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Abstract—Numerous decision-making challenges across
industrial domains can be formulated as Dynamic
Multi-Objective Optimization Problems (DMOPs). As an
effective computational paradigm for DMOPs, Dynamic
Multi-Objective Evolutionary Algorithms (DMOEAs) have
attracted significant attention from both academia and
industry. To address diverse environmental change patterns,
this study proposes EnsembleFL, a novel DMOEA
incorporating an ensemble feed-forward prediction
mechanism that captures heterogeneous movement patterns of
optimal solutions and accurately predicts them in new
environments. Experimental evaluations on the CEC’2018
benchmark suite demonstrate EnsembleFL’s superior
performance compared to five state-of-the-art DMOEAs.
Under severe environmental changes, EnsembleFL achieves
the best mean Modified Inverted Generational Distance
(MIGD) and Modified Hypervolume Difference (MHVD)
values on 10 and 13 DMOPs, respectively. In scenarios with
mild environmental changes, it attains optimal mean MIGD
and MHVD metrics on 5 and 12 DMOPs, respectively. These
results validate EnsembleFL’s robustness in handling both
abrupt and gradual environmental transitions, establishing it
as a competitive solution for real-world dynamic optimization
challenges.

Index Terms—Dynamic Multi-Objective Optimization,
Dynamic Multiple Objective Evolutionary Algorithm,
Evolutionary Algorithm, Environment Prediction, Ensemble,
Feed-forward.

I. INTRODUCTION

D IFFERENT industries face a wide array
of decision-making challenges. Examples include

self-driving cars [1], drone or robot path planning [2], [3],
[4], [5], rail transit train schedules [6], and industrial
automation [7]. These decision-making issues often involve
numerous conflicting optimization objectives. Moreover, the
environment may change at any point during the
decision-making process, thereby influencing the
optimization objectives of the decisions. As a result,
Dynamic Multi-objective Optimization Problems (DMOPs)
have garnered significant attention in both industry and
academia.

A DMOP is an optimisation problem with multiple
objectives, and its parameters and objectives may change
over time. In certain situations, DMOPs have a number of
constraints, some of which may be dynamic. A general
DMOP can be formalised as the Eq. (1). F (X; t) include
n(t) optimization objective functions, where these functions
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and their number may vary over time t. fi(X; t) is the ith
objective function. X = (x1, ..., xm(t)) represents the
vector consisting of decision variables. Ω(t) is the decision
space that constrains the range of values for each decision
variable, i.e., the search space of DMOP solving
algorithms. G(X; t) and H(X; t) are the inequality and
equality constraints, respectively. t represents the time that
the DMOP (environment) changes. T is the number of that
DMOP changes. If a DMOP is a long-term optimisation
problem or its number of changes is unknown, T can be
set as infinity (+∞).

Minimizing F (X; t) = (f1(X; t), ..., fn(t)(X; t)),(1)
subject to, G(X; t) ≤ 0, (2)

H(X; t) = 0, (3)
X ∈ Ω(t), (4)
t = t0, t1, ..., tT . (5)

Dynamic Multi-Objective Evolutionary Algorithms
(DMOEAs) are among the most effective approaches for
solving DMOPs. However, tackling the unpredictability of
dynamically changing environments in real-world scenarios
poses significant challenges for enhancing the performance
of DMOEAs. Specifically, DMOEAs need to: (1)
accurately evaluate whether individuals in the current
population maintain high quality in new environments, so
as to determine which solutions should be preserved. (2)
analyse environmental change patterns to generate adaptive
solutions that enhance population diversity and steer
evolution towards new Pareto-optimal solution sets.

Therefore, some current research endeavors are centered
on predicting environmental changes. These studies
construct individuals that are adapted to the new
environment to guide the population toward evolving in a
new optimal direction. Certain studies employ the
movement direction and step size of the Pareto front
centroids or the flow patterns between two consecutive
recent environments. They generate new individuals based
on the most recent Pareto front centroids or flow patterns.
This type of method assumes that DMOPs consist of a
series of stable Multi-objective Optimization Problems
(MOPs). It posits that in consecutive environments, the
Pareto fronts or Pareto-optimal solution sets of the MOPs
are mostly similar. As a result, these methods have a
relatively limited scope of application.

To bridge these gaps, this paper introduces a novel
DMOEA, EnsembleFL, that integrates ensemble learning
principles with multiple prediction mechanisms. By fusing
two distinct feed-forward predictors based on key-points or
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reference points through a framework inspired by Bagging,
EnsembleFL adapts to heterogeneous environmental
changes and generates high-quality initial populations for
new environments encountered in DMOPs. Evaluations
conducted on the CEC 2018 benchmark demonstrate its
superior performance. Under severe environmental changes,
EnsembleFL achieves the optimal mean Modified Inverted
Generational Distance (MIGD) and Modified Hypervolume
Difference (MHVD) values on 10 and 13 DMOPs,
respectively. Under mild environmental changes, it attains
the optimal MIGD and MHVD values on 5 and 12
DMOPs, outperforming five state-of-the-art DMOEAs. This
work enhances the robustness of DMOEAs in dynamic
environments through the systematic integration of
predictive mechanisms, providing practical solutions for
real-world DMOPs characterized by unpredictable or
nonlinear dynamics.

The structure of this paper is organized as follows.
Section II introduces the fundamental concepts of DMOPs.
Section III elaborates on the proposed ensemble prediction
framework. Section IV presents the results of benchmark
evaluations. Section V discusses the innovations in
comparison to existing works. Section VI concludes the
paper and outlines future research directions.

