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SCSE-YOLO: A High-precision Underwater
Garbage Detection Model
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Abstract—To address the limitations of current underwater
garbage detection algorithms, we propose SCSE-YOLO - an
enhanced YOLOvVS8-based framework that improves detection
performance through optimized feature fusion and detection
mechanisms. The proposed methodology introduces two princi-
pal innovations: (1) Integration of Self-Calibrated Convolutions
(SCConv) into the C2f module to enhance multi-scale feature
fusion through spatial self-calibration, and (2) Implementa-
tion of the Self-supervised Equivariant Attention Mechanism
(SEAM) in the detection head to mitigate feature degradation
caused by alignment errors, local aliasing, and inter-class
occlusions. Comprehensive evaluations on the Neural Ocean
dataset demonstrate 4.1% precision and 3.2% mAP improve-
ments over baseline YOLOVS. Cross-validation on the TrashCan
dataset reveals consistent enhancements of 4.1% precision and
1.9% mAP. These results substantiate capability to maintain
high detection accuracy of the model in complex underwater
environments while preserving computational efficiency.

Index Terms—Underwater garbage detection, Multi-object
detection, Feature fusion network, Multi-scale feature detection

I. INTRODUCTION

CCORDING to the United Nations “2024 Global Waste

Management Outlook™ [1], the global generation of
urban solid waste in 2023 surpassed a staggering 2.3 billion
tons. Behind this number lies an overwhelming accumulation
of discarded plastic products, paper, food scraps, and other
waste materials, all contributing to a massive flood of garbage
that places a heavy burden on the environment. Projections
indicate that global municipal solid waste generation will
escalate from 2.3 billion metric tons in 2023 to approxi-
mately 3.8 billion metric tons by mid-century, according to
forecasts of the report. marking a 56% increase in less than
a generation. Among these urban solid wastes, the mixed
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growth rate of plastic waste is projected to be 2-3%, with an
estimated 510 million tons of plastic waste to be produced
by 2050.

With the continued increase in plastic consumption, these
non-biodegradable materials enter rivers and oceans through
various pathways, including human activities, landfill seep-
age, illegal dumping by vessels, and incomplete wastewater
treatment. These plastics gradually break down into micro-
sized particles, known as “microplastics”, which permeate
every corner of the ocean, including five major concentrated
plastic accumulation zones: one in the Indian Ocean and two
each in the Atlantic and Pacific Oceans. These regions have
become “hotspots” for microplastics, posing a long-term and
profound threat to the health of underwater ecosystems.

In recent decades, waste generated by human activities
has dramatically worsened the pollution of water bodies,
severely contaminated precious water resources and signifi-
cantly affected the survival and ecological balance of aquatic
life. Despite the introduction of various environmental regu-
lations worldwide to curb this trend, unfortunately, waste,
particularly plastics, continues to be recklessly discarded
into water bodies, causing irreversible damage to underwater
ecosystems and posing unprecedented risks and challenges
to the evolution of aquatic species.

Underwater debris poses significant threats to both wildlife
and human activities. It endangers the survival of aquatic life
in rivers, oceans, and coastal areas, causing injuries and fatal-
ities, while also degrading natural habitats and contributing
to their gradual destruction. Furthermore, underwater waste
disrupts navigation, leading to safety hazards and substantial
economic losses for the fishing and shipping industries, as
well as diminishing the quality of life for coastal communi-
ties. Over time, it may also present serious risks to human
health and safety [2]. In light of the widespread and profound
social, economic, and ecological impacts of pollution [3],
there has been a notable increase in research focused on
developing systematic monitoring and automated collection
frameworks for underwater debris in recent years [4].

