
 

  

Abstract—To address the challenges in detecting small and 

occluded targets caused by the decline in visual sensor imaging 

quality during nighttime driving scenarios, a low-light dynamic 

object detection algorithm based on YOLOv8 is proposed. First, 

the Deep Retinex-Net is employed to enhance the original image 

quality, thereby accentuating the image features. Second, the 

PAN-FPN module in the YOLO neck network is replaced with a 

BiFPN fusion module, reducing the loss of feature information 

in intermediate layers and improving small target detection 

performance. Finally, a multiframe image fusion module is 

designed to facilitate feature fusion between historical and 

current frames, enhancing the detection of occluded targets. To 

validate the proposed algorithm, both dataset and real vehicle 

tests are conducted. The results demonstrate that, in nighttime 

driving scenarios using the Waymo dataset, the mAP of the 

improved model is 77.3%, marking a 2.8% improvement over 

the baseline model. In real-world nighttime driving scenarios, 

the detection accuracy of the improved model is 91.49%, 

reflecting a 5.78% improvement over the baseline. The proposed 

algorithm exhibits strong target detection performance and 

robustness, making it highly suitable for target detection tasks in 

intelligent connected vehicles. 

 
Index Terms—YOLOv8, Multiframe image fusion, Object 

detection, Nighttime driving scenarios 

 

I. INTRODUCTION 

BJECT detection is a core technology in environment 

perception, providing accurate information for vehicles 

to ensure driving safety [1]. However, lighting conditions 
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significantly impact detection accuracy in practical 

applications [2]. While high detection accuracy can be 

achieved under good daytime lighting scenarios, low light and 

noise in nighttime driving scenarios result in dark images with 

indistinguishable details. Feature extraction becomes 

especially challenging for occluded and small targets, 

reducing detection accuracy and impacting driving safety [3], 

[4]. In driving scenarios, both traditional and deep 

learning-based object detection methods are employed to 

identify and locate targets of interest in images or videos [5], 

[6]. The traditional object detection methods [7], [8] are 

computationally simple and offer good interpretability, 

making them suitable for target detection tasks in simpler 

environments. However, these methods suffer from slow 

detection speeds and rely on manually designed feature 

extraction, which limits their performance in complex 

scenarios. In contrast, deep learning-based object detection 

methods [9], [10] offer superior feature learning capabilities, 

robustness and adaptability, making them the mainstream 

approach in modern object detection. 

Currently, deep learning-based object detection methods 

can be broadly categorized into two-stage and single-stage 

detection algorithms [11]. The two-stage detection algorithms, 

exemplified by the R-CNN series [12], [13], offer high 

detection accuracy. However, the training and detection 

speeds are relatively slow, making them challenging to 

implement in real-time vehicle applications. In contrast, 

single-stage detection algorithms, such as the YOLO series 

[14], [15] are widely adopted in object detection tasks due to 

their higher detection accuracy and faster detection speeds. 

As object detection technology continues to evolve, 

researchers have increasingly focused on addressing key 

challenges in real-world scenarios, including image 

enhancement, small target detection, and occluded target 

detection. Overcoming these challenges will further enhance 

the accuracy, robustness, and adaptability of object detection 

algorithms across diverse driving scenarios. 

Existing studies tend to lose the texture and edge details 

during the image enhancement process, which results in 

blurred target features and amplified background noise. 

Consequently, the detection accuracy of the algorithm is 

compromised. Wang et al. [16] proposed an image adaptive 

enhancement network, which improves the quality of 

low-light images and the algorithm's detection accuracy by 

incorporating the channel attention mechanism SE-Net and 

constructing a feature enhancement network. However, the 

method's detection ability for small targets remains limited. 

Miao et al. [17] applied the optimal MSR algorithm to 

enhance the original nighttime images for driving scenarios. 
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Although the model's AP is improved, the problem of feature 

information loss in the model's intermediate layers persists. 

Jiang et al. [18] introduced a self-correcting illumination 

module to enhance low-light image quality and proposed a 

dynamic feature extraction module to capture global context 

information. The approach effectively reduces false 

detections and missed detections, but the model struggles to 

balance attention between image details and global context 

information. Additionally, the network’s generalization 

ability requires improvement. Huang et al. [19] presented a 

method that combines a multiscale image feature 

enhancement module with a target feature enhancement 

module, effectively improving object detection accuracy 

under low-light conditions. However, the dataset used lacks 

sufficient representation of rea-world driving scenarios, and 

the model's generalization ability needs enhancement. Zhang 

et al. [20] utilized the Retinex algorithm for image 

enhancement and applied void convolution to reduce network 

parameters, improving the accuracy and speed of vehicle 

detection at night. Despite these improvements, the model 

still struggles with detecting occluded targets. Due to 

insufficient feature representation for small targets and 

limited handling of occluded targets, existing algorithms 

perform poorly in target detection tasks. To further improve 

detection performance, various strategies have been proposed. 

