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Abstract—In this paper, we propose an adaptive multi-step
Levenberg-Marquardt (LM) method with a new parameter
λk = µk‖GTk Fk‖δ, δ ∈ (0, 1] for solving nonlinear equations and
improve convergence results. The global and local convergence
theories are established. The local superlinear convergence is
proved under the Hölderian local error bound condition, which
is weaker than the local error bound. Numerical experiments
verify the convergence of our algorithm for singular problems
that satisfy the Hölderian local error bound condition.

Index Terms—adaptive multi-step LM method, nonlinear
equations, Hölderian local error bound.

I. INTRODUCTION

CONSIDER the following systems of nonlinear equa-
tions

F (x) = 0, (1)

where F : Rn → Rn is continuously differentiable. In this
paper, we suppose the solution set of (1), represented by X∗,
is nonempty. In every situation, ‖ · ‖ indicates the Frobenius
norm. Let φ(x) = 1

2‖F (x)‖2, then the nonlinear equations
(1) can be reformulated as a nonlinear least squares problem

min
x∈Rn

φ(x). (2)

There are many classical methods [4], [10], [11], [13],
[14], [19], [21], [23] for solving nonlinear equations and
nonlinear least squares problems. This paper is devoted to
the LM methods for solving (1). The LM methods include
single-step methods and multi-step methods.

A. Related Works

The single-step LM methods [12], [15] compute a trial
step dk by

dk = −(JTk Jk + λkI)−1JTk Fk, (3)

in which the LM parameter λk ≥ 0 is adjusted iteratively.
The single-step LM methods have the quadratic convergence
when J(x) is nonsingular at the solution and Lipschitz
continuous. Yamashita and Fukushima [20] demonstrated the
quadratic convergence of the single-step LM method, if the
LM parameter is chosen as λk = ‖Fk‖2 under the following
local error bound condition (cf. [20]).

c0 · dist(x,X∗) ≤ ‖F (x)‖,∀x ∈ N(x∗), (4)
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where c0 is a positive constant, dist(x,X∗) is the distance
from x to X∗ and N(x∗) is some neighbourhood of x∗ ∈
X∗.

Recently, the single-step LM methods have been further
developed (see [1], [5], [6], [8], [10]). Behling et al. [3]
proposed a modified LM method with the LM parameter
λk = ‖JTk Fk‖δ, δ ∈ (0, 1] for solving the nonzero-residue
nonlinear least-squares problems. To establish the local con-
vergence, Behling et al. put forward an error bound condition
based on the gradient of the nonlinear least-squares function
as below (cf. [3]).

c1 · dist(x,X∗) ≤ ‖J(x)TF (x)‖,∀x ∈ N(x∗), (5)

where c1 is a positive constant, both dist(x,X∗) and N(x∗)
have the same meaning as (4).

In order to save Jacobian evaluations, Fan et al. proposed
the multi-step LM method [7] and the adaptive multi-step
LM method [9] with the parameter λk = µk‖Fk‖δ, δ ∈ [1, 2].
The adaptive technique automatically determines whether an
iteration should use the Jacobian matrix at the current iterate
to compute a LM step or use the latest evaluated Jacobian
matrix for an approximate LM step. The adaptive multi-step
LM method achieves the superlinear convergence under the
local error bound condition (4).

B. Motivation

Some nonlinear equations fulfill the following Hölderian
local error bound condition while may not meet the above
local error bound condition (5).

Definition 1.1: We say ‖J(x)TF (x)‖ provides a
Hölderian local error bound with order γ ∈ (0, 1] in some
neighbourhood of x∗ ∈ X∗, if there exists a constant c2 > 0
such that

c2 · dist(x,X∗) ≤ ‖J(x)TF (x)‖γ ,∀x ∈ N(x∗), (6)

where c2 is a positive constant, dist(x,X∗) and N(x∗) have
the same meaning as (4).

For example, Powell singular function ([16]):

F (x1, x2, x3, x4) = (x1 + 10x2,
√

5(x3 − x4), (x2 − 2x3)2,
√

10(x1 − x4)2)T .

(7)
Let 04 := (0, 0, 0, 0)T . It can be seen that X∗ = {04} and
J(04) is singular. We consider the sequence {xk}, where
each term is given by xk = (0, 0,− 1

k ,−
1
k )T . Then {xk} →

04 and

dist(xk, X
∗) = ‖xk‖ =

√
2/k = O(k−1),

and ‖J(xk)TF (xk)‖ = O(k−3). The nonlinear function
satisfies the Hölderian local error bound condition with order
1
3 around the zero point, but does not satisfy the local error
bound condition (5).
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This paper is devoted to proposing a new adaptive multi-
step LM method with the parameter λk = µk‖GTk Fk‖δ, δ ∈
(0, 1]. Local superlinear convergence is proved under the
Hölderian local error bound condition (6), which is weaker
than the local error bound (5). Numerical results demonstrate
the validity of the proposed algorithm.

