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Disease and Pest Detection for the Growing
Stages of Eagle-billed Peach Using FSL Based
on Transfer Learning
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Abstract— Pest detection and prevention remain significant
real-world challenges because of the diversity of pests that
affect plants at different stages of growth, and the eagle-billed
peach is no exception. Despite advancements in Internet of
Things and deep learning technologies, traditional manual
identification methods still rely on a substantial amount of
labeled data in building robust models. This reliance leads to a
time-consuming data acquisition process and raises issues
related to low work efficiency and high costs. Therefore, this
study proposes a few-shot learning approach for identifying
diseases and pests during the growing stages of the eagle-billed
peach. Our method utilizes deep residual networks to extract
discriminative image features, effectively avoiding the gradient
vanishing problem that can occur with increased network depth.
This method achieves more precise and rapid monitoring and
prevention of diseases and pests. The algorithm classified and
labeled 14 categories of disease and pest characteristics during
the growing stages of the eagle-billed peach. Subsequently, it
employed a transfer learning method to extract features from
newly added category samples. The parameters of the
small-sample deep learning network were adjusted to enhance
classification accuracy and provide real-time alerts.
Furthermore, a graphical interface was constructed to enable
image uploads and model inference. This interface provides
rational suggestions for pest control. In experiments identifying
and classifying several datasets, accuracy improved by 12.4%.
This indicates that the proposed transfer learning-based
small-sample deep learning network exhibits high image
classification precision and strong generalization capabilities.

Index Terms—Few-shot learning, eagle-hilled peach, pest and
disease detection, transfer learning

. INTRODUCTION

DURING the plant growth period, individuals typically
use visual observations to monitor the status of trees and
assess irregularities. Characteristics of pests and diseases,
such as yellowing, curling, and leaf spotting, may indicate the
presence of disease or pest issues. Apart {rom growth
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conditions, monitoring the sprouting status and mortality rate
of plants is also crucial for acquiring a more comprehensive
understanding of tree health. Traditional methods for
diagnosing plant leaf diseases depend primarily on
experience and manual observation, which are
insufficient for meeting the demands of speed and efficiency.
First, horticulturists have an enormous workload, making it
impractical to examine each leal individually. Furthermore,
even seasoned professionals encounter problems with
diagnostic accuracy including missed or incorrect diagnoses.
Consequently, the use of artificial intelligence for plant leaf
disease recognition has become a prominent research area.
Advancements in planting techniques and pest
management remain significant challenges in enhancing the
yield and quality of eagle-billed peaches. Traditional
supervised learning methods for disease and pest detection
require numerous labeled samples to build a model, resulting
in a time-consuming and labor-intensive image acqusition
process [1]. Furthermore, collecting adequate defect data
from wvarious damage scenarios is unrealistic. Although
artificial intelligence (AI) has been widely applied in
agriculture with notable results, supervised models can only
recognize specific diseases and pest defects, necessitating
further training using new examples of novel classes. Gidars
et al. proposed the use of transfer learming to achieve
convergence using only a few labeled samples [2]. In contrast
to supervised approaches, few-shot learning (FS1.) uses only
one or a few labeled samples to recognize new classes and
applies the generated knowledge to new images. Significant
efforts have been made in this regard. A typical FSL problem
aims to identify objects with mimimal samples [3], thereby
compensating for the limitations of supervised learming in
various domains. This makes it imperative to develop an FSL
approach for vision-based monitoring of existing and new
diseases and pests, using weakly supervised nformation.
This paper proposes an FSL model based on an improved
prototypical network (ProtoNet) [4] for disease and pest
detection, specifically targeting eagle-billed peaches.
Initially, inspection images were categorized into several
classes. Feature embedding was achieved through
cross-domain transfer learning using ImageNet [5]. A linear

classifier, 'x + b, was added to the end of ProtoNet for
classification and fine-tuned based on the support set.
Subsequently, the resulting prototype and fine-tuned
classifier were applied to the new inspection images.
Although the proposed method offers several advantages,
it has certain limitations, including reliance on a small
number of samples and the presence of similar features across
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different classes. In addition, varying the support sets can

alter the performance in few-shot disease and pest detection.

Therefore, further research is required to enhance feature

learming of the samples.