Cao et al. [21] reconstructed the backbone network, 

introduced an attention mechanism, and optimized the loss 

function, improving small target detection. However, the 

algorithm’s performance on occluded targets has not been 

significantly enhanced. Wu et al. [22] designed a multiframe 

feature fusion module to propagate historical frame features 

to the current frame for fusion, thereby improving detection 

accuracy for occluded targets. However, the method is not 

optimized for nighttime driving scenarios, and small target 

detection remains inadequate. Yang et al. [23] proposed a 

feature sensing field fusion module and added a P2 detection 

head with a shallower feature layer, enhancing the model's 

detection capabilities for both small and occluded targets. 

However, the model has a large number of parameters, which 

hampers its detection speed and makes real-time application 

challenging. 

In summary, several challenges still exist in the object 

detection algorithms for nighttime driving scenarios. Low 

lighting significantly degrades the quality of captured images. 

Existing image enhancement techniques struggle to 

adaptively improve image quality based on real-time 

conditions. Moreover, current YOLO models often lack 

sufficient feature information for effective object detection. 

Due to weak feature representation and partial loss of 

important features, these models face difficulties in accurately 

detecting small and occluded targets. Therefore, the detection 

accuracy of the model requires further improvement. 

To address the aforementioned challenges, an improved 

YOLOv8 object detection algorithm for nighttime driving 

scenarios is proposed. First, Deep Retinex-Net is employed to 

enhance the feature information in low-light images. The 

approach achieves complex nonlinear modeling through 

convolutional neural networks, which makes the reflection 

component and illumination component of the image be 

accurately separated. During the image enhancement process, 

a rationality constraint is applied to separated components, 

effectively suppressing background noise while preserving 

detailed information, thereby producing more naturally 

enhanced images. Second, the PAN-FPN module in the 

YOLOv8 neck network is replaced with the BiFPN fusion 

module to mitigate the loss of feature information in the 

intermediate layers of the model. The replacement improves 

the model’s detection performance on small targets. 

Additionally, redundant node connections are eliminated to 

streamline the network structure and reduce model parameters. 

The bidirectional feature fusion mechanism facilitates full 

interaction between high-level semantic information and 

low-level detail, enhancing the feature representation of small 

targets. Furthermore, a learnable weighting mechanism is 

introduced to dynamically adjust the weights of different 

feature layers, optimizing the fusion process. Finally, a 

multiframe image fusion module is proposed, which leverages 

target consistency and background difference between frames 

to achieve feature fusion. By integrating historical and current 

frames, the representation of target feature information is 

strengthened, enabling enhanced perception of dynamic 

target behavior and improving the detection of occluded 

targets. Compared to the baseline YOLOv8 model, the 

improved algorithmic model significantly enhances the 

quality of images captured in nighttime driving scenarios. The 

introduction of the BiFPN fusion module and the multiframe 

image fusion module addresses the limitations of previous 

models, such as poor adaptability to nighttime driving 

scenarios and reliance on single-frame detection. The 

detection performance of small target and occluded target is 

further improved. Experimental results demonstrate that the 

improved algorithmic model achieves superior detection 

accuracy. 

II. THE YOLOV8 PRINCIPLE 

You Only Look Once (YOLO) series of algorithms offer 

high real-time performance and detection accuracy, making 

them widely applicable in modern autonomous driving 

scenarios. The algorithms are frequently deployed in real 

vehicles to carry out object detection tasks. YOLOv8 

primarily consists of three parts: Backbone, Neck and Head, 

as shown in Fig. 1. 