The structure of the remainder of this paper is as fol-
lows. Section 2 introduces the new adaptive multi-step LM
algorithm and its global convergence. The local convergence
theory is presented under the Hölderian local error bound
condition in Section 3. Section 4 presents numerical results
concerning test problems, and conclusions are summarized
in Section 5.

II. THE NEW ADAPTIVE MULTI-STEP LM ALGORITHM
AND ITS GLOBAL CONVERGENCE

In this section, we give the new adaptive multi-step LM
algorithm for solving nonlinear equations, and prove its
global convergence.

We define the actual reduction as

Aredk = ‖Fk‖2 − ‖F (xk + dk)‖2, (8)

the predict reduction as

Predk = ‖Fk‖2 − ‖Fk +Gkdk‖2. (9)

and the radio of actual reduction over predict reduction as

rk =
Aredk
Predk

. (10)

The new adaptive multi-step LM algorithm is presented as
follows.

Algorithm 1.
Step 0. Given x1 ∈ Rn,m1 > 1 > m2 > 0, µ1 ≥ µ0 >

0, ε > 0, δ ∈ (0, 1], 0 < p0 < p1 < p2 < p3 < 1, t ≥ 1. Set
k := 1, s := 1, i := 1, ki = 1, G1 = J1.

Step 1. If ‖GTk Fk‖ ≤ ε, stop. Otherwise set

λk = µk‖GTk Fk‖δ, (11)

solve
(GTkGk + λkI)d = −GTk Fk (12)

to obtain dk.
Step 2. Compute rk = Aredk

Predk
; set

xk+1 =

{
xk + dk, if rk ≥ p0,
xk, otherwise.

(13)

Step 3. Choose µk+1, λk+1, Gk+1 as

µk+1 =

 m1µk, if rk < p1,
µk, if rk ∈ [p1, p3],
max{m2µk, µ0}, otherwise.

(14)

λk+1 =

{
λk, if rk ≥ p2 and s < t,
µk+1‖GTk+1Fk+1‖δ, otherwise,

(15)

Gk+1 =

{
Gk, if rk ≥ p2 and s < t,
Jk+1, otherwise,

(16)

Step 4. Set k := k + 1. If Gk = Gk−1, set s := s + 1,
otherwise set s := 1, i := i+ 1, ki = k. Go to Step 1.

Let S̄ = {ki : i = 1, 2, · · · } be the set of numbers at
which the Jacobians J(xki), i = 1, 2, · · · are needed for
computation during the iterations. Let

si = ki+1 − ki.

From step 3 and step 4, it can be observed that si ≤ t.
For any k, there exist ki and 0 ≤ t ≤ si − 1 such that

k = ki + t.

Note that

Gki = Gki+1 = · · · = Gki+si−1 = Jki , (17)

hence the linear equations (12) can further be rewritten as

(GTkiGki + λkiI)d = −GTkiFk (18)

for k = ki, · · · , ki + si − 1.
It is easy to verify that dk also serves as the solution to

the trust region subproblem

min
d∈Rn

‖Fk +Gkd‖2

s.t. ‖d‖ ≤ ∆k := ‖dk‖.
(19)

Applying Powells result [[17], Theorem 4] gives the
following lemma.

Lemma 2.1: Let dk be computed by (12), then the pre-
dicted reduction satisfies

Predk ≥ ‖GTk Fk‖min

{
‖dk‖,

‖GTk Fk‖
‖GTkGk‖

}
(20)

for all k.
Lemma 2.1 plays a crucial role in proving the global

convergence of Algorithm 1. We introduce the following
assumptions to achieve this.

Assumption 2.1 (1) J(x) is Lipschitz continuous, i.e.,
there exists a positive constant κh such that

‖J(x)− J(y)‖ ≤ κh‖x− y‖,∀x, y ∈ Rn. (21)

(2) J(x) is bounded, i.e., there is a positive constant κb such
that

‖J(x)‖ ≤ κb,∀x ∈ Rn. (22)

Then it follows from (21) that

‖F (y)−F (x)− J(x)(y− x)‖ ≤ κh‖y− x‖2, ∀x, y ∈ Rn. (23)

Theorem 2.1: Under the conditions of Assumption 2.1,
the sequence {xk} generated by Algorithm 1 satisfies

lim
k→∞

inf ‖JTk Fk‖ = 0. (24)

Proof: Assume that (24) is not true. Consequently, there
exist a positive constant τ and a constant k0 ∈ N such that

‖JTk Fk‖ ≥ τ,∀k ≥ k0. (25)

Let us define the set of successful iterations as follows

S = {k|rk ≥ p0}. (26)

We consider S in two cases.
Case 1: S is finite. Then there exists a k̄ ∈ N such that

rk < p0 < p1 < p2 for all k ≥ k̄. Therefore, for k ≥ k̄,

Gk = Jk, µk → +∞. (27)
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By (25), for k ≥ k̄,