In summary, the complexity and variability of the
environment present challenges to the practical application of
pest and disease management, with recognition rates in
intricate backgrounds remaining a significant hurdle. This
makes it essential to optimize and enhance approaches that
focus on specific leaf characteristics and fruit growth cycles.
By introducing few-shot deep learning algorithms for image
processing and adapting them to increasingly complex and
diverse applications, the rate and accuracy of pest and disease
identification can be improved. The contributions of this
study are as follows:

1) An FSL approach based on an enhanced ProtoNet is
proposed for monitoring diseases and pests in
eagle-billed peaches. In this approach, feature
embedding is achieved through cross-domain transfer
learning from ImageNet instead of episodic training.

2) A feature extraction algorithm based on the deep residual
network ResNet50 1s proposed for practical applications.

3) The proposed approach was validated on actual
inspection applications, demonstrating its potential for
near real-time inspection of disease and pest detection as
it can be implemented rapidly with few labeled samples.

The remainder of this paper is organized as follows:
Section 2 reviews related work on disease and pest detection
as well as few-shot learning for images; Section 3 presents
the proposed approach and its architecture, along with a
theoretical foundation; Section 4 covers the experiments
conducted to validate the approach; and Section 5 concludes
the paper.

II. RELATED WORKS

A. Disease and pest classification and detection

The fundamental task is to determine the class to which a
disease or pest belongs. Our objective was to achieve either a
binary classification for each defect or a multi-defect
classification. Damage detection aims to provide additional
information about a disease or pest, including its location,
shape, and direction. This 1s important because classification
merely indicates the presence of defects in an image, leaving
the task of locating the actual defect to inspectors [6]. A
typical approach to disease and pest detection involves
shding a window over an image or splitting the image into
patches, followed by classification of each window or patch.
Another method utilizes bounding boxes to indicate defects,
similar to object detection tasks in public datasets such as
common objects in context (COCO [7] and Pascal visual
object classes (VOC)) [8]. However, this approach may not
always locate damage effectively because defects can exhibit
varying appearances. For instance, a large bounding box may
contain numerous non-defective subregions, such as an
oblique crack marked by a sizeable bounding box determined
by its diagonal points. Image processing methods for damage
detection frequently underperform in real-world inspection
images because of interference from surface textures,
changing light conditions, stains, and other factors [9].
Several data-driven approaches based on Al have been

developed to assist in the classification and detection of
diseases and pests during visual inspections.

In traditional machine learning (ML.)-based approaches,
image processing is required to extract predefined features. A
major issue with traditional ML methods is their dependence
on handcrafted features, which often result in shallow learned
representations [10]. In contrast, deep learming (DL.) can
automatically extract features using a multilayer neural
network. Both ML and DL approaches are based on inductive
supervised learning, with the performance depending on the
pre-collected annotated samples available before inspection.
These methods require pre-trained models to detect specific
types of defects and struggle to adapt quickly to novel defects.
However, data annotation is often time consuming and
tedious. In addition, collecting sufficient defect images from
damage scenarios 1s not always feasible. Traditional
supervised transfer learning is expected to address this issue;
however, it tends to struggle with overfitting and cannot
converge with only a limited number of labeled examples.

Deep learning has emerged as a relatively new field of
research, both nationally and internationally, displaying
significant advancements. Liang et al. enhanced their dataset
emploving techniques such as flipping images and adjusting
image contrast [11]. They captured images of rice pests using
triangular traps and monitoring equipment, achieving a
precision rate of 91.67% and recall rate of 98.30% for
recognizing the rice leaf roller during testing. Wang et al.
gathered 2,566 original images of grape diseases from the
National Key Laboratory of Biology for Plant Diseases and
Insect Pests [12]. They augmented and expanded this dataset,
obtaining a comprehensive collection of up to 32,871 images.
Testing this dataset achieved a precision rate of 98.60%.

Therefore, we used a high-definition camera to capture the
growth conditions of the roots, leaves, and stems of plants
from various angles. The growth stages of the plants were
compared with those in annotated images of healthy
specimens. Upon recognizing any diseased or pest-affected
areas in the plant growth images, we assessed the type of
growth anomaly by analyzing the detected regions. This
process enabled us to identify variations in plant growth and
the presence of pests and diseases. The control program
subsequently directed the target light-emitting diode (LED)
source to address the growth anomalies observed during plant
growth. An intelligent early warning system oversaw the
entire lifecycle of plant cultivation, gathered information to
establish pest-monitoring models, and transformed the
accumulated experience into regional planning and system
management based on the specific plants being cultivated.