Compared to previous versions, the backbone network of 

YOLOv8 adopts an enhanced structure based on CSPNet 

(Cross Stage Partial Network). The design improves the 

model's representation ability and inference speed, while 

enhancing its ability to extract features from multiscale targets 

in complex scenarios. The model also demonstrates more 

stable performance on simulation datasets. The neck network 

of YOLOv8 incorporates PAN-FPN module, enhancing the 

model’s capacity to capture contextual information. It enables 

effective identification and localization of targets at various 

scales, reducing both false and missed detections. The 

detection head adopts a Decoupled-Head structure. It 

separates classification and regression tasks into independent 

branches, minimizing mutual interference. 
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Fig.1  YOLOv8 Object Detection Algorithm 

 

This structure enhances the model’s adaptability to diverse 

driving scenarios. It also enables fast and accurate object 

detection in complex environments. Meanwhile, YOLOv8 

offers five model scales, N, S, M, L, and X, based on the 

scaling factors. The appropriate scale can be flexibly selected 

based on available hardware resources. This flexibility 

reduces the difficulty of deploying the model in real vehicle 

experiments. 

III. IMPROVED YOLOV8 OBJECT DETECTION ALGORITHM 

YOLOv8 demonstrates strong object detection 

performance in most autonomous driving scenarios. However, 

low light conditions and image noise degrade image quality in 

the nighttime driving scenarios. As a result, object detection 

algorithms struggle to extract effective features. Additionally, 

detail loss directly impacts the recall rate and accuracy of 

small object detection. Furthermore, the visible area of 

occluded objects becomes even smaller. The phenomenon of 

missed and false detection is increased. To address these 

challenges, an improved YOLOv8 object detection algorithm 

is proposed. The proposed improvements consist of three 

parts, as shown in Fig. 2. Deep Retinex-Net is introduced to 

improve the quality of images captured by the camera. BiFPN 

fusion module and multiframe image fusion module are 

incorporated to enhance detection performance for small and 

occluded objects. 
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Fig. 2  Improved YOLOv8 Object Detection Algorithm 

 

A. Deep Retinex-Net Image Enhancement Network 

The image information is influenced by the reflection 

component R and the illumination component I. In nighttime 

driving scenarios, it is difficult for the Retinex algorithm to 

define the appropriate image decomposition constraints. 

Moreover, manually designed parameters limit the capability 

of the Retinex algorithm due to model constraints. The 

limitations of the Retinex algorithm contribute to false and 

missed detection in the YOLOv8 object detection process. 

The principle of the Retinex algorithm is shown in Fig. 3. To 

address these limitations, Deep Retinex-Net image 

enhancement network is introduced in this study. The image 

enhancement process is divided into three stages including 

decomposition, adjustment and reconstruction as shown in 

Fig. 4. A data-driven approach is employed to solve the 

problem of the Retinex algorithm in which the reflection 

component R and the illumination component I are fixed. The 

enhanced images are more suitable for object detection in the 

nighttime driving scenarios. 

 

 
Fig. 3  Retinex algorithm schematic diagram 

 

In the decomposition stage, the initial features of the 

low-light image are extracted through a 3 × 3 convolutional 

layer. Then, the initial separation of the illumination 

component R and the reflection component I is achieved by 

nonlinear transformations using multiple 3 × 3 convolutional 

layers and ReLU activation function. Finally, a 3 × 3 

convolutional layer and Sigmoid function are used to 

normalize the image features. In the adjustment stage, the 

reflection component is first denoised to further optimize 

detail performance, and the optimized reflection component 

lowR  is generated. Meanwhile, local feature information is 

extracted by a 3 × 3 convolutional layer and ReLU activation 

function. Multistage down-sampling and up-sampling 

modules are designed to capture local illumination 

information and reconstruct the features. Then, channel 

compression is performed using a 1 × 1 convolution layer to 

reduce the computational complexity. Finally, features are 

reconstructed by a 3 × 3 convolutional layer to generate the 

enhanced illumination components 
lowI . In the reconstruction 

stage, the optimized reflection component 
lowR  and enhanced 

illumination component 
lowI  are combined by element level 

multiplication operation to reconstruct the image. Deep 

Retinex-Net automatically learn the characteristics of 

illumination and reflection components of images through 

convolutional neural network, which no longer relies on 

artificial assumptions. Through multilevel feature extraction, 

Deep Retinex-Net can effectively avoid image distortion 

caused by inaccurate illumination estimation. In nighttime 

driving scenarios, the traditional Retinex algorithm cannot 

cope with the actual changes in lighting conditions. And the 

cumbersome image processing steps will also affect the 

real-time performance of the system. Therefore, the Deep 

Retinex-net image enhancement network is proposed to 

improve image quality by deep learning. The robustness and 

real-time performance of the system are guaranteed. Deep 

Retinex-Net has been verified on the Waymo, LIME, LOL 

(Low-Light paired) and other data sets. The reconstructed 

images exhibit significant improvements in both brightness 

and detail. It not only retains the inherent characteristics of the 

nighttime driving scenarios, but also enhances the lighting 

conditions of the image. Table I shows the algorithm 

description of Deep Retinex-Net image enhancement 

network. 
 