II. PRELIMINARY KNOWLEDGE

Definition 1: Pareto dominating. In time t for a
DMOP, given any two available solution, X1, X2 ∈ Ω(t),
X1 dominates X2 (X1 ≺ X2) if and only if X1 has not
greater values than X2 for all of the objective functions,
and X1 has lower value than X2 for at least one objective
function. This can be formulated as Eq. (6). If an available
solution is not dominated by any other solution, then we
can call it a non-dominated solution.

X1 ≺ X2 := ∀i(fi(X1; t) ≤ fi(X2; t))

∧ ∃i(fi(X1; t) < fi(X2; t)) (6)

Definition 2: Pareto optimal Set (PS). PS is the set
that consists of all available solutions that are not
dominated by any solution for a DMOP at every time. This
can be formulated as Eq. (7).

PS(t) := {X|X ∈ Ω(t) ∧ ¬∃X′∈Ω(t)(X
′ ≺ X)} (7)

Definition 3: Pareto Frontier (PF). PF is the mapping
of PS in the objective space, which can be represented as
Eq. (8).

PF (t) := {F (X; t)|X ∈ PS(t)} (8)

III. DMOEA BASED ON THE ENSEMBLE
FEED-FORWARD PREDICTION

In real-life scenarios, DMOP environments change in a
variety of ways. Therefore, prediction mechanisms that
only capture a single change pattern are difficult to adapt to
environmental changes, resulting in limited performance.
For this reason, this section proposes to integrate multiple
prediction mechanisms to capture multiple types of
environmental change patterns simultaneously to improve
the accuracy of PS movement prediction. In this paper, we
design the ensemble method to fuse two feed-forward

prediction methods to capture both PS linear moving
patterns and accelerated moving patterns. In future work,
we will explore the integration of more types of prediction
methods to further improve the accuracy of prediction.

Fig. 1 illustrates the technical framework of the dynamic
multi-objective evolutionary algorithm with the ensemble
prediction mechanism (named as EnsembleFL) designed in
this paper. The core concept involves utilizing two
feed-forward prediction mechanisms (forward-looking
Velocity, FLV and forward-looking Acceleration, FLA) to
generate two sub-populations (sub-population 1 and 2)
based on the PS from the most recent three environments.
Simultaneously, the population update strategy from
DNSGA-II-B is employed to perform mutation operations
on a certain proportion of randomly selected individuals
from the current population, thereby creating another
sub-population (sub-population 0) to enhance population
diversity. These three generated sub-populations are then
randomly used to replace individuals in the current
population, forming a new population that serves as the
initial population for the subsequent environment. For
details of the DNSGA-II-B population update strategy,
please refer to the cited literature [8]. The following
contents will provide detailed explanations of the FLV and
FLA prediction methods.

At first, to effectively capture the evolutionary patterns
of PF, the FLV and FLA predictions are based on multiple
key points rather than solely focusing on the PF centroid.
The key points considered in this work include the PF
centroid and uniformly sampled statistical points on the
PF. Specifically, the PS is first sorted according to each
dimension’s values, followed by uniform sampling of the
0–100% percentile points (in this work, 11 sampling points
are selected, i.e., the 10 ∗ i% percentile points, where i
ranges from 0 to 10). Key points across different
environments are aligned one-to-one based on their
percentile positions. Subsequently, as illustrated in Figure
1, the movement of each key point (including the centroid)
is predicted using the proposed technical framework. The
integrated prediction methodology introduced here is also
applicable to other critical points, such as knee points.

FLV (forward-looking Velocity) is one of the most
classic and widely used prediction mechanisms in
DMOEAs. It assumes that the PS undergoes
constant-velocity motion and adopts the positional
difference between the two most recent environments as the
movement velocity for the new environment. The specific
prediction method involves, for each key point, first
calculating its movement velocity based on its positions in
the two most recent environments. Then, using the current
position and the calculated velocity, the position in the new
environment is predicted. The detailed computational
formulas are given in Eq. (9) and (10), where X(t) and
V (t) represents the position and the velocity of a key point
at time (environment) t, and X̂(t+1) denotes the predicted
position of the key point at time t. Finally, FLV introduces
Gaussian noise to each dimension to generate a specified
number of individuals, forming a sub-population.

V (t) = X(t) −X(t−1) (9)

X̂(t+1) = X(t) + V (t) (10)
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Fig. 1. Technical framework of the ensemble feed-forward prediction mechanism. (FL: Forward-Looking; FLV: Forward-Looking Velocity; FLA: Forward-
Looking Acceleration)

The FLV mechanism assumes that each key point moves
at a constant velocity, leading to suboptimal performance in
environments with variable-speed dynamics. To address this
limitation, this paper proposes the FLA (forward-looking
Acceleration) mechanism, which hypothesizes that the
velocity of each key point changes over time. The core idea
is first calculating the acceleration of a key point based on
its velocities in the two most recent environments (derived
from Eq. (9)). Then, the latest position of the key point is
predicted using the computed acceleration and the most
recent velocity. Detailed computations are provided in
Eq. (11) and (12), where A(t)represents the acceleration of
the key point at time t. Similar to FLV, FLA incorporates
Gaussian noise into the predicted positions of key points to
generate a sub-population of the specified size.

A(t) = V (t) − V (t−1) (11)

X̂(t+1) = X(t) + V (t) +
1

2
A(t) (12)

Based on the aforementioned ensemble feed-forward
prediction mechanism, this paper designs a new DMOEA,
named EnsembleFL, as outlined in Algorithm 1. First,
EnsembleFL initializes a population and the current
environment (Lines 1–2) and evaluates the objective
function values of all individuals in the population (Line
3). It then employs the Fast Non-Dominated Sorting
(FNDS) algorithm to rank the population (Line 4) and
identifies the PF and PS (Line 5). After initializing each
key point and its movement velocity (set to zero) (Lines

6–7), EnsembleFL enters the iterative population evolution
phase (Lines 8–25) until termination criteria are met,
returning the searched PS and PF (Line 26).