Against this backdrop, debris detection methods have
gradually diverged into two main approaches: one focused on
detecting surface-floating debris and the other dedicated to
detecting underwater debris [5]. While surface-floating debris
detection presents relatively straightforward challenges, this
research concentrates on the more complex domain of sub-
merged debris identification. Within the realm of underwater
object detection, several foundational algorithms have been
developed: R-CNN [6] employs selective search for region
proposal generation and convolutional neural networks for
feature extraction, though its processing speed remains a lim-
itation. Subsequent iterations, including Fast R-CNN [7] and
Faster R-CNN [8], introduced refinements that enhanced both
computational efficiency and detection accuracy, albeit at the
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cost of increased resource demands. In contrast, the YOLO
[9] family of architectures represents a distinct paradigm as
single-stage detectors, demonstrating notable proficiency in
handling multi-scale target recognition tasks. In recent years,
with the growing awareness of environmental protection
in underwater ecosystems, many researchers have begun
applying YOLO algorithms for underwater object detection.
We chose to base our research on YOLOvS [10] rather than
the latest YOLO models, primarily because YOLOvVS offers
faster inference speed and higher accuracy.

In this context, we present a series of methodological
refinements to enhance underwater object detection. To tackle
the inherent challenges of complex underwater environments,
we integrate a Self-Calibrated Convolution (SCConv) module
into the YOLOVS architecture, thereby optimizing multi-
scale feature representation and detection accuracy. Further-
more, we incorporate the Self-supervised Equivariant Atten-
tion Mechanism (SEAM) module to mitigate issues including
inter-class occlusions, spatial misalignment, partial feature
degradation, and information loss. Comprehensive evalua-
tions conducted on established underwater debris detection
benchmarks demonstrate that the proposed methodology
surpasses the baseline YOLOv8 model, yielding measurable
improvements in both detection precision and mean Average
Precision (mAP) values. These experimental results validate
the enhanced robustness and superior performance of model
for challenging underwater debris recognition tasks.

II. RELATED WORKS

The performance of underwater object detection is signif-
icantly affected by the optical characteristics of the aquatic
environment. To address these challenges, recent research has
increasingly incorporated deep learning methodologies and
customized network architectures to enhance detection accu-
racy. Chen et al. [11] introduced the SWIPENet architecture,
initially validated using the URPC2017 dataset. Experimental
results demonstrated that the proposed framework achieved
mAP values of 46.3% under these constrained conditions.
Subsequent dataset expansion in URPC2018, which incorpo-
rated additional object categories, correlated with enhanced
detection capabilities, yielding an improved mAP values of
64.5%. This progression in performance motivated the devel-
opment of advanced methodologies, including an optimized
Single Shot MultiBox Detector (SSD) variant by Jiang et al.
[12] and a sophisticated high-capacity CNN framework by
Han et al. [13], which respectively attained mAP values of
66.9% and 91.2% on standardized evaluation protocols.

Subsequent research endeavors built upon established de-
tection frameworks, notably Faster R-CNN and YOLO archi-
tectures. Lin et al. [14] enhanced model performance through
RoIMix data augmentation strategies, achieving a 74.92%
mAP, while Liu et al. [15] incorporated water quality assess-
ment modules to attain 63.83% mAP under turbid conditions.
Xu et al. [16] subsequently proposed the Spatial Attention
Feature Pyramid Network (SA-FPN) architecture, validated
on the PASCAL VOC benchmark, which demonstrated en-
vironmental robustness through 76.27% mAP performance
across varied imaging conditions. More recently, YOLOVS5-
based adaptations have yielded significant improvements:
optimized backbone network by Wang et al. [17] achieved

69.3% mAP, and YOLOvV5s-CA variant by Wen et al. [18] at-
tained 80.9% mAP through contextual attention mechanisms.
These progressive advancements collectively substantiate the
efficacy of specialized deep learning architectures in address-
ing underwater detection challenges.