‖GTk Fk‖ = ‖JTk Fk‖ ≥ τ. (28)

Owing to λk = µk‖GTk Fk‖δ and µk → +∞, this gives
λk → +∞ . Thus, by the definition of dk, we have

dk → 0. (29)

Case 2: S is infinite. Based on Lemma 2.1, (22) and (25),
we have

‖F1‖2 ≥
∞∑
k=1

(‖Fk‖2 − ‖Fk+1‖2) ≥
∑
k∈S

(‖Fk‖2 − ‖Fk+1‖2)

≥
∑
k∈S

p0Predk ≥
∑

k∈S∩S̄

p0Predk

≥
∑

k∈S∩S̄

p0‖GTk Fk‖min

{
‖dk‖,

‖GTk Fk‖
‖GTkGk‖

}
≥

∑
k∈S∩S̄

p0τ min

{
‖dk‖,

τ

κ2
b

}
.

(30)
We assert that the set S ∩ S̄ is infinite. Otherwise, if it

is finite. Let kī be the largest index in it. Then, for i >
ī, rki < p0 < p2. By (16), Gki+1 = Jki+1. Thus, ki+1 =
ki + 1. Moreover, ki+1 /∈ S. Therefore, we conclude that
rk < p0 for all sufficiently large k, which contradicts to the
infiniteness of S. Thus, S ∩ S̄ is infinite.

According to the definition of S̄, ki ∈ S̄. Based on
(30), we have dki → 0 for ki ∈ S. Since dki = 0
for ki /∈ S, we obtain dki → 0. This, together with
‖Gki‖ ≤ κb, ‖GTkiFki‖ ≥ τ and (12), gives λki → +∞.

By (22) and (23), for k = ki + 1, · · · , ki + si − 1,

‖dk‖ = ‖ − (GTkGk + λkI)−1GTk Fk‖

≤ ‖(JTkiJki + λkiI)−1JTkiFki‖+ ‖(JTkiJki + λkiI)−1JTkiJki(
k−1∑
j=ki

dj)‖

+ κh‖(JTkiJki + λkiI)−1JTki‖‖
k−1∑
j=ki

dj‖2

≤ ‖dki‖+
k−1∑
j=ki

‖dj‖+
κbκh
λki

(
k−1∑
j=ki

‖dj‖)2.

Owing to λki → +∞, we have

‖dki+1‖ ≤ 3‖dki‖ (31)

and

‖dki+2‖ ≤ ‖dki‖+‖dki‖+ ‖dki+1‖+
κbκh
λki

(‖dki‖+‖dki+1‖)2

≤ 21‖dki‖ (32)

for sufficiently large ki. From induction, it follows that there
is a positive constant c̃ such that, for k = ki + 1, · · · , ki +
si − 1,

‖dk‖ ≤ c̃‖dki‖ (33)

holds for all sufficiently large ki. Since si ≤ t for all i, we
have dk → 0 and

‖Jk −Gk‖ = ‖Jk − Jki‖ ≤ κh
k−1∑
j=ki

‖dj‖ → 0. (34)

Therefore, by (25),

‖GTk Fk‖ ≥ ‖JTk Fk‖ − ‖(Jk −Gk)TFk‖ ≥ ‖JTk Fk‖ − ‖Jk −Gk‖‖Fk‖ ≥ τ
2

(35)

holds for sufficiently large k. From the definitions of dk and
λk, we have λk → +∞ and µk → +∞.

Hence, whether S is infinite or finite, we obtain

dk → 0, λk → +∞, µk → +∞. (36)

Since ‖Fk‖ is nonincreasing, ‖Fk‖ ≤ ‖F1‖. By (21), (22)
and (35), we have

|rk − 1| =
∣∣∣∣Aredk − PredkPredk

∣∣∣∣
=

∣∣∣∣‖F (xk + dk)‖2 − ‖Fk +Gkdk‖2

Predk

∣∣∣∣
≤
∣∣‖Fk + Jkdk‖2 − ‖Fk +Gkdk‖2

∣∣+ 2κh‖Fk + Jkdk‖‖dk‖2 + κ2
h‖dk‖4

‖GTk Fk‖min
{
‖dk‖,

‖GT
k Fk‖

‖GT
kGk‖

}
≤ (‖JTk Jk‖+ ‖GTkGk‖)‖dk‖2 + 2‖Jk −Gk‖‖Fk‖‖dk‖

τ
2 min

{
‖dk‖, τ

2κ2
h

}
+

2κh‖F1‖‖dk‖2 + 2κhκb‖dk‖3 + κ2
h‖dk‖4

τ
2 min

{
‖dk‖, τ

2κ2
h

}
→ 0,

which implies
lim

k→+∞
rk = 1. (37)

By (14), there is a positive constant µ̃ such that

µk < µ̃ (38)

holds for all sufficiently large k. This leads to a contradiction
with (36). Thus, (25) cannot be true, (24) is necessarily true.