During the iterative evolution process, EnsembleFL
operates as follows:

• When no environmental change is detected, it evolves
the population using a multi-objective evolutionary
algorithm (NSGA-II is adopted in this work) (Line
23).

• When an environmental change occurs, EnsembleFL
updates the current population using the ensemble
feed-forward prediction mechanism (Lines 10–18) and
correspondingly updates the PS and PF based on
FNDS (Lines 19–21). The detailed steps are outlined
below:

1) Archive key points and velocities from the environment
before the change (Lines 10 and 12).

2) Identify the latest positions of key points from the PS
of the most recent environment (Line 11).

3) Compute movement velocities for each key point using
their archived positions and the latest positions (Line
13).

4) Calculate accelerations for each key point based on
their archived velocities and the newly computed
velocities (Line 14).

5) Predict post-change positions of key points using FLV
and FLA mechanisms (Lines 15–16).

6) Generate sub-populations of specified size (20% of the
population size in this work) via mutation operators
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Algorithm 1 EnsembleFL
Input: F ; Ω
Output: PS and PF ;

1: Randomly initialize the population, pop;
2: t← t0; //initialize the time/environment
3: FIT ← F (pop, t); //evaluate the objective function values
4: L← FNDS(FIT ); //sort by FNDS
5: PF ← F [L[0]];PS ← pop[L[0]]; //get the current PS and

PF
6: V ← 0; //initializing the velocities
7: keys← key points of PS (X(0)); //initialize the key points
8: while not reach termination condition do
9: if environment is changed then

10: keysLast← keys; //archive the last key points
11: keys← key points of PS (X(t)); //update the key points
12: V Last← V ; //record the last velocities
13: V ← keys− keysLast; //update the velocities
14: A← V − V Last; //calculate the accelerations
15: X FLV ← noise(keys + V ); //build a sub-population

with FLV
16: X FLA ← noise(keys + V + A/2); //build a sub-

population by FLA
17: X B ← mutation(randSelect(pop, 20%)); //generate

a sub-population with the idea of DNSGA-II-B
18: pop ← update pop(pop,X FLV ∪X FLA ∪X B);

//update the population with random replacements
19: FIT ← F (pop, t); //re-evaluate the objective function

values
20: L← FNDS(FIT ); //sort by FNDS
21: PF ← F [L[0]];PS ← pop[L[0]]; //update the current

PS and PF
22: end if
23: evolve pop and update PS and PF by NSGA-II;
24: t← t+ tic; // going to the next tick
25: end while
26: return PS and PF ;

and random selection from the current population (Line
17).

7) Update the current population by randomly replacing
individuals with the three above generated
sub-populations to form a new population (Line 18).

8) Evaluate objective function values of the updated
population in the new environment (Line 19).

9) Re-rank the population using FNDS to obtain the
updated PS and PF (Lines 20–21).

This framework ensures adaptability to dynamic
environments while maintaining population diversity and
prediction accuracy through integrated velocity-acceleration
modeling and stochastic perturbations.

IV. PERFORMANCE EVALUATION

This paper evaluates the performance of the proposed
algorithm using the CEC 2018 benchmark suite [9], which
comprises 14 DMOPs (DF1–DF14) with varied changing
pattern of PS and PF . The details of these 14 DMOPs are
shown in Table IV-IV.

The selected baseline algorithms include five recently
proposed prediction-based DMOEAs: Forward-Looking
(FL, i.e., FLV) [10], FLA, Linear Regression (LR), Support
Vector Regression (SVR) [11], [12], and eXtreme Gradient
Boosting (XGB) [13]. To ensure an objective comparison
of prediction performance, all DMOEAs adopt NSGA-II as
their evolutionary strategy.

The parameter settings for the test problems follow the
CEC 2018 specifications [9], while experimental
environment parameters are configured as shown in
Table IV, covering two scenarios: severe environmental
changes (nt = 10) and mild environmental changes
(nt = 30), where nt represents the severity of
environmental changes of DMOPs and a less value
represents a more severity.

The algorithms are implemented in Python, with
arithmetic and matrix operations handled by the Numpy
library (version 1.26.4). The experiments are conducted on
a Windows 11 Home system with the following hardware:
14th Gen Intel Core i7-14700(F) processor, 16GB
DDR5-5600 RAM and 1TB PCIe 4.0 SSD. All code is
executed under Python 3.11.7, ensuring consistency and
reproducibility across trials.

A primary criterion for evaluating the performance of a
DMOEA is to quantify the discrepancy between the
obtained PF (PF act) and the theoretical PF . This paper
employs the two most widely adopted metrics, Modified
Inverted Generational Distance (MIGD) [14] and Modified
Hypervolume Difference (MHVD) [15], to measure the
performance of DMOEAs.

The Inverted Generational Distance (IGD) is widely used
to evaluate the accuracy of multi-objective optimization
algorithms. Its fundamental idea is to calculate the mean
distance between each solution obtained by the algorithm
and the theoretical PF . The specific calculation formula is
shown in Eq. (13), where d(f, PF (t)) represents the
shortest distance from a solved solution with objective
function values of f to the theoretical PF . It can be easily
observed that IGD does not take into account the temporal
dynamics of DMOPs or DMOEAs. Therefore, Modified
IGD (MIGD) addresses this limitation by averaging the
IGD values over each change period, thereby assessing the
overall performance of DMOP solving algorithms
throughout the entire time span, as shown in Eq. (14).