Table I 

DEEP RETINEX-NET IMAGE ENHANCEMENT NETWORK 

Deep Retinex-Net image enhancement network 

Input: Low light image Slow 

Step 1: Image decomposition 

Rlow, Ilow = Decom_Net (Slow) 

# Decompose low light image into reflection component and 

illumination component 

Step 2: Image adjustment 

lowR  = Denoising_Operation (Rlow) 

# Denoise the reflected component 

lowI  = Enhance-Net (Ilow) 

# Enhanced the illumination component 

Step 3: Image reconstruction 

lowS  = lowR * lowI  

#Multiply the illumination component and reflection 

component at element level 

Output: Enhanced image lowS  
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Fig. 4 Deep Retinex-Net image enhancement network 

 

B. BiFPN Fusion Module 

The neck network of YOLOv8 adopts a PAN-FPN module 

as shown in Fig. 5. However, the PAN-FPN module relies on 

a unidirectional flow of information to transfer features, 

which results in insufficient fusion between local and global 

semantic information. Moreover, the fusion weight cannot be 

dynamically adjusted according to the lighting characteristics 

of the nighttime driving scenarios. It results in inadequate 

reuse and selective attention to small target features. To 

address these limitations, BiFPN fusion module is introduced 

in this study. The bidirectional feature cross scale connection 

structure and adaptive feature fusion module are used to 

improve the feature fusion capability of the model. The 

feature information of small targets is accurately captured and 

expressed. As shown in Fig. 6, the BiFPN fusion module 

facilitates comprehensive fusion of top-down and bottom-up 

feature information. The dynamic weighting mechanism 

enables the model to adapt to the characteristics of small 

targets in nighttime driving scenarios. The detection accuracy 

of the model is improved. 

Compared to the PAN-FPN module, the BiFPN fusion 

module eliminates input nodes that contribute minimally to 

feature fusion. Additionally, an input path is additionally 

added to the same hierarchy of input and output nodes, which 

enhances feature fusion without significantly increasing 

computational cost. At the same time, each bidirectional path 

is regarded as a feature network layer. By stacking these 

layers multiple times, the model achieves deeper and more 

refined feature fusion. The weighting formula for each output 

layer feature is defined as follows: 
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where 
out

iP  denotes the output feature of layer i, Conv 

denotes the convolution operation for feature processing, 
in

iP  

denotes the input feature of layer i, 
ijW  denotes the learnable 

fusion weight, td

iP  denotes the intermediate feature of layer i 

in the top-down path, and Resize denotes the up-sampling or 

down-sampling in the resolution matching process. 

0.0001= . 

 

  
(a)PAN                                         (b)FPN 

Fig. 5  PAN-FPN fusion module 

 

 
Fig. 6  BiFPN fusion module 

 

The BiFPN fusion module preserves the advantages of 

multiscale feature fusion. The computational complexity is 

reduced by the design of bidirectional feature flow and path 

optimization. It maintains a balance between high-level 
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semantic information and low-level detail information. 

Moreover, the fusion weights of different feature layers can 

be dynamically adjusted. It performs better in the task of small 

target detection in the nighttime driving scenarios. Therefore, 

BiFPN fusion module is introduced in this study to further 

improve the feature fusion efficiency and multiscale target 

processing capability. It can also achieve higher target 

detection accuracy. Table II shows the algorithm description 

of BiFPN fusion module. 
 

Table II 

BIFPN FUSION MODULE 

BiFPN fusion module 

Input: Feature map x 

Initialize: Weight parameter W, Splice dimension d, 

0.0001=  

Step 1: Normalize weights 

weight = w / (sum(w)+ ) 

Step 2：Weighted fusion feature map 

x[i] = weight[i] * x[i]  

# Multiply the normalized weights with each input feature 

map one by one. 