III. LOCAL CONVERGENCE RATE

This section establishes the local convergence theory of
Algorithm 1. Assume that the sequence {xk} lies in some
neighborhood of x∗ ∈ X∗ and converges to the solution set
X∗ of (1). We now make a further assumption.

Assumption 3.1. ‖J(x)TF (x)‖ provides a Hölderian local
error bound with order γ ∈ (0, 1] in some neighborhood of
x∗ ∈ X∗, i.e., there are constants κl > 0 and 0 < b < 1
such that

κl · dist(x,X∗) ≤ ‖J(x)TF (x)‖γ ,∀x ∈ N(x∗, b), (39)

where N(x∗, b) =

{
x ∈ Rn

∣∣∣∣‖x− x∗‖ ≤ b}.

By (22), we obtain

‖F (y)− F (x)‖ ≤ κb‖y − x‖,∀x, y ∈ Rn. (40)

Denote by x̄k the closest point to xk in X∗, i.e.,

‖x̄k − xk‖ = dist(xk, X
∗). (41)

For all k large enough,

‖xk − x̄k‖ ≤ ‖xk − x∗‖ ≤
b

2
(42)

and
‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ b. (43)

Thus x̄k ∈ N(x∗, b).
In the following, we first show that ‖dk‖ is related to

dist(xki , X
∗), then prove that the parameter µk is upper

bounded, and finally derive the local convergence rate of
Algorithm 1 by the singular value decomposition technique.
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Lemma 3.1: Given the conditions provided by Assump-
tions 2.1 and 3.1, there is a constant c > 0 such that

‖dk‖ ≤ c‖x̄ki − xki‖, k = ki, · · · , ki + si − 1. (44)

Proof: By (11) and (39), we have

λki = µki‖G
T
kiFki‖

δ = µki‖J
T
kiFki‖

δ ≥ µ0κl‖x̄ki−xki‖. (45)

Define
ψk(d) = ‖Fk + Jkd‖2 + λk‖d‖2. (46)

It’s obvious that dki is the minimizer of ψki(d). From (23),
we obtain

‖Fki + Jki(x̄ki − xki)‖2 = ‖F (x̄ki)− Fki − Jki(x̄ki − xki)‖2

≤ κ2
h‖x̄ki − xki‖4.

(47)
By (45) and (47), we have

‖dki‖2 ≤
ψki(dki)

λki

≤ ψki(x̄ki − xki)
λki

=
‖Fki + Jki(x̄ki − xki)‖2 + λki‖x̄ki − xki‖2

λki

≤ κ2
h

µ0κl
‖x̄ki − xki‖4 + ‖x̄ki − xki‖2

= O(‖x̄ki − xki‖2).

Thus, ‖dki‖ ≤ c0‖x̄ki − xki‖.
For k = ki, · · · , ki + si − 1,

‖dk‖ = ‖ − (JTkiJki + λkiI)−1JTkiFk‖

≤ ‖(JTkiJki + λkiI)−1JTkiFki‖+ ‖(JTkiJki + λkiI)−1JTkiJki(
k−1∑
j=ki

dj)‖

+ κh‖(JTkiJki + λkiI)−1JTki‖‖
k−1∑
j=ki

dj‖2

≤ ‖dki‖+
k−1∑
j=ki

‖dj‖+ κh‖(JTkiJki + λkiI)−1JTki‖

 k−1∑
j=ki

‖dj‖

2

and

‖(JTkiJki + λkiI)−1JTki‖ = ‖(JTkiJki + λkiI)−1JTkiJki(J
T
kiJki + λkiI)−1‖ 1

2

≤ ‖(JTkiJki + λkiI)−1(JTkiJki + λkiI))(JTkiJki + λkiI)−1‖ 1
2

= ‖(JTkiJki + λkiI)−1‖ 1
2

≤ 1√
λki

≤ 1
√
u0κl

‖x̄ki − xki‖−
1
2 .

Therefore, it follows that

‖dki+1‖ ≤ ‖dki‖+ ‖dki‖+
κh√
u0κl

‖dki‖
3
2

≤ c1‖dki‖. (48)

Similarly,

‖dki+2‖ ≤ ‖dki‖+ ‖dki‖+ ‖dki+1‖+ c̄2‖dki‖
≤ c2‖dki‖ (49)

and
‖dki+q‖ ≤ cq‖dki‖, q = 3, · · · , si − 1. (50)

Thus, we get (44).

From Algorithm 1, it is known that µk is lower bounded.
Furthermore, we will demonstrate that µk is also upper
bounded.