IGD(PF act, PS(t)) =
∑

f∈PFact

d(f, PS(t))

|PF act|
(13)

MIGD =
1

T

∑
τ∈[t0,tT ]

IGD(PF act(τ), PS(τ)) (14)

A smaller MIGD value indicates that the solutions
obtained by the algorithm are closer to the theoretical PF ,
reflecting better convergence performance. However, MIGD
fails to account for regions of PF that are not covered by
the obtained solution set, thereby lacking sensitivity to
diversity assessment. To address this limitation, MHVD
serves as a complementary metric. It quantifies the
hypervolume between the obtained solution set and the
theoretical PF , simultaneously evaluating both diversity
(coverage of the PF ) and accuracy (proximity to the PF )
of the algorithm.

The Hypervolume (HV) metric measures the volume of
the objective space region bounded by a reference point
and the obtained non-dominated solution set. Its calculation
is defined by Eq. 15, where L denotes the Lebesgue
measure (used to quantify volume), PF act(t) is the PF
solved by a DMOEA, and Vf is the hypervolume between
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TABLE I
ILLUSTRATIONS OF PS AND PF OF DF1-DF5 IN THE CEC 2018 BENCHMARK SUITE [9]

Problem PS Illustration PF Illustration #objectives

DF1 2

DF2 2

DF3 2

DF4 2

DF5 2
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TABLE II
ILLUSTRATIONS OF PS AND PF OF DF6-DF10 IN THE CEC 2018 BENCHMARK SUITE [9]

Problem PS Illustration PF Illustration #objectives

DF6 2

DF7 2

DF8 2

DF9 2

DF10 3
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TABLE III
ILLUSTRATIONS OF PS AND PF OF DF11-DF14 IN THE CEC 2018 BENCHMARK SUITE [9]

Problem PS Illustration PF Illustration #objectives

DF11 3

DF12 3

DF13 3

DF14 3

the reference point and the solved non-dominated solution
with objective function values of f . The Hypervolume
Difference (HVD) quantifies the difference in hypervolume
between the theoretical PF and the obtained PF . It is
computed using Eq. (16), where HV (PF ) represents the
hypervolume of the theoretical PF , and HV (PF act) is the
hypervolume of the solved PF .

HV (PF (t)) = L(∪f∈PF (t)Vf ) (15)

HVD(PF act(t), PF (t)) = HV (PF act(t))−HV (PF (t))
(16)

In real-world scenarios, the theoretical PF is often
unknown, whereas the lower bounds of each objective
function in a DMOP can typically be determined with
relative ease. Let F ∗(t) = (f∗

1 (t), ..., f
∗
n(t)(t)) represent the

lower bounds for each optimization objective in the DMOP.
The Hypervolume Difference (HVD) formula is then
adapted as shown in Eq. (17).
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TABLE IV
PARAMETER SETTINGS IN EXPERIMENTS

Type Parameter Value

CEC 2018 Settings
change frequency (τt) 30
change severity (nt) 10, 30
change number (T ) 100

General Settings

number of key points 12
number of independent

20
experimental runs

population size 100

NSGA-II Settings
mutation possibility 0.1
crossover possibility 0.9

HVDact(PF act(t), PF (t)) = HV (PF act(t))−HV (F ∗(t))
(17)

MHVD is an enhancement of HVD that addresses its neglect
of temporal or environmental dynamics. It is computed by
averaging the HVD values over stable time intervals for each
problem, as defined by Eq. (18):

MHVD =
1

T

∑
τ∈[t0,tT ]

HVDact(PF act(τ), PS(τ)) (18)

To ensure statistical robustness, the performance
evaluation experiments for each algorithm are repeated 20
independent times, and the mean values of each metric are
compared in the following presented results to validate the
proposed EnsembleFL introduced earlier. Furthermore, to
assess the overall relative performance of the algorithms,
we design a new metric based on all measured values as
follows. First, given the experiment results, we can easily
achieve the rank for each DMOEA in every metric and
every DMOP. Then, for each metric and every DMOEA,
we use the mean of ranks (avgRank) of all DMOPs to
represent the overall performance in this metric, and
average avgRank ranks across all metrics to achieve the
overall metric value. The calculations of avgRank and the
designed new metric are shown in Eq. (19) and (20). A, P
and M are the sets of DMOEAs (FLV, FLA, LR, SVR,
XGB and EnsembleFL in this paper), DMOPs (DF1-DF14
in this paper) and metrics (MIGD and MHVD in this
paper) used for the performance evaluation experiments,
respectively. ma,p is the measured value of DMOEA a in
the DMOP p and the metric m, which is the average of
measured values by repeat experiments. rankA(ma,p)
represents the rank of the metric value achieved by a in all
DMOEAs of A, in the comparative experiments with p and
m. avgRankAa,m is the mean of rankA(ma,p) for all
DMOPs, which indicates the overall performance of a in
m. Then, by aggregating measured values in all
performance metrics, RA

a averages all ranks of
avgRankAa,m with m ∈ M for a, which provides the
relative overall performance of a in A.

avgRankAa,m =

∑
p∈P rankA(ma,p)

|P|
(19)

RA
a =

∑
m∈M rankA(avgRanka,m)

M
(20)

Tables II and III present the mean MIGD and MHVD
values achieved by each algorithm on the CEC 2018 test
problems, while Table IV summarizes the overall relative
performance metrics of the algorithms. From Table II, it is
evident that under severe environmental changes (nt = 10),
EnsembleFL achieves the best MIGD values on 10 DMOPs
and the best MHVD values on 13 DMOPs. Table III
demonstrates that under mild environmental changes
(nt = 30), EnsembleFL attains the best MIGD values on 5
DMOPs and the best MHVD values on 12 DMOPs. These
results confirm that EnsembleFL exhibits superior
adaptability to abrupt environmental shifts while
maintaining high accuracy and diversity in its solution sets.
Furthermore, Table IV reveals that EnsembleFL
consistently outperforms all baseline algorithms across all
metrics, achieving the highest overall performance ranking.