Step 3：Splice feature 

# Splice weights along the specified dimension d 

Output = concat (x, d) 

 

C. Multiframe Image Fusion Module 

In nighttime driving scenarios, images captured by the 

camera become blurred due to the target motion, and the 

features of the occluded targets are further weakened. Models 

that rely on single-frame images for target detection are prone 

to false detection and missed detection, leading to reduced 

detection accuracy. To address these problems, a multiframe 

image fusion module is proposed as shown in Fig. 7. The 

multiframe image fusion module consists of an association 

module and a feature propagation module, which work 

together to fuse features from both historical and current 

frames. By incorporating temporal information, the module 

mitigates the motion blur problem and captures the motion 

trajectory of targets. The multiframe image fusion module 

effectively reduces missed detections caused by occlusions, 

thereby improving the overall accuracy of the detection 

model. 

The association module calculates the IoU between the 

detection frames  1 2, , ma a a =  and  1 2, , nb b b =  

of the history frames and the current frames. The history and 

current frames are matched based on the similarity between 

detected targets. The IoU is computed using the following 

formula: 

 
A B

IoU
A B


=


 (6) 

where A denotes the detection region of the history frame 

and B denotes the detection region of the current frame. 

If there is no intersection between A and B, 0A B = , 

0IoU = . It does not account for the distance between A and 

B. At the same time, it is not sensitive enough to positional 

deviation of the history and current frames. It is possible that 

the IOU is equal but the overlap degree is different. The 

condition is shown in Fig. 8. 

 

 
Fig. 8  Equal IoU but different overlap 

 

GIoU is introduced to address the low sensitivity of IoU to 

the offset between the history and current frames. It better 

reflects the overlap degree of history and current frames. The 

GIoU is computed using the following formula: 

 
( )C A B

GIoU IoU
C

− 
= −  (7) 

where C denotes the smallest rectangular region containing 

A and B. 

The GIoU threshold is set to 0.5. According to the 

detection region A and B of the history frame and the current 

frame, the similarity of the target detection frame can be 

calculated. 

 ( ) ( ) , , 0.5M GIoU   =   (8) 

Finally, the nearest matching method is used to traverse and 

compare the similarity between each feature in the history 

frame and the current frame. The most similar feature is 

selected to complete the matching process. 

The feature propagation module is designed to propagate 

features from history frames to the current frame. It calculates 

the motion offsets of the target prediction frames for both the 

history frame and the current frame based on feature matching. 

Weighted propagation is used by combining the similarity M 

calculated in the association module. The feature 

representation of the current frame is enhanced by fusing the 

features. 

 

 
Fig. 7  Multiframe image fusion module 
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 ( )1     =  + −  (9) 

where   denotes the fused target detection frame.   

denotes the weight parameter, which is determined based on 

the similarity between the target detection frames. 

In this study, YOLOv8 object detection algorithm is 

improved in three aspects. First, Deep Retinex-Net is 

employed to enhance low-quality images, thereby the quality 

of the images captured by the camera in the nighttime driving 

scenarios is improved. It meets the quality requirements of the 

model for the input image. Second, BiFPN fusion module is 

introduced into the YOLOv8 object detection algorithm, 

significantly enhancing the detection of small targets. The 

module incorporates bidirectional feature fusion and adaptive 

weighting mechanism, which strengthens the recognition 

accuracy of small targets in complex backgrounds. Finally, a 

multiframe image fusion module is proposed. It is able to fuse 

the features of history frames and current frames to reduce the 

impact of image blurring on the target detection task. As a 

result, the detection accuracy for occluded targets is improved, 

while the occurrences of false and missed detections are 

reduced. 

IV. EXPERIMENTS 

To verify the effectiveness and applicability of the 

improved YOLOv8 object detection algorithm in nighttime 

driving scenarios, both simulation experiments and real 

vehicle experiments were conducted. The simulation 

experiments include comparative experiments and ablation 

experiments, which are used to evaluate the object detection 

performance of the algorithm. The real vehicle experiments 

assess the practical applicability and robustness of the 

proposed algorithm in an actual driving environment. By 

combining both types of experiments, the overall 

performance of the improved YOLOv8 object detection 

algorithm is thoroughly validated. 

A. Simulation Experiments 

Selection and Use of Datasets 

Conventional datasets are limited in terms of scale and 

diversity for nighttime driving scenarios. In this study, the 

Waymo dataset proposed by Sun et al. [24] is utilized for both 

training and inference. The dataset contains a large number of 

nighttime driving scenarios, which can meet the experimental 

requirements. Meanwhile, the duration of each scene is 20 

seconds, providing continuous image sequences of historical 

and current frames for the multiframe image fusion module. It 

ensures the feasibility of optimized operation. The camera 

specifications of Waymo dataset are shown in Table III. 
 