Teng et al. [19] adopted the YOLOVS architecture as the
foundational detection framework in their study, emphasizing
improvements in its predictive accuracy. To this end, they
applied an enhanced KMeans++ clustering algorithm to reini-
tialize the model’s anchor boxes, thereby aligning them more
effectively with the distribution of target objects. Moreover,
the original box regression loss was substituted with the
Complete Intersection over Union (CloU) metric during the
training phase. This replacement aimed to enhance bounding
box localization by incorporating additional geometric fac-
tors such as aspect ratio and center point deviation, beyond
conventional overlap measures. Experimental results on the
Trash_ICRA19 dataset demonstrated a detection accuracy
of 88% and a mean Average Precision (mAP) of 90.6%,
reflecting a substantial performance improvement. In parallel,
Zhu et al. [20] proposed a modified detection algorithm based
on YOLOVS. Notably, the proposed method realized 63.6%
in precision (P) and 47.1% in mAP on the TrashCan dataset.

The evolution of underwater object recognition systems
reflects a paradigm transition from conventional deep learn-
ing frameworks to purpose-built architectures engineered to
confront the distinctive challenges inherent in subaquatic
environments. This trend signals the movement towards
more refined and accurate detection capabilities in under-
water environments. The accurate discrimination of diverse
underwater object categories while maintaining low false
positive rates and preventing missed detections continues
to present formidable challenges in underwater perception
systems. In this context, this study introduces an improved
algorithm: the SCSE-YOLO algorithm, which builds upon
the base YOLOvV8 detection framework and is specifically
designed for underwater debris recognition. To address the
complexities of underwater environments, two key enhance-
ments are proposed in this work: the enhancement of multi-
scale calibration detection through the C2f module and the
reinforcement of detection outputs. The core work of this
paper is explained below:

(1) Introduction of SCConv module: The combination
of the C2f and Self-Calibrated Convolutions (SCConv)
modules, enabling further enhancement of performance of
YOLOVS. The C2f module strengthens nonlinear represen-
tation and feature extraction capabilities of the model, while
the SCConv module reduces computational cost and en-
hances performance by minimizing feature redundancy. To-
gether, the C2f_Self-Calibrated Convolutions (C2f_SCConv)
module significantly improves feature representation capa-
bility of YOLOv8 through multi-scale feature fusion and
self-calibrated feature extraction. This combination allows
YOLOVS to accurately recognize targets while maintaining
efficient computation.

(2) Introduction of the SEAM module: The SEAM at-
tention mechanism can effectively learn the dependencies
between features and enhance their expressiveness. By in-
corporating SEAM into YOLOVS, the model becomes better
at handling features of occluded objects, reducing the impact
of occlusions on detection accuracy. This enables YOLOVS
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to more accurately recognize and localize targets in complex
scenarios, such as densely populated categories or objects
that overlap.

(3) Comprehensive Benchmarking and Evaluation: Exten-
sive benchmarking and systematic evaluations have substan-
tiated the superior performance of the proposed network. The
experimental findings validate the efficacy of the presented
approach, demonstrating a remarkable balance between com-
putational efficiency and detection accuracy when compared
with state-of-the-art models.

III. MATERIALS AND METHODS

We delve into the datasets that form the backbone of
our study, as well as the strategic enhancements made to
our algorithmic approach. These datasets are crucial as they
encompass the essential samples required for training and
validating our algorithms. Moving forward, we will elucidate
the array of strategies we have implemented to refine various
facets of our algorithms, with the aim of bolstering their
precision and efficiency. The execution of these strategies
is pivotal in ensuring that our algorithms maintain superior
performance across a spectrum of scenarios.

Concluding this segment, we present a detailed exposition
of the datasets employed in this paper, as depicted in Table I.
This table outlines critical information about the datasets,
including their names, sizes, the categories they cover, and
the number of samples within each category. Such details are
instrumental for readers to grasp our methodology and to as-
sess the performance of our algorithms effectively. Through
this meticulous presentation, we aspire to furnish readers
with a lucid framework that elucidates the construction and
validation of our research.