Tables II and III display the MIGD and MHVD values
attained by each algorithm on the CEC 2018 test problems.
Meanwhile, Table IV summarizes the overall relative
performance metrics of the algorithms. As shown in Table
II, it is clear that under severe environmental changes,
EnsembleFL achieves the best MIGD values for 10
DMOPs and the best MHVD values for 13 DMOPs. Table
III indicates that under mild environmental changes,
EnsembleFL attains the best MIGD values for 5 DMOPs
and the best MHVD values for 12 DMOPs. These results
confirm that EnsembleFL demonstrates superior
adaptability to abrupt environmental shifts while
maintaining high accuracy and diversity in its solution sets.
Furthermore, Table IV reveals that EnsembleFL
consistently outperforms all baseline algorithms across all
metrics, securing the highest overall performance ranking.

The exceptional performance of EnsembleFL stems from
its integration of the FLA mechanism (designed to capture
nonlinear environmental dynamics) and the ensemble
framework. The efficacy of FLA is validated through direct
comparisons with FLV. Tables II and III show that FLA
outperforms FLV in approximately half of the experimental
scenarios, while FLV prevails in the remaining cases. Table
IV further highlights that under severe environmental
changes, FLV and FLA exhibit comparable overall
performance; however, under mild changes, FLA achieves
better mean MIGD values, whereas FLV excels in mean
MHVD values. This underscores the complementary
strengths of different prediction mechanisms under varying
environmental dynamics, justifying the necessity of the
ensemble approach in EnsembleFL.

The outstanding performance of EnsembleFL originates
from its integration of the FLA mechanism, which is
designed to capture nonlinear environmental dynamics, and
the ensemble framework. The effectiveness of the FLA
mechanism is validated through direct comparisons with
FLV. As illustrated in Tables II and III, FLA outperforms
FLV in approximately half of the experimental scenarios,
while FLV demonstrates superior performance in the
remaining cases. Table IV further emphasizes that under
severe environmental changes, FLV and FLA exhibit
comparable overall performance. However, under mild
changes, FLA achieves better MIGD values, whereas FLV
excels in MHVD values. This highlights the complementary
strengths of different prediction mechanisms under varying
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environmental dynamics, thereby justifying the necessity of
the ensemble approach employed in EnsembleFL.

By integrating multiple prediction mechanisms,
EnsembleFL leverages diverse environmental change
patterns, achieving superior performance compared to
individual predictors. As shown in Tables II and III,
EnsembleFL surpasses both FLA and FLV in most
scenarios, validating the effectiveness and efficiency of its
ensemble strategy. In a few cases, EnsembleFL yields
slightly worse MIGD values than FLV, primarily because
linear environmental changes dominate these scenarios,
where the integration of nonlinear predictions (from FLA)
may interfere with FLV’s linear extrapolation accuracy. In
practice, if the environmental change pattern is known a
priori, a specialized predictor (e.g., FLV for linear
dynamics) would be ideal. However, real-world
environments are characterized by heterogeneous and
unpredictable changes, making general-purpose algorithms
like EnsembleFL—capable of robust performance across
diverse scenarios—far more practical and widely
applicable.

By integrating multiple prediction mechanisms,
EnsembleFL harnesses diverse environmental change
patterns, thereby achieving superior performance compared
to individual predictors. As demonstrated in Tables II and
III, EnsembleFL outperforms both FLA and FLV in most
scenarios, validating the effectiveness and efficiency of its
ensemble strategy. In a limited number of cases,
EnsembleFL yields slightly inferior MIGD values
compared to FLV. This is primarily because linear
environmental changes are predominant in these scenarios.
In such cases, the integration of nonlinear predictions (from
FLA) may potentially interfere with the linear extrapolation
accuracy of FLV.

In practice, if the environmental change pattern is known
in advance, a specialized predictor (e.g., FLV for linear
dynamics) would be the optimal choice. However, real
world environments are marked by heterogeneous and
unpredictable changes. As a result, general-purpose
algorithms like EnsembleFL, which are capable of
delivering robust performance across a wide range of
scenarios, are far more practical and widely applicable.

Next, we assess the performance stability of these
DMOEAs by evaluating the performance trend with respect
to the severity of environmental changes. In Fig. 2, we
present the results for solving the DF5 problem. Similar
performance change trends are observed when solving
other DMOPs. From Fig. 2a, it can be observed that the
accuracy of each DMOEA increases as the severity of
environmental changes decreases. This is primarily because
a DMOEA can perform more population evolutions in each
stable environment of DMOPs with reduced severity,
thereby increasing the likelihood of finding more and better
solutions. In Fig. 2a, we can also observe the phenomenon
where EnsembleFL achieves better MIGD values than other
algorithms when the environmental changes are severe.
This is because EnsembleFL makes more accurate
predictions compared to others, largely due to the ensemble
of multiple prediction methods that mine different PF
moving patterns. However, the performance gaps between
EnsembleFL and the other algorithms narrow when the
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Fig. 2. The performance varied with the severity of environment changes
in solving DF5.

environmental changes are mild (see the region where
nt > 16 in Fig. 2a). The main reason is that the impact of
the evolutionary strategy on solving DMOPs becomes more
significant as the severity of environmental changes
decreases, since more evolution generations allow
DMOEAs to explore a larger solution space. Therefore, in
the future, we will focus on designing evolutionary
strategies for DMOEAs to better adapt to solving DMOPs.