Table III 

WAYMO CAMERA SPECIFICATIONS 

 F FL, FR SL, SR 

Size 1920×1280 1920×1280 1920×1040 

HFOV 25.2  25.2  25.2  

 

During the training process, vehicle is labelled as ‘V’, 

pedestrian as ‘P’ and cyclist as ‘C’. A total of 10116 images 

are selected from the dataset for model training. There are 

8133 images in the training set, 991 images in the validation 

set and 992 images in the test set.  

Experimental Environment 

The simulation experiments are conducted on the Ubuntu 

20.04 operating system using the PyTorch deep learning 

framework. The specific configuration is shown in Table IV. 

In the training process, YOLOv8n is adopted as the base 

model for training. The input image resolution is set to 

640×640, and the SGD optimiser is used. The initial learning 

rate is 0.01, the weight attenuation coefficient is 0.005, the 

momentum size is 0.9, and the batchsize is 16. A total of 300 

epochs are iterated. 
 

Table IV 

EXPERIMENTAL ENVIRONMENT 

Category Version 

CPU Intel® Core™ i7-14700KF CPU @ 5.6 GHz × 28 

RAM 32G 

GPU NVIDIA GeForce RTX 4070 Ti Super 

VRAM 16GB 

Python Python 3.8.20 

Pytorch Pytorch 1.11.0 

CUDA CUDA 11.3 

cuDNN cuDNN 8.9.5 

 

Evaluation Indicators 

In this study, mAP (mean Average Precision) and FPS are 

adopted to validate the model performance. Where mAP is 

used to evaluate the model detection accuracy, and FPS is 

used to evaluate the model detection speed. The calculation 

formulas for the evaluation metrics are as follows: 

 
TP

P
TP FP

=
+

 (10) 

 
TP

R
TP FN

=
+

 (11) 

where TP denotes the number of positive samples that were 

correctly identified, FP denotes the number of negative 

samples that were incorrectly identified as positive samples, 

FN denotes the number of positive samples that were 

incorrectly identified as negative samples, P denotes the 

precision rate, and R denotes the recall rate. 

 ( )
1

0

AP Pd R=   (12) 

 
3

1

1

3
i

i

mAP AP
=

=   (13) 

where ( )1,2,3iAP i =  represents the accuracy rate of single 

category prediction for vehicle, pedestrian and cyclist 

respectively. mAP represents the average of the three 

categories of AP for vehicle, pedestrian and cyclist. It can 

reflect the detection accuracy of the model. 

Deep Retinex-Net Comparison Experiments 

In this study, Deep Retinex-Net is applied to process the 

images captured by the camera in nighttime driving scenarios. 

The image quality is improved, and feature information is 

enriched, resulting in an enhanced image that meets the input 

requirements of the YOLOv8 algorithm. 
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Fig. 9  Comparison of model detection before and after Deep Retinex-Net improvement 

 

In the experiment, the improved YOLOv8 object detection 

algorithm is applied to both the original and enhanced images. 

The detection results, shown in Fig. 9, are categorized into 

two groups: (a) original images on the left and (b) enhanced 

images on the right. The enhanced images avoid 

overexposure and exhibit significantly improved illumination. 

Detail loss in highlighted areas is mitigated, and target edges 

in dark, reflective regions appear sharper. Deep Retinex-Net 

effectively separates the reflective component of the image, 

resulting in a more balanced color representation. Meanwhile, 

noise suppression makes the enhanced image clean, and the 

contrast in the target area is significantly improved. 

In group (a), the original image suffers from poor lighting 

conditions, resulting in a missed detection of the farthest 

vehicle in the left lane. After enhancement with Deep 

Retinex-Net, the improved YOLOv8 object detection 

algorithm successfully detects the farthest vehicle in the left 

lane. In group (b), a false detection occurs in the original 

image, where the improved YOLOv8 object detection 

algorithm erroneously identifies a single vehicle in the 

distance as two separate vehicles. After the original image is 

enhanced by Deep Retinex-Net, the improved YOLOv8 

object detection algorithm eliminates the false detection. 

These results demonstrate that Deep Retinex-Net 

significantly improves image quality in challenging nighttime 

driving scenarios. By enhancing visual clarity and dynamic 

range, it helps reduce both missed and false detections that are 

commonly caused by insufficient illumination and poor image 

fidelity. Consequently, the integration of Deep Retinex-Net 

with the object detection algorithm enhances the reliability 

and accuracy of object detection in low-light environments. 