A. DATASET INTRODUCTION

The Neural Ocean dataset [21] represents a specialized
repository of underwater imagery depicting anthropogenic
marine debris. Curated by Nurzihan Reya and publicly avail-
able via the Roboflow Universe platform, this corpus com-
prises 5,127 annotated images categorized into 15 distinct
classes, including personal protective equipment (masks),
metallic containers, glass packaging, polymer-based sacks,
discarded tires, and various other submerged waste items.
The imagery was collected across heterogeneous aquatic
environments, encompassing diverse salinity levels, turbidity
conditions, and ecological zones. It is an invaluable resource
for researchers developing automated marine debris detection
systems.

The TrashCan [22] dataset is an instance segmentation
dataset specifically designed for underwater trash detection,
with the goal of advancing waste recognition technology in
marine environments. The dataset consists of many carefully
annotated images covering various types of underwater de-
bris, including plastic bags, bottles, fishing nets, and other
common waste items, as well as images of underwater vehi-
cles and related objects. The TrashCan dataset contains 7212
images, each thoroughly annotated by professionals to ensure
the accuracy and completeness of the annotations. These
images not only capture the appearance and distribution of
underwater waste but also document real-world scenarios
of unmanned underwater vehicles (AUVs) performing trash

detection tasks on the seafloor. This makes the TrashCan
dataset suitable not only for waste detection tasks but also
for research in fields such as AUV navigation and obstacle
avoidance.

TABLE I
DESCRIPTION OF THE DATASET

Dateset Environment No.images No.categories
Neural Underwater(Mask,
can, bottle, 5127 15
Ocean
glove,etc.)
Underwater
TrashCan (Bag, clothing, 7212 22

rope, can, etc.)

B. YOLOVS8 MODEL ARCHITECTURE

YOLOVS, an proven object detection framework, was
officially released in January 2023 as a stable iteration of
the renowned YOLO series, which is widely recognized for
its high detection speed and accuracy. The architecture of
YOLOVS is composed of three principal modules: the Back-
bone, responsible for feature extraction; the Neck, which
performs multi-scale feature fusion; and the Head, which
executes object classification and bounding box regression.
It adopts the FPN-PANet [23] structure pattern, as illustrated
in Fig. 1.

C. SCSE-YOLO MODEL ARCHITECTURE

The architecture of SCSE-YOLO is illustrated in Fig. 2.
In this design, the C2f module within the feature fusion
network of YOLOvS8 is replaced by a newly proposed
C2f_SCConv module. The integration of the C2f_SCConv
block represents a key innovation in adapting the YOLOv8
framework for underwater object detection tasks, offering
enhanced feature representation capabilities in challenging
aquatic environments. By combining the strengths of the
C2f module and the SCConv module, it not only enhances
detection performance and feature representation capability
of the model but also optimizes computational efficiency.
This improvement makes YOLOvS8 more adept at handling
complex and dynamic detection tasks.

Next, we replace the second convolution operation of
the three detection heads in the Head network with the
SEAM module [24]. The main role of the SEAM module
in YOLOVS is to enhance detection accuracy of the model
in occlusion scenarios, particularly when dealing with oc-
clusion issues in multi-object detection tasks and complex
backgrounds. Additionally, the SEAM module enhances fea-
ture expression ability of the model, enabling it to more
accurately utilize information in subsequent detection and
recognition tasks.

D. SCCONV MODULE

The C2f module was redesigned. Our approach lever-
ages Self-Calibrated Convolution (SCConv) [25] to augment
the receptive field of the C2f module and facilitate self-
calibration through the integration of information across mul-
tiple spatial scales [26]. Fig. 3 illustrates the core concept of
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Fig. 1. Architecture for YOLOv8 module

SCConv, which focuses on refining the essential mechanism
of convolution-based feature extraction in CNNs without
requiring modifications to the existing network architecture.