As shown in Fig. 2b, every DMOEA has a small
fluctuation in MHVD as the environment change severity
varied, which represents that the solution diversity of
searched PS is relatively stable. This may be because the
solution diversity is largely decided by the population
initialized for each stable environment, and thus depends
on the prediction methods. By combining both results
illustrated in Fig. 2, we can make a conclusion that the
quality (accuracy and diversity) of solutions achieved by a
DMOEA is determined by both the prediction method
adapt to the environment changes and the evolutionary
strategy that provides efficient and effective search
directions. EnsembleFL achieves better MHVD than other
algorithms in all cases, shown in Fig. 2b, which further
verifies its superior performance.

Now, we conduct experiments to evaluate the
performance changes of DMOEAs when the problem scale
of the solved DMOP is varied. We also take DF5 as a case,
and illustrate the results in Fig. 3. From Fig. 3a, we can
see that as the problem scale (the variable number) is
increased, the accuracy of solutions is decreased for every
DMOEA. This is mainly because the solution space is
expanded greatly as the problem scale is increased, which
would make the solution search much more difficult. As
shown in Fig. 3a, EnsembleFL can always achieve the best
MIGD in all different problem scale cases, and the
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TABLE V
PERFORMANCE METRIC VALUES OF ALGORITHMS UNDER SEVERE ENVIRONMENTAL CHANGES (nt = 10) ON THE CEC 2018 BENCHMARK SUITE.

DMOP Metric FLV FLA LR SVR XGB EnsembleFL

DF1
MIGD

average 0.0033583 0.0034201 0.0036141 0.0036728 0.0033457 0.003286
rank 3 4 5 6 2 1

MHVD
average 0.5721015 0.5722917 0.5723873 0.5727552 0.5719026 0.571343

rank 3 4 5 6 2 1

DF2
MIGD

average 0.2756588 0.2796511 0.2670932 0.2620286 0.2734191 0.220203
rank 5 6 3 2 4 1

MHVD
average 0.500763 0.4999689 0.4868519 0.4987084 0.4948678 0.469391

rank 6 5 2 4 3 1

DF3
MIGD

average 0.6879658 0.6834649 0.6720004 0.6450547 0.6930142 0.616694
rank 5 4 3 2 6 1

MHVD
average 0.9331428 0.940332 0.8956523 0.8416667 0.9205133 0.826622

rank 5 6 3 2 4 1

DF4
MIGD

average 0.4063925 0.4378698 0.4303647 0.3755076 0.3801695 0.3903407
rank 4 6 5 1 2 3

MHVD
average 0.2370486 0.2250237 0.2234691 0.212787 0.2236281 0.2368965

rank 6 4 2 1 3 5

DF5
MIGD

average 0.2300044 0.258425 0.2879263 0.4319601 0.3671064 0.201374
rank 2 3 4 6 5 1

MHVD
average 0.2836831 0.2949004 0.2741977 0.2931181 0.2889677 0.267597

rank 3 6 2 5 4 1

DF6
MIGD

average 9.5588982 9.0174784 9.003745 10.218425 10.380135 9.7105436
rank 3 2 1 5 6 4

MHVD
average 0.1686466 0.171978 0.2274755 0.2169132 0.2448779 0.146315

rank 2 3 5 4 6 1

DF7
MIGD

average 0.409614 0.4131103 0.3642087 0.4374911 0.40696 0.343451
rank 4 5 2 6 3 1

MHVD
average 0.8182154 0.8205052 0.7967074 0.8199414 0.8236905 0.773039

rank 3 5 2 4 6 1

DF8
MIGD

average 0.2197897 0.1968333 0.2244304 0.2003511 0.1985181 0.14855
rank 5 2 6 4 3 1

MHVD
average 0.4778251 0.4365768 0.4820203 0.4785657 0.4742142 0.327993

rank 4 2 6 5 3 1

DF9
MIGD

average 1.204431 1.1780366 1.1953921 1.2896327 1.3823071 0.845348
rank 4 2 3 5 6 1

MHVD
average 0.3083181 0.3122055 0.3127468 0.3246054 0.3302476 0.26604

rank 2 3 4 5 6 1

DF10
MIGD

average 0.35589 0.388526 0.4130915 0.3948649 0.3874044 0.3836652
rank 1 4 6 5 3 2

MHVD
average 0.2399545 0.235306 0.2130403 0.2496932 0.2284013 0.172932

rank 5 4 2 6 3 1

DF11
MIGD

average 11.79304 11.822246 11.825885 11.83362 11.809165 11.814771
rank 1 4 5 6 2 3

MHVD
average 0.7217686 0.7162597 0.7227602 0.7211256 0.720429 0.712115

rank 5 2 6 4 3 1

DF12
MIGD

average 0.5292982 0.5199371 0.5076853 0.5244829 0.5105333 0.478483
rank 6 4 2 5 3 1

MHVD
average 0.204682 0.1958073 0.2083629 0.2078805 0.1910199 0.140718

rank 4 3 6 5 2 1

DF13
MIGD

average 1.1431864 1.0961584 1.1435138 1.2622611 1.2865144 1.073832
rank 3 2 4 5 6 1

MHVD
average 0.1624251 0.1462736 0.1560467 0.1722161 0.1626285 0.126949

rank 4 2 3 6 5 1

DF14
MIGD

average 0.3247037 0.3684833 0.3961349 0.5067011 0.4323082 0.296605
rank 2 3 4 6 5 1

MHVD
average 0.2768491 0.2947282 0.2771067 0.3091701 0.3101942 0.267537

rank 2 4 3 5 6 1
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TABLE VI
PERFORMANCE METRIC VALUES OF ALGORITHMS UNDER MILD ENVIRONMENTAL CHANGES (nt = 30) ON THE CEC 2018 BENCHMARK SUITE.