Lemma 3.2: Given the conditions provided by Assump-
tions 2.1 and 3.1, there is a positive constant µ̄ such that

µk ≤ µ̄ (51)

holds for sufficiently large k.
Proof: We first prove that

‖Fk‖2 −‖Fk +Gkdk‖2 ≥
κl
2
‖Fk‖min{‖dk‖, ‖x̄k − xk‖} (52)

holds for sufficiently large k.
According to Lemma 3.1, (21),(23) and si ≤ t, for k =

ki, · · · , ki + si − 1,

‖Fk +Gk(x̄k − xk)‖ ≤ ‖Fk + Jk(x̄k − xk)‖+ ‖Gk − Jk‖‖x̄k − xk‖

≤ κh‖x̄k − xk‖2 + κh(
k−1∑
j=ki

‖dj‖)‖x̄k − xk‖

≤ κh‖x̄k − xk‖2 + κhct‖x̄ki − xki‖‖x̄k − xk‖

Note that ‖x̄k − xk‖ → 0 and ‖x̄ki − xki‖ → 0, we obtain

‖Fk +Gk(x̄k − xk)‖ ≤ κl
2κb
‖x̄k − xk‖ (53)

holds for sufficiently large k.
Our discussion is divided into two cases.
Case 1: ‖x̄k−xk‖ ≤ ‖dk‖. By Lemma 3.1, (39) and (53),

we have

‖Fk‖ − ‖Fk +Gkdk‖ ≥
1

κb
‖JTk Fk‖ − ‖Fk +Gk(x̄k − xk)‖

≥ κl
κb
‖x̄k − xk‖ −

κl
2κb
‖x̄k − xk‖

=
κl

2κb
‖x̄k − xk‖

(54)
holds for sufficiently large k.

Case 2: ‖x̄k − xk‖ > ‖dk‖. By (54), we obtain

‖Fk‖ − ‖Fk +Gkdk‖ ≥ ‖Fk‖ − ‖Fk +
‖dk‖

‖x̄k − xk‖
Gk(x̄k − xk)‖

= ‖Fk‖ − ‖(1−
‖dk‖

‖x̄k − xk‖
+

‖dk‖
‖x̄k − xk‖

)Fk +
‖dk‖

‖x̄k − xk‖
Gk(x̄k − xk)‖

≥ ‖dk‖
‖x̄k − xk‖

(‖Fk‖ − ‖Fk +Gk(x̄k − xk)‖)

≥ ‖dk‖
‖x̄k − xk‖

κl
2κb
‖x̄k − xk‖

=
κl

2κb
‖dk‖.

(55)
holds for sufficiently large k.

Hence by (54) and (55),

Predk = (‖Fk‖+ ‖Fk +Gkdk‖)(‖Fk‖ − ‖Fk +Gkdk‖)
≥ ‖Fk‖(‖Fk‖ − ‖Fk +Gkdk‖)
≥ κl

2κb
‖Fk‖min{‖dk‖, ‖x̄k − xk‖} (56)

holds for sufficiently large k.
Since ‖Fki +Jkidki‖ ≤ ‖Fki‖, by (39) and (56), we have

|rki − 1| =

∣∣∣∣Aredki − PredkiPredki

∣∣∣∣
=

∣∣∣∣‖F (xki + dki)‖2 − ‖Fki + Jkidki‖2

Predki

∣∣∣∣
≤

∣∣∣∣∣2‖Fki + Jkidki‖‖dki‖2 + κ2
h‖dki‖4

κl

2κb
‖Fki‖min{‖dki‖, ‖x̄ki − xki‖}

∣∣∣∣∣
→ 0. (57)
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Therefore,
lim
ki→∞

rki = 1. (58)

Note that for k /∈ S̄, rk ≥ p2 > p1 and Gk+1 = Gk, so
µk+1 ≤ µk. According to the updating rule (14), inequality
(51) holds.

Next, we derive the local convergence rate of Algorithm
1 by means of the singular value decomposition (SVD)
technique and the matrix perturbation theory.

Based on the results obtained by Behling and Iusem in
[2], we might assume that rank(J(x̄)) = r for all x̄ ∈
N(x∗, b) ∩X∗. Suppose that the SVD of J(x̄ki) is

J(x̄ki) = ŪkiΣ̄ki V̄
T
ki

= (Ūki,1, Ūki,2)

(
Σ̄ki,1

0

)(
V̄ Tki,1
V̄ Tki,2

)
= Ūki,1Σ̄ki,1V̄

T
ki,1, (59)

where Σ̄ki,1 = diag(σ̄ki,1, · · · , σ̄ki,r) > 0 and Ūki , V̄ki are
orthogonal matrices.

Consequently, the SVD of Jki is

Jki = UkiΣkiV
T
ki

= (Uki,1, Uki,2)

(
Σki,1

Σki,2

)(
V Tki,1
V Tki,2

)
= Uki,1Σki,1V

T
ki,1 + Uki,2Σki,2V

T
ki,2, (60)

where Σki,1 = diag(σki,1, · · · , σki,r) > 0 and Σki,2 =
diag(σki,r+1, · · · , σki,n) ≥ 0.