The SCConv technique adopts grouped convolutions to fa-
cilitate multi-scale feature extraction by dividing the channel
dimension into two parallel branches. The first branch fol-
lows the conventional convolution-based hierarchical feature
extraction process, whereas the second incorporates down-
sampling operations to expand the receptive field. This dual-
pathway approach is instrumental in broadening receptive
field of the network. Consequently, each spatial location
within the network is enabled to perform self-calibration by
assimilating information from two disparate spatial scales,
thereby enriching the feature representation.

As illustrated in Fig. 3, the architecture operates on input
and output feature maps with a channel dimension of C. A
kernel tensor K is defined with dimensions (C,C, ky, k),
where kj, and k, denote the kernel height and width,
respectively. Initially, the kernel is partitioned into four

Head

groups of filters, denoted as {K;}%_,, each with dimensions
(C/2,C/2, kp, k). Subsequently, the input feature map X
is equally divided into two subsets, {X;, Xo}. The self-
calibration procedure is then applied to X; using the filter
set {K1, Ko, K3}, yielding the intermediate output Y. In
the second branch, a standard convolution is applied to Xo
using K, formulated as Y5 = F;(X3) = X5 x K;, which
is designed to preserve the original spatial context. Finally,
Y, and Y; are concatenated along the channel dimension
to produce the output Y. Specifically, the self-calibration
process begins apply to X; with a window size of r x r
and a step size of r, expressed as:

T, = AvgPool, (X1) €))

next, 7 undergoes a feature transformation process utiliz-
ing filter K :

X, = Up(Fo(Ty)) = Up(Ty x K>) 2)
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Fig. 2. Architecture for SCSE-YOLO module
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here, Up(-) represents a bilinear interpolation opera-
tion that reconstructs intermediate features from a lower-
resolution scale to the initial feature resolution. Conse-
quently, the self-calibration mechanism can be defined as:

Y, = F3(X1) - o(X1 + X,) 3)

where F5(X1) = X1 x X3, with o denoting the activation
function. The term X7 acts as a residual component utilized
for generating the self-calibration weights. The ultimate
output resulting from the self-calibration process can be
expressed as:

Yi=Fy(Y;) =Y, x K4 )

CSMM
Patch=6

CSMM
Patch=7

{?

Average
Pooling

CSMM
Patch=8

Average
Pooling

Fig. 4. Architecture for SEAM module

E. SEAM MODULE

The SEAM module [27] aims to achieve multi-scale
object detection, highlight object regions in the image, and
simultaneously suppress background regions. The module
architecture is shown in Fig. 4. The initial components
of SEAM require depth-separable convolutions with resid-
ual connections. Depth-separable convolutions operate on
channels, separating them individually. While this technique
effectively reduces the parameter count and enhances the
model’s understanding of channel importance, it does not
fully account for the inter-channel relationships, which can
limit its ability to capture complex feature interactions.
To address this limitation, we introduce pointwise (1x1)
convolutions, which are applied to combine the outputs of

convolutions at different depths. These 1x1 convolutions
enable the model to integrate feature maps from different
layers, allowing for more efficient dimensionality reduction
and ensuring that crucial information from various stages of
processing is preserved.

To further strengthen the inter-channel relationships, we
employ a dual-layer densely network that operates on the
concatenated outputs of the pointwise convolutions. This
network enables the fusion of data throughout all channels,
thus boosting the interconnection among them. Through
analyzing the relationships and interrelations among various
feature channels, the model becomes more adept at capturing
intricate patterns that may be missed when channel inter-
actions are ignored. Additionally, the model is designed to
compensate for the loss of information in occlusion scenar-
ios. By learning the relationships between occluded and non-
occluded targets during training, the network becomes more
resilient to occlusions, which are common in object detection
tasks. The model can infer and predict the likely locations
and characteristics of occluded objects based on the features
of non-occluded objects for the same location, improving
detection accuracy in challenging environments.