DMOP Metric FLV FLA LR SVR XGB EnsembleFL

DF1
MIGD

average 0.003189 0.0032049 0.003193 0.003233 0.0032442 0.0032387
rank 1 3 2 4 6 5

MHVD
average 0.6337584 0.6335523 0.6337234 0.6336245 0.6337459 0.633462

rank 6 2 4 3 5 1

DF2
MIGD

average 0.0322955 0.0329503 0.0336411 0.029833 0.0309913 0.030763
rank 4 5 6 1 3 2

MHVD
average 0.3393667 0.3458686 0.3355523 0.3394374 0.3414094 0.331918

rank 3 6 2 4 5 1

DF3
MIGD

average 0.304369 0.3138129 0.5708436 0.5103331 0.5865344 0.248663
rank 2 3 5 4 6 1

MHVD
average 0.682444 0.6936069 0.927243 0.8975001 0.9710108 0.564021

rank 2 3 5 4 6 1

DF4
MIGD

average 0.1546621 0.1645479 0.1657822 0.1828026 0.1746745 0.150169
rank 2 3 4 6 5 1

MHVD
average 0.1894664 0.1892574 0.18718 0.1874358 0.1904365 0.1894794

rank 4 3 1 2 6 5

DF5
MIGD

average 0.0408911 0.0380041 0.0421934 0.039994 0.0425632 0.037595
rank 4 2 5 3 6 1

MHVD
average 0.3093846 0.3177793 0.3265994 0.2984409 0.3082299 0.278688

rank 4 5 6 2 3 1

DF6
MIGD

average 2.805715 3.1042128 3.8518684 3.4743493 2.9011315 2.8421219
rank 1 4 6 5 3 2

MHVD
average 0.3594155 0.3520524 0.3877135 0.3915496 0.3422279 0.258814

rank 4 3 5 6 2 1

DF7
MIGD

average 0.2957322 0.272228 0.2889933 0.266037 0.2690157 0.2983929
rank 5 3 4 1 2 6

MHVD
average 0.7347463 0.724187 0.7302869 0.716875 0.723876 0.7372737

rank 5 3 4 1 2 6

DF8
MIGD

average 0.1551293 0.1718291 0.1840825 0.1780454 0.1759159 0.146287
rank 2 3 6 5 4 1

MHVD
average 0.3863491 0.4344777 0.4450676 0.4491391 0.4482893 0.32062

rank 2 3 4 6 5 1

DF9
MIGD

average 0.1910382 0.1821445 0.2029375 0.188856 0.2176944 0.154081
rank 4 2 5 3 6 1

MHVD
average 0.362736 0.3520702 0.3587474 0.3698268 0.3636772 0.273715

rank 4 2 3 6 5 1

DF10
MIGD

average 0.1362368 0.1367703 0.1290924 0.1352061 0.127096 0.1521059
rank 4 5 2 3 1 6

MHVD
average 0.0051094 0.0048734 0.0041344 0.0046356 0.0040479 0.003771

rank 6 5 3 4 2 1

DF11
MIGD

average 11.924175 11.90482 11.91003 11.919173 11.92976 11.905475
rank 5 1 3 4 6 2

MHVD
average 0.7435284 0.7432473 0.7392181 0.7422711 0.7472291 0.728913

rank 5 4 2 3 6 1

DF12
MIGD

average 0.189942 0.2070001 0.1938938 0.2076459 0.2058826 0.1903504
rank 1 5 3 6 4 2

MHVD
average 0.122213 0.115762 0.1274722 0.126609 0.1189187 0.089405

rank 4 2 6 5 3 1

DF13
MIGD

average 0.2838913 0.271139 0.285401 0.2836665 0.2867742 0.2859133
rank 3 1 4 2 6 5

MHVD
average 0.1272296 0.1364537 0.1230229 0.1264431 0.1237361 0.106456

rank 5 6 2 4 3 1

DF14
MIGD

average 0.0871841 0.0869186 0.086192 0.0866514 0.0869227 0.0862841
rank 6 4 1 3 5 2

MHVD
average 0.3266595 0.3216569 0.3292095 0.322871 0.3177873 0.307644

rank 5 3 6 4 2 1
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TABLE VII
THE OVERALL PERFORMANCE COMPARISON OF ALGORITHMS.