B. Few-shot learning for images

The labor-intensive and time-consuming data acquisition
process poses a bottleneck in applying supervised machine
learning (ML) in many fields. However, FS1., encompassing
few-shot classification and segmentation, can address this
issue by learning from a limited number of annotated images,
thereby enhancing data efficiency. This study focused on
few-shot classification, which is often regarded as a type of
meta learning. A meta-learner is trained through a series of
related tasks (episodic training) to perform well on unseen
but related tasks with only a few examples. Transduction has

Volume 52, Issue 8, August 2025, Pages 2665-2674



TAENG International Journal of Computer Science

been widely adopted for FSL tasks in both training and
inference because it is more effective at utilizing only a
limited number of labeled samples than induction using
supervised models [13].

Significant efforts have been made in FSL, including the
development of specific image datasets [14, 15] such as
Ommniglot, CIFAR-FS, and mini-ImageNet, along with
various approaches. Some studies use different data
augmentation methods, such as self-augmentation [16],
deformation [17], and deep convolutional generative
adversarial network (DCGAN) [18], to address the problem
of few-shot classification with limited traning samples.
Others focus on learming effective model mitializations [19]
or optimizers [20], to achieve rapid adaptation using a limited
number of training examples for new classes, yet others
prefer to use the HEuclidean distance or cosine similarity [21].

Deep learning has been widely applied to monitor
agricultural pests and diseases, achieving significant results.
Ye etal [22] utilized MobileNetV?2 to identify three types of
corn diseases and achieved high accuracy with low
computational load. Lin et al. [23] added a dropout layer to
MobileNetV2 to prevent overfitting when identifying tomato
disease images. Zhang et al. [24] successfully identified four
types of apple leaf diseases using the VGG 16 network model
and diagnosed the severity of bactenial infections in apple
leaves with an accuracy of 90.4%. Bah et al. [25] proposed an
unsupervised training method for convolutional neural
networks to monitor plants from remote sensing images,
which can potentially be extended to the agricultural sector.

For small-sample datasets, Wang et al. [26] explored the
classification of plant pests and diseases using a Siamese
network framework. Hu et al. [27] studied the classification
and monitoring of tea disease samples using a conditional
(C)-DCGAN. Melike et al. [28] applied a convolutional
neural network (CNN) and learming vector quantization
(LVQ) algorithm to detect the areas of tomato leaf pests and
diseases, achieving an average recognition rate of 86%.
Zhang et al. [29] introduced an online hard-sample mining
method for pest classification and recognition that was
particularly effective for small targets, resulting in noticeable
improvements.

Researchers have investigated the integration of object
detection networks to recognize pests and diseases. Jing et al.
[30] combined a YOLO network with an attention
mechanism to detect diseases and control pests onrice leaves.
Zhang etal. [31] proposed a multiscale unsupervised network
(MU-Net) structure for segmenting images of crop disease
and pest areas, thereby enhancing feature representation and
achieving an accuracy of 95.13%. Kerkech et al. [32] used
SegNet to fuse multispectral image information and achieved
a detection accuracy of 87% for grape leaves. Afzaal etal [33]
employed a Mask R-CNN network to recognize seven types
of strawberry diseases under varying background conditions,
achieving an average precision of 82.43%. Gao et al. [34]
proposed a segmentation method based on a Swin
Transformer, effectively resolving the issue of obscured pests
with a recognition accuracy of 88 %.

In summary, traditional image recognition methods have
been gradually replaced by deep learning algorithms. In
practical applications, the complexity and varability of
scenes pose challenges for detection tasks, and the

recognition of complex backgrounds remains a significant
hurdle. However, existing methods still have some
limitations in terms of accuracy, feature extraction, and
real-time performance, making it essential to optimize and
improve these techniques according to the specific
characteristics of the leaves and growth stages of the fruits.
Introducing deep learning-based FSL algorithms for image
processing can assist in adapting to increasingly complex and
diverse application scenarios, thereby improving the
identification rate and accuracy of pest and disease detection.

III. DEEP TRANSFER LEARNING-BASED MODEL FOR
IDENTIFYING DISEASES AND PESTS

This study focused on 14 major categories of pests and
diseases affecting eagle-billed peaches i Heyuan-Lianping,
China. Images of leaves and fruits were collected using
various devices including drones, fixed-position cameras,
and smartphones to construct a comprehensive dataset. After
preprocessing to exclude collected images with poor focus or
unclear pest and disease characteristics, data augmentation
was performed. The dataset was then randomly divided mnto
training, validation, and testing sets in a ratio of 8:1:1, to
obtain 690 images for training, 86 images for validation, and
87 images for testing. Labeling software was used to annotate
the converted dataset by manually setting the categories of
diseases and pests. Table I lists the 14 categories.