Conclusively, the output of the Spatial-Enhanced Attention
Module (SEAM) is multiplied by the original feature maps,
effectively re-weighting the features based on the enhanced
channel relationships. This step enables the model to better
handle misalignment errors, local aliasing, and feature loss
that may arise due to inter-class occlusions. By emphasizing
relevant features and downplaying irrelevant ones, the model
can more effectively detect objects, even when they are
partially obscured or misaligned, leading to improved overall
detection performance [28].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENTAL PLATFORM AND MODEL PARAME-
TERS

Presented in Table II are the hardware platform parame-
ters and configuration utilized for the experimental training
phase.

TABLE II
TRAINING PLATFORM PARAMETER CONFIGURATION

Parameters Configuration
Operational platform PyCharm
Compilers Python 3.8

Network construction method
CPU
GPU

PyTorch 2.1.0+cul21
Intel Core i5-12400F
NVIDIA GeForce RTX4060

Presented in Table III are some essential setup of param-
eter.

B. EVALUATION METRICS

A range of standard evaluation indices were employed
to objectively measure the efficacy of the proposed ap-
proach. Specifically, these included Precision (P), Recall (R),
Average Precision (AP), mean Average Precision (mAP),
billion floating-point operations (GFLOPs), and the number
of parameters (Params). Collectively, these indices offer a
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TABLE III
SOME ESSENTIAL PARAMETERS SETUP

Parameters Setup
Epochs 300
Batch size 16
Workers 8
Input image size 640x640
Optimizer SGD
Data enhancement strategy Mosaic

thorough assessment of effectiveness of the model. Precision
measures the accuracy of the model’s predictions, Recall
evaluates the completeness of its detections, and mAP offers
an overall performance metric that balances both precision
and recall across all classes. The formulas for P, R, AP, and
mAP are presented below:

TP
TP
1
AP = / P(R)IR ™
0
1
mAP = — AP; (®)
n =1

C. EXPERIMENT RESULTS

The experimental results derived from the Neural Ocean
dataset are systematically detailed in Table IV. Through a
meticulous comparative analysis of classic YOLO architec-
tures and our proposed SCSE-YOLO model—an innovative
extension of the YOLOv8 framework—we demonstrate the
transformative impact of targeted architectural enhancements
on marine debris detection. Specifically, our SCSE-YOLO
model integrates context-aware spatial-channel refinement
mechanisms, designed to enhance feature discriminability
and scale invariance in underwater environments. Compar-
ative analysis reveals a 4.1% accuracy improvement over
the baseline YOLOVS, coupled with a 3.2% increase in
mAP. These advancements are particularly significant in the
context of marine debris detection, where complex back-
grounds, variable lighting, and object occlusion pose sub-
stantial challenges. The mAP enhancement underscores not
only improved detection rates but also more precise object
localization, critical for operational applications requiring
accurate debris positioning.

To rigorously validate adaptability and practical relevance
of the model, we conducted cross-dataset evaluations using
the TrashCan dataset (Table V), which introduces additional
environmental complexities and debris diversity. Notably,
SCSE-YOLO maintained a consistent 4.1% accuracy ad-
vantage while achieving a 1.9% mAP improvement. The
attenuated mAP gain compared to Neural Ocean may reflect
higher object density of TrashCan, smaller debris sizes, and
increased visual clutter, necessitating finer-grained feature
discrimination. This nuanced performance variation high-
lights robustness of the model across heterogeneous scenarios

while underscoring remaining challenges in small object
detection under extreme environmental conditions.
Collectively, these findings establish SCSE-YOLO as a
vital framework for marine debris detection, demonstrating
significant progress in both detection accuracy and precision
across distinct datasets. The consistent performance improve-
ments suggest strong generalizability, positioning the model
as a valuable tool for advancing marine pollution monitoring
and mitigation efforts. The enhanced detection confidence
and reduced false negative rates are particularly critical for
operational deployments where reliable debris identification
directly impacts cleanup efficiency and ecological protection.