Environment Metric FLV FLA LR SVR XGB EnsembleFL

Severe change (nt = 10)

MIGD
avgRank 3.43 3.64 3.79 4.57 4 1.57

rank 2 3 4 6 5 1

MHVD
avgRank 3.86 3.79 3.64 4.43 4 1.29

rank 4 3 2 6 5 1

Overall
R 3 3 3 6 5 1

rank 2 2 2 6 5 1

Mild change (nt = 30)

MIGD
avgRank 3.14 3.14 4 3.57 4.5 2.64

rank 2 2 5 4 6 1

MHVD
avgRank 4.21 3.57 3.79 3.86 3.93 1.64

rank 6 2 3 4 5 1

Overall
R 4 2 4 4 5.5 1

rank 3 2 3 3 6 1
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Fig. 3. The performance varied with the problem scale (the variable
number) in solving DF5.

performance differences of EnsembleFL to others are
becoming larger when the problem scale is increased. This
illustrates that EnsembleFL perform better on solving
DMOPs than other algorithms. In Fig. 3b, we can see that
the performance value is getting better in MHVD as the
problem scale increasing for each algorithm. This is mainly
because the dimension of the solution space is increased
with the problem scale, which can result in an decreasing
HVD between actual PS and theoretical PS as their
difference is generally less than 1 unit in each dimension.
EnsembleFL achieves the best MIGD and MHVD in all of
DMOEAs and all problem scales, as illustrated in Fig. 3.
These results confirm the superior performance of our
proposed algorithm in solving DMOPs again.

V. RELATED WORK

The inherent uncertainty of environmental changes poses
significant challenges in solving DMOPs. To address these
challenges, many studies focus on reinitializing populations
in DMOEAs during environmental changes, aiming to
rapidly adapt to changes and accelerate the discovery of the
optimal solutions. The simplest approach involves
reinitializing part or all of the population to enhance
diversity and avoid local optima [8]. While computationally
efficient, this method treats each DMOP phase as an
independent Multi-Objective Problem (MOP), ignoring
historical change patterns and resulting in poor search
efficiency.

To improve this, memory-based environmental response
mechanisms have been proposed. For example, some works
retrieve solutions from a memory bank when encountering
similar historical environments and combine them with
randomly initialized individuals [16]. However, in highly
dynamic DMOPs, environmental similarity is often low,
and robust similarity detection remains challenging, limiting
the utility of such memory-based strategies. Therefore, a
multi-scenario modeling approach [17] was introduced to
categorize historical environments into clusters, using
uniformly sampled reference solutions within each cluster.
When a new environment arises, the closest cluster is
identified, and its reference solutions are reused. If no
similar cluster exists, a new one is created and solved via
conventional optimization. Similarity is measured using
fuzzy proximity metrics based on decision-space sampling.

For high-dimensional DMOPs, memory-based methods
often underperform due to low inter-environment similarity.
Consequently, prediction-based strategies have emerged,
leveraging historical PS evolution patterns to forecast PS
trajectories and generate solutions that accelerate
convergence. For instance, reference [10] generates
sub-populations via three strategies: (1) linear extrapolation
of PS centroids, (2) selection of elite individuals, and (3)
random initialization. During evolution, the first strategy
generates offspring to enhance convergence. Reference [18]
adaptively updates decision variables based on their
classification as “convergence-sensitive” or
“diversity-sensitive”, applying controlled mutations or
region-based adjustments. Reference [19] uses
autoregression to predict centroid movements and Gaussian
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perturbations to diversify populations.
Most methods assume linear PS changes, leading to

suboptimal performance in nonlinear scenarios. To address
this, Reference [20] classifies decision variables as
linear/nonlinear via correlation coefficients, applying
Lagrange extrapolation or Fourier-based autoregression.
Reference [21] targets rotational DMOPs by incorporating
rotation angles into gradient predictions. Reference [22]
combines linear (centroid-based) and nonlinear
(angle-based) models for dynamic Regions of Interest
(ROIs). Reference [23] exploits Gaussian process
regression, linear moving characteristic of knee point-based
partitions and the historical Pareto-similarity to predict new
positions of PS.

Recent advances integrate machine learning (ML) for
enhanced prediction. Reference [11] trains SVM classifiers
on candidate sets (current population, offspring generated
by differential evolution, and pivot points) to select initial
populations, supplemented by MOEA/D evolution.
Reference [13] employs XGBoost to predict individual
movements based on historical trajectories. Reference [24],
[25] uses RNNs/LSTMs to forecast PS dynamics, with
adaptive population replacement to mitigate early-stage
prediction errors. Despite their potential, ML methods face
challenges such as high computational overhead and
sensitivity to training data quality.

Most approaches rely on single prediction mechanisms,
excelling only in specific change modes (e.g., linear,
rotational) while lacking universality. To overcome this, our
work introduces an ensemble learning framework that
integrates multiple predictors (e.g., FLV, FLA) to handle
diverse environmental dynamics. By synergizing linear and
nonlinear prediction models, our method enhances
prediction accuracy across varied scenarios, improving
DMOEA convergence and diversity in dynamic
environments.

VI. CONCLUSION

This study explores evolutionary algorithms for solving
DMOPs. To accommodate the diversity of environmental
change patterns in DMOPs, we propose a novel ensemble
framework inspired by the Bagging ensemble learning
approach. This framework integrates two feed-forward
prediction mechanisms, namely FLV and FLA, to enhance
prediction accuracy across diverse environmental scenarios,
thereby improving the exploration-exploitation balance of
DMOEAs. The proposed method is extensively evaluated
on 14 DMOPs from the CEC 2018 benchmark suite. The
results demonstrate that the algorithm attains superior
accuracy and generates well-distributed solution sets under
dynamic conditions.

This work confirms the effectiveness of the ensemble
prediction strategy. Future research will focus on two key
directions:

1) Expanding Prediction Mechanisms: exploring the
integration of additional advanced prediction
techniques (e.g., hybrid models or deep
learning-based predictors) to further refine solution
set accuracy.

2) Enhancing Evolutionary Strategies: Designing more
efficient evolutionary operators and adaptation

mechanisms to strengthen the global search capability
of DMOEAs, improving the accuracy, diversity, and
convergence rate in searching PF .
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