

Regressor and Weighted Ensemble models, which also 

performed well in the tabular metrics (R²: 0.989 and 0.97, 

respectively), demonstrate tightly clustered predictions 

around the actual values, indicating their robustness. 

In contrast, KNN, which showed the weakest 

performance in Table II (MAE: 702.24, RMSE: 1236.11, R²: 

0.90), is evident in the plot as having larger deviations 

between predicted and actual values. This discrepancy 

highlights its limited suitability for the problem. 

Models such as Gradient Boosting, Extra Trees, MLP, 

and Autoencoders exhibit moderate performance in both the 

table and the plot. While their predictions are reasonably 

close to the actual values, they display slightly higher 

variance compared to PR and the ensemble methods. 

Combining quantitative metrics and visual comparisons 

provides a comprehensive understanding of model 

performance. It confirms that models like PR and ensemble 

methods achieve low error metrics and produce predictions 

that are highly consistent with the actual data. 

D. Optimization 

After evaluating the surrogate model, it will be used in 

design optimization. The challenge is that a surrogate model 

cannot produce reliable predictions without an adequate 

supply of high-quality data. Error-free data is crucial 

because the surrogate model will pick up the incorrect trend 

without it and produce inaccurate predictions. So, the use of 

actual ship data is preferred for the problems in this 

research. Table II presents the optimization results, 

Surrogate Model Test Score 

 RMSE  
PR 102.19 248.34 0.99 

Kriging 199.75 496.65 0.91 

KNN 702.24 1236.11 0.90 

Extra Trees 301.06 686.11 0.97 

Gradient Boosting 272.19 544.10 0.976 

Stacking Regressor 145.85 297.68 0.989 

Weighted Ensemble 181.36 362.62 0.97 

MLP 570.05 1108.74 0.986 

AE 315.07 622.94 0.984 

 
Fig. 10. Optimization using Ensemble Surrogate Model 

 
Fig. 11. Optimization using MLP Surrogate Model 
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comparing two surrogate models utilizing NSGA-II. These 

findings suggest that the ensemble yields the highest 

hypervolume value and shorter computational time 

compared to MLP. 

 
TABLE III 

OPTIMIZATION PERFORMANCE RESULTS 

Surrogate 

Model 

Score 

 Time 

(seconds) 

 

MLP 568.54 180.45  

Ensemble 625.12 57.20  

    

 

Figs. 10 and 11 illustrate the objective solution with the 

Pareto fronts visualized for the ensemble and MLP surrogate 

model, respectively. In Fig. 11, utilizing the MLP surrogate 

model with NSGA-II results in closer distances between 

points in the Pareto front than the ensemble surrogate 

model. On the other hand, the objective values 𝑓1 and 𝑓2 in 

these figures show a contradictory relationship. Specifically, 

when the solution achieves the minimum value for the 

objective function 𝑓1, the value of the objective function 𝑓2 

is observed to be higher and conversely. Furthermore, upon 

comparing the objective values with the expert's original 

design, both optimization outcome reveals the most notable 

reductions in objectives within their respective Pareto front 

design variations, highlighted in red in Fig. 10.  

Consequently, the objective values for ensemble surrogate 

models utilizing NSGA-II lead to enhancements in design. 

The MLP with NSGA-II results in 58% lower power 

requirements and 20% less steel weight compared to the 

original design. Meanwhile, ensemble SM with NSGA-II 

results in approximately 52% lower power requirements and 

40% less steel weight. Despite the ensemble SM resulting in 

higher hypervolume values, it has a different dispersion of 

the Pareto front and lower model accuracy performance 

(MAE) compared to MLP. This divergence may be 

attributed to model errors influencing the attainment of the 

lowest objective value, consequently impacting the 

hypervolume metric. Thus, hypervolume alone may not be 

the sole performance metric for optimizing the surrogate 

model approach 

IV. CONCLUSION 

This study evaluated three categories of surrogate 

modelling techniques—individual surrogate models, 

ensemble surrogate models, and deep learning surrogate 

models—to determine their effectiveness in optimizing 

early-stage ship design. The goal was to identify the most 

suitable approach for establishing functional relationships 

between design variables and performance responses. 

Key findings revealed distinct performance hierarchies 

among the methods. Polynomial Regression (PR) emerged 

as the top-performing individual surrogate model, achieving 

the lowest prediction errors (MAE: 106.75; RMSE: 320.31) 

and the highest accuracy (R²: 0.999). Its simplicity and 

interpretability make it particularly effective for this 

application. 

Ensemble surrogate models, combining PR, Kriging, and 

KNN via weighted aggregation and stacking regressors, 

secured second place. These models demonstrated strong 

predictive capabilities by leveraging the complementary 

strengths of their constituent methods. Notably, ensemble 

approaches achieved a higher hypervolume in optimization 

tasks than deep learning models, yielding practical design 

improvements such as reduced power requirements and 

lower steel weight compared to the original design. 

Deep learning models ranked third, including MLP and 

autoencoders (AE). While less accurate than PR and 

ensemble models, they outperformed standalone Kriging 

and KNN methods and proved robust in capturing complex 

nonlinear relationships between variables. 

The results underscore that no single surrogate modelling 

method is universally optimal for ship design optimization. 

Instead, the choice depends on the problem’s characteristics 

and the design space. PR and ensemble models explore 

response surfaces and efficiently maximize performance 

metrics. Meanwhile, despite their computational complexity, 

deep learning models are better suited for scenarios 

requiring precise approximation of intricate functional 

relationships. 

This study emphasizes the importance of tailoring the 

surrogate modelling approach to the specific demands of the 

optimization task. A thorough evaluation of model strengths, 

computational costs, and problem complexity is critical for 

identifying the most effective strategy. Future work could 

explore hybrid frameworks that integrate the interpretability 

of PR, the flexibility of ensemble methods, and the 

nonlinear modelling power of deep learning to further 

advance ship design optimization. 
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