TABLEI
14 CATEGORIES OF DISEASE AND PEST CLASSES
CLASS NAME No. of CLASS

Physiological fruit drop 0
Calcium deficiency 1
Mealybug infestations 2
Potassium deficiency 3
Boron and zinc deficiencies 4
Citrus fly infestations 5
Brown rot of peach (sclerotinia) 6
Peach anthracnose disease 7
Bacterial spot of peach 8
Branch canker symptoms 9
Red-brown spot disease 10
Bark beetle infestations 11
Cankers 12
Nut webworm infestations 13

Finally, a recognition model was established for pest and
disease identification. The proposed detection approach was
derived from ProtoNet [4], which employs episodic training
across a series of related tasks and prototypical transduction
with the Euclidean distance for few-shot classification. This
model introduces the following three key improvements:

1) Previous episodic training is replaced with cross-domain
transfer learning from ImageNet for “training-free”
feature embedding.

2) Embedding normalization is integrated to reduce domain
variation and enhance the original ProtoNet performance
based on the Euclidean distance.

3) Fine-tuning methods based on a fully connected network
(FCN) and the Hadamard product can achieve better
performance in fewer epochs than previous transductive
fine-tuning methods [25]. The architecture of the
approach 1s shown in Fig. 1, presenting an example of
2-way 3-shot crack detection, with detailed steps.
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IV . FEATUREEXTRACTION ALGORITHM BASED ON DEEP
RESIDUAL HETWIRES

The residual network proposed by Mictosoft Researchis a
type of comvolutional newal network [35]. The primary
characteristics of residual networks mclude ease of
optitnization  and  erhanced accuracy achieved through
increased  depth. Internal residual blocks utilize skip
cottnections, which help mitigste the vamishing gradient
problem often associated with deepening newral netw orks.

The resicual units within the struchires are a key aspect of
residual netwotls Asillustrated in Fig 2, the residual Wlock
features cross-layer connections that allow the imput to pass
directly acrozs layer s with equivalent mapping.

Assuming that the iyt image iz denoted by x, and the
output 15 Hix), after convolution, the o can he
represented by the nonlinear function Fx). Thus, the final
output can be expressed as Hix) = Fix) + x. This outpat can
still undergo nonlinear transformations, where the residual
referstothe " difference" specifically Fix) . Consequently, the
network iz transformed and tasked with estimating the
residual functionFrx) = Hix) - x, which is generally easier to
optitmize than Frz) = Hx).
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The Restet-30 network consists of 49 cormrolutional
layrers and one fuly connected layer. As shown in Fig, 3, the
Reatlet-50 architectire can be divided into seven parts. The
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petforms convolution, regilatization, actiwation, and max
pooling on the ingut. The second, third, fourth, and fifth parts
containn the residual blocks The green components in the
diagram do not alter the sizes of the residual blocks; they are
used only to change the dimensions of these blocks. In the
Festlet-30 structre, each residual block contains three
cofrvolitional  layers. Therefore the total mamber of
cotrvolutional layersis calowatedas 1 +3 # (3 +4+6+3) =
49 With the additi on of a final folly cormected lasyer, the total
tounber of layers reaches 50; hence, the name Resdet-50 is
used. The imgat to the network undergoes cotvolutional
computations in the first five parts, and the poding layer
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V. TRANSFER LEARNING-B ASED MODEL TRAINING
STRATEGIES

In deep leaming networks, one- and few-shot learning are
critical theoretical foundations for visual detection. One-shot
learning falls within the broader category of transfer learning
[36]. Transfer learning, which is a widely used approach in
the field of computer science, mvolves applying a pretrained
model to a specific task. This generally entails traiming the
model on certain datasets such as ImageNet, followed by
fine-tuning and transferring the learned information to
another dataset. The rationale for knowledge transfer
originates from the fact that machine learning, particularly
supervised learming, usually requires extensive labeled data,
which can be massive and complex. Transfer learning
enables the already acquired powerful knowledge to be
adapted to a new context, thereby helping the network
acquire relevant features more effectively and quickly.