D. ABLATION EXPERIMENT

This manuscript presents a systematic ablation studies
designed to assess the incremental contributions of each
enhancement introduced to the YOLOv8s model. Effective-
ness of each component was subjected to stringent testing
to affirm the validity of the collective improvements. The
outcomes of these ablation studies, which are pivotal for
understanding the impact of each enhancement, are metic-
ulously documented. Specifically, the results pertaining to
the Neural Ocean dataset are encapsulated in Table VI,
offering a detailed data for each enhancement introduced to
the YOLOVS8s model. Similarly, the findings for the TrashCan
dataset are elaborated in Table VII, providing a comparative
analysis of the detection capabilities across different model
configurations.

The findings from these studies reveal that the incorpo-
ration of each improved method results in a discernible
enhancement in model accuracy, varying in degree. This
observation signifies a stepwise improvement in the detection
capabilities of the YOLOv8 model as it undergoes refine-
ment. Of particular note is the synergistic effect observed
when the self-calibrated convolution and the SEAM attention
mechanism were integrated into the YOLOvVS framework,
leading to a marked enhancement in detection performance.
These results not only underscore the incremental benefits of
the proposed improvements but also highlight the potential of
our enhanced YOLOv8 model to achieve superior detection
accuracy in the context of underwater debris and marine
litter. The ability to reduce false negatives and increase
confidence in detection is crucial for environmental mon-
itoring and cleanup operations. The manuscript effectively
demonstrates that the enhancement to the YOLOvV8s model is
not only theoretically sound but also effective in practice, and
the detailed ablation study also confirms the high efficiency
of SCSE-YOLO model.

E. COMPARISON OF MODEL CHECKING EFFECTS

To elucidate the enhanced performance of our SCSE-
YOLO model, Fig. 5 provides a comparative analysis of
the detection capabilities across the Neural Ocean dataset
for YOLOvSs, YOLOVSs, and our SCSE-YOLO model. The
visualization clearly demonstrates that while all three models
are capable of detecting marine debris, the detection accuracy
for YOLOvS5s and YOLOVS8s are consistently lower com-
pared to our SCSE-YOLO model. This disparity underscores
the superior detection confidence of our model, thereby
validating its more efficient detection performance. The
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Fig. 6. Comparison of detection results on TrashCan dataset

TABLE IV
COMPARISON OF EXPERIMENTAL RESULTS ON THE NEURAL OCEAN DATASET

Modules P/% R/% mAP/% Params/M GFLOPS
YOLOVSs 84.2 71 82.3 9.12 24.1
YOLOv6s 78.9 67.3 73.5 16.3 442
YOLOVS8s 84.5 71.3 82.6 11.1 27.8
YOLOV9s 83.7 71.5 82.4 7.29 274

YOLOv10s 84.3 72.6 80.4 8.04 24.5
YOLOvll1s 84.6 76.3 82.4 9.43 21.6
SCSE-YOLO 88.6 82.7 85.8 12.4 28.7

higher confidence scores indicate greater reliability in real-
world scenarios where decision-making based on detection
outputs is critical. Fig. 6 extends this comparative analysis to
the TrashCan dataset, revealing the detection outcomes for

plastic waste. The results indicate that, although all models
detect plastic waste to some extent, YOLOvSs and YOLOvS8s
suffer from significant missed detections and lower lower
precisions.
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TABLE V
COMPARISON OF EXPERIMENTAL RESULTS ON THE TRASHCAN DATASET

Modules P/% R/% mAP/% Params/M GFLOPS
YOLOVS5s 77.2 62.4 66.7 9.12 24.1
YOLOvV6s 70.8 62.5 64.7 16.3 44.2
YOLOVS8s 77.2 63.8 69.7 11.1 27.8