Comparative Experiments of Different Object Detection 

Models 

In this study, the proposed algorithmic model is evaluated 

alongside other object detection models in the nighttime 

driving scenario to better assess the performance of the 

improved YOLOv8 object detection algorithm. The results of 

the tests are presented in Table V. 
 

Table V 

COMPARATIVE EXPERIMENTS OF DIFFERENT OBJECT DETECTION MODELS 

Model Parameter/M mAP0.5/% FPS 

YOLOv5s 7.0 67.1 91 

YOLOv8-DEL 2.8 68.0 112 

YOLOv8s      11.1 75.0 84 

FE-YOLOv8      11.8 75.6 82 

ours 5.2 77.3 98 

 

First, the proposed model in this study has 5.2 million 

parameters, which is higher than the YOLOv8-DEL model. It 

indicates that the improved model has stronger learning and 

feature expression capabilities. The number of parameters in 

the proposed model is smaller than that of the YOLOv5s, 

YOLOv8s and FE-YOLOv8 models, indicating that the 

improved model is less likely to overfit during training. As a 

result, its generalization ability is enhanced. Second, the mAP 

of the proposed model is 77.3%, which is higher than that of 

the YOLOv5s, YOLOv8-DEL, YOLOv8s, and FE-YOLOv8 

models. It demonstrates that the detection accuracy of the 

improved model is improved. The algorithm performs 

particularly well in nighttime driving scenarios, effectively 

reducing false and missed detections. Finally, the FPS of the 

proposed model is 98. Although it is lower than 

YOLOv8-DEL model, it still meets the practical requirements 

for real-time detection. The improved YOLOv8 object 

detection algorithm strikes a usable balance between accuracy 

and real-time performance. Therefore, the improved model 

demonstrates superior detection performance compared to 

other models. The effectiveness of the proposed algorithm is 

validated. 

Ablation Experiments 

In this study, ablation experiments are conducted to further 

validate the effectiveness of the BiFPN fusion module and the 

multiframe image fusion module. The experimental results 

are presented in Table VI, where √ indicates the inclusion of 

a module. 
 

Table VI 

ABLATION EXPERIMENT 

Base 

model 

BiFPN 

fusion 

module 

Multiframe 

image 

fusion 

module 

Parameter 

/M 

mAP0.5 

/% 
FPS 

YOLOv8n 

  3.2 74.5 103 

√  4.2 76.4 108 

 √ 4.0 76.8 97 

√ √ 5.2 77.3 98 

 

Table VI demonstrates that both improved modules can 

enhance the performance of the object detection algorithm. In 

the YOLOv8n base model, the PAN-FPN module in the neck 

network is replaced with a BiFPN fusion module. The loss of 

feature information in the middle layer is reduced. The mAP 

of the model is increased by 1.9%. When a multiframe image 

fusion module is added to the YOLOv8n base model, it fuses 

current and historical frames to address the problem of feature 

information loss. The mAP of the model is increased by 2.3%. 

Adding both the BiFPN fusion module and the multiframe 

image fusion module simultaneously increases the mAP by 

2.8%, while also reducing the occurrence of false and missed 

detections. Although the FPS of the improved model 

decreases, it still meets the real-time object detection 

requirements. 
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Fig. 10  Comparison of detection results before and after model improvement 

 

Visualization Analysis 

The improved YOLOv8 object detection model and the 

base model were used to perform visual detection analysis in 

the nighttime driving scenarios of Waymo dataset. The 

detection results are shown in Fig. 10. In the group (a), (b), (c), 

and (d), the detection results of the base model are shown on 

the left, while the detection results of the improved model are 

shown on the right. The lighting conditions of the nighttime 

driving scenarios are poor, resulting in low-quality images 

captured by the camera. The base model is highly susceptible 

to miss detection. However, the improved YOLOv8 object 

detection model utilizes Deep Retinex-Net to enhance the 

images. These high-quality images provide richer feature 

information for the detection model, significantly reducing 

the occurrence of missed detections. Meanwhile, the 

improved YOLOv8 object detection model shows greater 

improvement in detecting small and occluded targets 

compared to the base model. The object detection 

performance in the nighttime driving scenarios is effectively 

improved. 