By the theory of matrix perturbation [22] and (21), we
have

‖diag(Σki,1 − Σ̄ki,1,Σki,2)‖ ≤ ‖Jki − J(x̄ki)‖ ≤ κh‖x̄ki − xki‖.
(61)

Lemma 3.3: Under Assumptions 2.1 and 3.1, there are
positive constants l1 and l2 such that

‖dk‖ ≤ l1‖x̄ki −xki‖k−ki+1, k = ki, · · · , ki+ si− 1. (62)

‖Fk +Gkdk‖ ≤ l2‖x̄ki − xki‖
k−ki+2, k = ki, · · · , ki + si − 1.

(63)
Proof: We prove it by induction. It was shown in [6]

that the results hold true for k = ki and k = ki + 1.
Suppose the results hold true for k − 1(ki + 2 < k <

ki + si− 1), that is, there exist constants l̄1 and l̄2 such that

‖dk−1‖ ≤ l̄1‖x̄ki − xki‖k−ki , (64)

‖Fk−1 +Gk−1dk−1‖ ≤ l̄2‖x̄ki − xki‖k−ki+1. (65)

It then follows from (21), (23) and Lemma 3.1 that

‖Fk‖ = ‖F (xk−1 + dk−1)‖
≤ ‖Fk−1 + Jk−1dk−1‖+ κh‖dk−1‖2

≤ ‖Fk−1 +Gk−1dk−1‖+ ‖Jk−1 −Gk−1‖‖dk−1‖+ κh‖dk−1‖2

= ‖Fk−1 +Gk−1dk−1‖+ ‖Jk−1 − Jki‖‖dk−1‖+ κh‖dk−1‖2

≤ l̄2‖x̄ki − xki‖k−ki+1 + κh(
k−2∑
j=ki

‖dj‖)‖dk−1‖+ κh l̄
2
1‖x̄ki − xki‖2(k−ki)

≤ l̄3‖x̄ki − xki‖k−ki+1,

where l̄3 = l̄2 + κhctl̄1 + κh l̄
2
1. Therefore,

‖Uki,1UTki,1Fk‖ ≤ ‖Fk‖ ≤ l̄3‖x̄ki − xki‖
k−ki+1. (66)

Moreover, by (39),

‖x̄k − xk‖ ≤ κ−1
l ‖Fk‖ ≤ κ

−1
l l̄3‖x̄ki − xki‖k−ki+1. (67)

Let J̃ki = Uki,1Σki,1V
T
ki,1

and s̃k = −J̃+
ki
Fk, where J̃+

k

denotes the pesudo-inverse of J̃ki . Then s̃k becomes the least
squares solution to min

s∈Rn
‖Fk + J̃ki s̃k‖. From (21) , (61) and

(67), we have

‖Uki,2UTki,2Fk‖ = ‖Fk + J̃ki s̃k‖ ≤ ‖Fk + J̃ki(x̄k − xk)‖
≤ ‖Fk + Jk(x̄k − xk)‖+ ‖Jki − Jk‖‖x̄k − xk‖+ ‖J̃ki − Jki‖‖x̄k − xk‖

≤ κh‖x̄k − xk‖2 + κh(

k−1∑
j=ki

‖dj‖)‖x̄k − xk‖+ ‖Uki,2Σki,2V
T
ki,2‖‖x̄k − xk‖

≤ l̄4‖x̄ki − xki‖k−ki+2,

where l̄4 = κ−1
l l̄3κh(κ−1

l l̄3 + ct+ 1).
Since {xk} converges to X∗, we may assume that

κh‖x̄ki − xki‖ ≤ σ̄
2 holds for all sufficiently large ki. Then,

it follows from (61) that

‖(Σ2
ki,1 + λkiI)−1‖ ≤ ‖Σ−2

ki,1
‖ ≤ 1

(σ̄ − κh‖x̄ki − xki‖)2
≤ 4

σ̄2
.

(68)
By (61), we obtain

‖Σ−1
ki,1
‖ =

1

σki,r
≤ 1

|σ̄ki,r − κh‖x̄ki − xki‖|
≤ 2

σ̄ki,r
(69)

holds for sufficiently large ki. By (45),

‖λ−1
ki

Σki,2‖ =
‖Σki,2‖
λki

≤ κh
µ0κl

. (70)

By the SVD of Jk, we have

dk = −Vki,1(Σ2
ki,1 + λkiI)−1Σki,1U

T
ki,1Fk − Vki,2(Σ2

ki,2 + λkiI)−1Σki,2U
T
ki,2Fk.

Therefore,

‖dk‖ ≤ ‖Σ−1
ki,1
‖‖Uki,1UTki,1Fk‖+ ‖λ−1

ki
Σki,2‖‖Uki,2UTki,2Fk‖

≤ 2l̄3
σ̄ki,r

‖x̄ki − xki‖k−ki+1 +
κh l̄4
µ0κl

‖x̄ki − xki‖k−ki+2

≤ l1‖x̄ki − xki‖k−ki+1,
(71)

where l1 = 2l̄3
σ̄ki,r

+ κh l̄4
µ0κl
‖x̄ki − xki‖.