YOLOV8-C2f-Faster-
EMAV3[20] 63.6 44.8 47.1 - -
YOLOV9s 73.7 64.8 67 7.29 27.4
YOLOv10s 75.9 61.9 66.2 8.04 24.5
YOLOvl11s 77.6 63.1 67.8 9.43 21.6
SCSE-YOLO 81.3 64.9 71.6 12.4 28.7
TABLE VI

ABLATION EXPERIMENTS ON THE NEURAL OCEAN DATASET

SCConv SEAM P/% R/% mAP/% Params/M GFLOPS
84.5 713 82.6 11.1 27.8
v 85.1 78.7 83.2 12.9 30.7
v 85.4 78.5 83.5 10.6 26
v v 88.6 82.7 85.8 12.4 28.7

In contrast, the SCSE-YOLO model can detect the target reliable identification of marine debris, particularly in com-
more comprehensively with higher accuracy and confidence. plex environments where debris may be partially obscured or
This comprehensiveness and accuracy are crucial for the exhibit varying morphological characteristics. The compara-
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TABLE VII
ABLATION EXPERIMENTS ON THE TRASHCAN DATASET
SCConv SEAM P/% R/% mAP/% Params/M GFLOPS
77.2 63.8 69.7 11.1 27.8
v 78.8 62.9 69.9 12.9 30.7
v 77.6 63.1 70.9 10.6 26
v v 81.3 64.9 71.6 12.4 28.7

tive results from both datasets highlight dual strengths of
the SCSE-YOLO model: its high detection accuracy and its
ability to substantially reduce the rate of missed detections.

F. COMPARISON OF MAP CURVE RESULTS

To substantiate the efficacy of the SCSE-YOLO algorithm
employed in this research, a controlled experiment was con-
ducted. The above two underwater debris datasets are used
to train and evaluate some classical models of YOLO and
SCSE-YOLO models, ensuring that the training conditions
remained constant across all models. This approach allows
for a direct comparison of their performance metrics. Fig. 7
illustrates the mAP curves for each model on the Neural
Ocean dataset, while Fig. 8 presents the corresponding mAP
curves for the TrashCan dataset. These visual representations
of performance over iterations provide a clear indication of
the detection capabilities of each model.

The experimental results for SCSE-YOLO show a progres-
sive improvement in detection accuracy with each iteration.
This trend is particularly pronounced when compared to
the performance of several classical YOLO models, with
SCSE-YOLO consistently outperforming its counterparts.
These findings highlight the robustness of the SCSE-YOLO
algorithm, demonstrating its ability to achieve higher de-
tection accuracy as training progresses. This is especially
significant as it not only validates the superiority of SCSE-
YOLO in detecting underwater garbage but also emphasizes
its potential for real-world applications where high accu-
racy and reliability are critical. The observed performance
improvements further suggest that the integration of self-
calibrated convolution and the SEAM module significantly
enhances the detection capabilities about model, which fur-
ther confirms the applicability of our model for underwater
environments.
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V. DISCUSSION

This paper proposes a detection model, SCSE-YOLO, de-
signed for efficient performance and robust detection results,
even in complex scenes. The SCSE-YOLO model enhances
multi-scale feature fusion and detection capabilities, enabling
effective multi-object detection. Additionally, the model
highlights target areas within the image while suppressing
background areas, thus mitigating the effects of feature loss
caused by alignment errors, local aliasing, and inter-class
occlusion. This optimization ensures the model maintains
strong feature detection performance, even in challenging
underwater environments.

Although the SCSE-YOLO model has shown remarkable
effectiveness in detecting underwater garbage across various
datasets, there is still significant potential for further devel-
opment and application. Subsequent investigations will be
dedicated to enhancing the efficiency and real-time respon-
siveness of the model. Specifically, efforts will be directed at
improving model speed while maintaining high accuracy to
meet the real-time demands of underwater garbage detection.
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