B. Real Vehicle Experiments 

Real vehicle experiments are performed to evaluate the 

performance of the improved YOLOv8 object detection 

algorithm in a nighttime driving scenario in Zhangdian 

District, Zibo City. The Haval H7 autonomous vehicle serves 

as the test platform, which is equipped with a RERVISION 

camera (with a resolution of 1920×1080), a Velodyne 32-line 

LiDAR, a combined GPS-IMU navigation system, and an 

industrial-grade control computer. The corresponding Ubuntu 

operating system is equipped. These components are capable 

of meeting the requirements for autonomous driving 

algorithm validation. The RERVISION camera is calibrated 

to ensure the geometric accuracy of the images. An 8×10 

checkerboard calibration board is used with a single grid 

length of 66 mm. A total of 20 checkerboard images are 

selected. The real vehicle experiment is shown in Fig. 11. 

 

 
Fig. 11  Real vehicle experiment 
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Fig. 13  Comparison diagram of object detection results in real vehicle experiments 

 

As illustrated in Fig. 12, the overall mean reprojection error 

of the camera calibration is 0.15, with the maximum mean 

reprojection error not exceeding 0.21. These results indicate 

that the calibration is reliable and meets the accuracy 

requirements for subsequent visual processing tasks. 

 
Fig. 12  Mean error diagram 

 

The internal matrix of the camera is: 

 

961.94 0.50 326.79

0 959.26 189.16

0 0 1

K

 
 

=
 
  

 (14) 

The radial distortion factor of the camera is: 

    1 2 3 0.4171 0.1231 4.4841k k k = − −  (15) 

The tangential distortion factor of the camera is: 

    1 2 0.0044 0.0026p p =  (16) 

The video data of the nighttime driving scenarios in 

Zhangdian District is recorded by the industrial-grade control 

computer onboard the test platform. Using previously 

obtained calibration parameters, distortion correction is 

applied to the original images to ensure geometric accuracy. 

The final detection results are presented in Fig. 13. Compared 

with the base model, the improved model leverages Deep 

Retinex-Net to extract richer image information and employs 

the BiFPN and multiframe fusion modules to enhance the 

feature representation of small and occluded targets. In the 

nighttime driving scenario, the improved model demonstrates 

significantly enhanced performance compared to the base 

model, particularly in detecting occluded and small targets. 

The base model achieves a target detection accuracy of 

85.71%, while the improved model attains an accuracy of 

91.49%, representing a 5.78% improvement. The 

enhancement demonstrates the improved model’s superior 

reliability and robustness in nighttime driving scenarios. 

V. CONCLUSION 

In this study, an improved YOLOv8 object detection 

algorithm is proposed to address the challenges of low 

detection accuracy for small and occluded targets in nighttime 

driving scenarios, caused by the poor image quality of 

cameras. First, low-quality images are enhanced using Deep 

Retinex-Net, which meets the algorithm's image quality 

requirements. Second, the PAN-FPN module in YOLOv8 

neck network is replaced with a BiFPN fusion module, which 

reduces the loss of target detail information and improves the 

detection performance for small targets. Finally, a multiframe 

image fusion module is designed to perform feature fusion 

between historical and current frames, enhancing the feature 

representation of occluded targets and reducing false and 

missed detections. Experimental results demonstrate that the 

improved YOLOv8 object detection model achieves a 2.8% 

increase in mAP compared to the baseline model in the 

nighttime driving scenario of the Waymo dataset. 
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Furthermore, the mAP of the proposed model outperforms 

other state-of-the-art models. Simulation experiments 

validate the accuracy and generalizability of the improved 

YOLOv8 object detection algorithm. In real vehicle 

experiments, the detection accuracy of the improved model is 

enhanced by 5.78% compared to the baseline model. The 

results confirm that the improved algorithm not only performs 

well in the simulation environment but also exhibits strong 

adaptability and robustness in real-world applications. While 

the proposed algorithm improves detection accuracy, it 

increases the number of model parameters and the demand for 

training resources, which can slow down detection 

performance. In static scenes or scenes with minimal frame 

differences, the multiframe image fusion module provides 

limited enhancement the multiframe image fusion module 

provides limited enhancement and may introduce redundant 

computations. In future work, the algorithm's lightweight 

operation will be explored to enhance efficiency. Additionally, 

the fusion strategy will be dynamically adjusted based on 

scene characteristics to prevent unnecessary complexity. The 

improved YOLOv8 object detection algorithm will further 

improve the environmental perception ability of intelligent 

connected vehicles in nighttime driving scenarios. 
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