Note that ‖(Σ2
ki,2

+ λkiI)−1‖ ≤ λ−1
ki

and λki =
µki
‖Fki

‖
1+‖Fki

‖ ≤ µki‖Fki‖ ≤ µ̄κb‖x̄ki − xki‖, it follows

‖Fk +Gkdk‖
= ‖λkiUki,1(Σ2

ki,1 + λkiI)−1UTki,1Fk + λkiUki,2(Σ2
ki,2 + λkiI)−1UTki,2Fk‖

≤ λki‖Σ−2
ki,1
‖‖Uki,1UTki,1Fk‖+ ‖Uki,2UTki,2Fk‖

≤ 4µ̄κbσ̄
−2 l̄3‖x̄ki − xki‖k−ki+2 + l̄4‖x̄ki − xki‖k−ki+2

= l2‖x̄ki − xki‖k−ki+2,
(72)

where l2 = 4µ̄κbσ̄
−2 l̄3 + l̄4. This completes the proof.

Theorem 3.1: Under Assumptions 2.1 and 3.1, there exists
a constant l3 > 0 such that

‖dki+1‖ ≤ l3‖dki‖si+1. (73)

Consequently, Algorithm 1 converges q-superlinearly to a
solution of (1).
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Proof: By Lemma 3.1, (39) and (23), we have

κl‖x̄ki+1
− xki+1

‖ ≤ ‖F (xki+1
)‖ = ‖F (xki+si−1 + dki+si−1)‖

≤ ‖Fki+si−1 + Jki+si−1dki+si−1‖+ κh‖dki+si−1‖2

≤ ‖Fki+si−1 +Gki+si−1dki+si−1‖+ ‖(Jki+si−1 −Gki+si−1)dki+si−1‖
+ κh‖dki+si−1‖2

≤ ‖Fki+si−1 +Gki+si−1dki+si−1‖+ (

ki+si−2∑
j=ki

‖dj‖)‖dki+si−1‖

+ κh‖dki+si−1‖2

≤ (l2 + ctl1 + κhcl1)‖x̄ki − xki‖si+1.

(74)
Note that

‖x̄ki − xki‖ ≤ ‖x̄ki+1 − xki‖ ≤ ‖x̄ki+1 − xki+1‖+

ki+1−1∑
j=ki

‖dj‖.

(75)
By (74) and (75),

‖x̄ki − xki‖ ≤ 2

ki+1−1∑
j=ki

‖dj‖ ≤ 2sicsi−1‖dki‖ (76)

holds for sufficiently large ki.
Let l̄5 = κ−1

l (l2 + tcl1 + κhcl1). From (74), Lemmas 3.1
and 3.3, we have

‖dki+1‖ ≤ c‖x̄ki+1 − xki+1‖ ≤ cl̄5‖x̄ki − xki‖si+1

≤ cl̄5(2sicsi−1)si+1‖dki‖si+1

≤ cl̄5(2tct−1)t+1‖dki‖si+1. (77)

Let l3 = cl̄5(2tct−1)t+1. We get (73).
By Lemma 3.1, we have ‖dki‖ → 0. Therefore, there

exist a positive integer N and 0 < q < 1 such that
max{‖dki‖, l3‖dki‖} ≤ q < 1 for all i ≥ N . Since si ≥ 1,
we have

‖dki+1‖ ≤ l3‖dki‖
si+1 ≤ l3‖dki‖

2 ≤ q‖dki‖, ∀i ≥ N. (78)

Then,

∞∑
i=N

‖dki‖ ≤ ‖dkN ‖+ q‖dkN ‖+ q2‖dkN ‖+ · · ·

=
‖dkN ‖
1− q

, (79)

which implies that
∑∞
i=N ‖dki‖ converges.

By si ≤ t, we have

‖xki+1 − xki‖ = ‖
si−1∑
j=0

dki+j‖ ≤ tct−1‖dki‖. (80)

Thus, the infinite series
∞∑
i=1

‖xki+1
− xki‖ converges. This

implies that the infinite series
∞∑
i=1

(xki+1
− xki) converges.

Consequently, the sequence {xki} converges to some x̂ ∈
X∗. Similarly to (74), we have

‖xki+1
− x̂‖ ≤ q̂‖xki − x̂‖si+1 (81)

for some q̂ > 0. Therefore, Algorithm 1 converges superlin-
early.

IV. NUMERICAL EXPERIMENTS

In this section, numerical results for Algorithm 1 in solving
nonlinear equations are presented. The test problems are
selected as follows. The test problems 1-4 do not satisfy the
local error bound condition but instead satisfy the Hölderian
local error bound condition near zero point. Problems 5-9,
which correspond to the functions from [16], are listed in
Table I.

Problem 1 ([24]) f1(x) = x1x2,

f2(x) = x2
1 + x2

2.

Initial point: x0 = (1, 1)T , zero point: (0, 0)T .
Problem 2 Powell singular function ([14], [16])

f1(x) = x1 + 10x2,

f2(x) =
√

5(x3 − x4),

f3(x) = (x2 − 2x3)2,

f4(x) =
√

10(x1 − x4)2.

Initial point: x0 = (3, 1, 0, 1)T , zero point: (0, 0, 0, 0)T .
Problem 3 ([22], [24])

f1(x) = x1 + 10x2,

f2(x) = x3 − x4,

f3(x) = (x2 − 2x3)
3
2 ,

f4(x) = (x1 − x4)
3
2 .

Initial point: x0 = (3, 1, 0, 1)T , zero point: (0, 0, 0, 0)T .
Problem 4

f1(x) = x2
1 − x1x2,

f2(x) = x2
2 + x1x2.

Initial point: x0 = (1, 1)T , zero point: x0 = (0, 0)T .
Test problems 5-9 are constructed by adjusting the nonsin-

gular problems from Moré, Garbow, and Hillstrom in [16],
and they meet the local error bound condition near the zero
point. They have the same form as [18]:

F̂ (x) = F (x)− J(x∗)A(ATA)−1AT (x− x∗),

where F (x) is a standard nonsingular test function, A ∈
Rn×k (1 ≤ k ≤ n) is a matrix which has full column rank,
and x∗ is a solution of F (x) = 0. It is obvious that

Ĵ(x∗) = J(x∗)(I −A(ATA)−1AT ),

is the Jacobian of F̂ (x) at x∗ with rank n−k and F̂ (x∗) = 0.
Note that, some roots of F̂ (x) = 0 may be not roots of F (x).
Similar to [18], we take

A = [1, 1, · · · , 1]T ∈ Rn×1,

which results in rank(Ĵ(x∗)) = n− 1.
The codes are written in MATLAB R2016 and run on

a personal computer 2.9 GHz and 2.9 GHz CPU proces-
sor, 16.0 GB RAM, using Windows 11 operation system.
Throughout the numerical experiments, We take p0 =
10−4, p1 = 0.25, p2 = 0.50, p3 = 0.75, u1 = 0.01, u0 =
10−8,m1 = 4,m2 = 0.25, t = 10, δ = 1

2 . We stop the
program if the number of iterations exceeds 100(n + 1) or
‖GTk Fk‖ ≤ 10−5.
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To consider the global convergence of the algorithm-
s, we run each test problem for three starting points
x0, 10x0, 100x0, where x0 is suggested in [16] for problems
5-9. The results are given in Tables II and III. The meaning
of notations listed in two tables is as follows:

NF: The numbers of function calculations.
NJ: The numbers of Jacobian calculations.
NT: NT = NF +NJ ∗ n.
NS: ‘Y’ means the algorithm is converged to x∗; ‘N’

means that algorithm is converged to another solution; ‘-’
shows that the number of iterates is more than 100(n+ 1).

From Table II, we see that Algorithm 1 is effective for
singular problems 5-9 under the local error bound condition.
Table III reveals that Algorithm 1 converges globally to x∗

for the singular problems 1-4 under the weaker Hölderian
local error bound condition.

TABLE I
FUNCTIONS CORRESPONDING TO PROBLEMS 5-9

Problem Function
5 Discrete boundary value function
6 Discrete integral equation function
7 Trigonometric function
8 Broyden tridiagonal function
9 Broyden banded function

TABLE II
RESULTS FOR LARGE SCALE PROBLEMS 5-9 WITH RANK n− 1

Problem n x0 Algorithm 1
NF/NJ/NT NS

5 1000 1 1/1/1001 Y
10 12/2/2012 N

100 21/4/4021 N
6 1000 1 20/4/4020 Y

10 24/5/5024 Y
100 21/4/4021 N

7 1000 1 17/9/9017 Y
10 35/21/21035 Y

100 69/37/37069 Y
8 1000 1 16/4/4016 Y

10 26/7/7026 Y
100 34/9/9034 Y

9 1000 1 23/6/6023 Y
10 35/9/9035 Y

100 46/13/13046 Y

TABLE III
RESULTS ON THE PROBLEMS 1-4

Problem n x0 Algorithm 1
NF/NJ/NT NS

1 2 1 14/4/22 Y
10 22/6/34 Y

100 29/8/45 Y
2 4 1 18/5/38 Y

10 25/7/53 Y
100 32/8/64 Y

3 4 1 19/5/39 Y
10 21/7/49 Y

100 36/6/54 Y
4 2 1 14/4/22 Y

10 21/6/33 Y
100 29/8/45 Y

V. CONCLUSIONS

In this paper, we propose a new adaptive multi-step LM
method with the parameter λk = µk‖GTk Fk‖δ, δ ∈ (0, 1] and
improve the convergence results. This algorithm combines

the advantage of saving Jacobian evaluations with good con-
vergence properties. The convergence rate of our algorithm
is proven to be superlinear under mild assumptions. Numer-
ical experiments demonstrate the validity of our proposed
algorithm.
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