However, small sample sizes can lead to CNNs learning
features that are overly coarse and lack fine granularity,
making it difficult to articulate the essential characteristics
for pest and disease management. The learning process of the
model 1s typically lengthy. Therefore, transfer learning can
significantly reduce the time required for model training,
making it suitable for the training and testing of complex
CNNs. Given sufficient diversity and quantity of sample data,
the network model can leam discnminative feature
representations.

Transfer learning allows the knowledge acquired in the
source domain to be conveyed to the target domain through
feature-mapping methods, thereby enhancing the feature
expression capabilities in the target domain. In general, the
source domain consists of datasets with numerous
high-quality labeled samples, with complex CINNs designed
to learn distinguishing feature representations. The target
domain corresponds to practical application scenarios where
the number of training samples is limited, making it
challenging to construct a large-scale labeled dataset within a
short timeframe. Moreover, real-time applications may
require lightweight CNN models for deployment. A
fundamental requirement is that these models possess the
capability to represent the knowledge learned from complex
models of the source domain.

If only one image is used as the input to a CNN and a
softmax unit outputs multiple labels corresponding to
different targets, the actual performance is often
unsatisfactory. This is because a small training dataset is
insufficient to train a robust neural network. Adding new
sample sets inevitably requires retraining the neural network.
Therefore, for one-shot learming, the neural network must
learn a similarity function that calculates the difference
values, as shown in (1).

dlimgl, img2) = deg ree of diff. between Images. (1)

During the recognition process, a threshold is set as the
hyperparameter. If distance d exceeds this threshold, the
objects are considered to be the same target. The system can
continue to function normally regardless of whether new
samples are added to the dataset. However, this type of
learning does not achieve high accuracy, necessitating a
transition to FSL to recognize new targets.

In practical applications, collecting and labeling a large
number of samples in a short period is infeasible. Although
increasing the complexity of the network model can enhance
recognition accuracy, deploying such models 1in
resource-constrained environments poses a challenge. The
key issue is to transfer the knowledge learned from complex
models to simpler ones, thereby enabling the latter to possess
the feature-representation capabilities of the former.

To address these challenges, we developed a deep residual
network algorithm based on transfer learning to identify pests

and diseases in peach trees (Fig. 4).
Original domain Target domain

Original data Target data

Model Transfer
earning ’

Tasks New tasks

New model

Fig. 4. Process of cross-domain transfer leaming

VI TESTING AND EXPERIMENTS

A. Dataset Preprocessing

Considering the major pests and diseases affecting
eagle-billed peaches in the Heyuan-Lianping area, a dataset
comprising 14 images of these pests and diseases was created
(Fig. 5). The CINN design, training, and optimization were
closely integrated with the tasks of identifying pests and
diseases, to assess their severity. The identification results
were sent to an early warning platform for real-time
monitoring,

The purpose of data preprocessing 1s to enhance the
diversity of the dataset samples enabling the deep CNN to
learn  discriminative semantic  information,  thereby
improving its generalization capability and adaptability to
various scenarios. Common data preprocessing techniques
include cropping, horizontal flipping, grayscale conversion,
Gaussian  smoothing, contrast equalization, contrast
enhancement or reduction, random noise addition, random
background blending, and sample fusion.

Fig. 5. Sample of 14-categories of pest and disease datasets for eagle-billed
peach
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B. Testing Environment

The experimental environment was built on a personal
computer, and the hardware configuration details are listed in
Table II. The software environment was configured using the
Windows 10 operating system, PyCharm platform,
CUDAI11.6, cuDNNRB.9.7, and PyTorch 2.1.0, deep leamning
framework using Python 3.8.8 as the programming language.

TABLEII
HARDWARE CONFIGURATION FOR TESTING
DEVICE NAME of MODEL
Processor Intel Core i9-10900 CPU
Display adapter NVIDIA GEFORCE RTX4070Ti
Memory Kingston 2666MHz 64 GB
Hardware Disk WD Blue SN570 1'TB SSD

The training parameters were set to 300 epochs, a batch
size of 4, and a learning rate of 0.003, using adaptive moment
estimation {Adam) as the optimizer and a rectified linear unit
(ReLU) activation function. Imtially, the model was
pre-trained on a large ImageNet-1k dataset. The classifier
obtained after training, which recognized 1,000 categories,
was modified to correspond to the 14 categories relevant to
mango pest and disease 1dentification. The dataset consisted
of 6,769 1mages and was divided into traiming, validation, and
testing sets in a 7:2:1 ratio. The images were then fed into the
ResNet-50 model. The experiment employed a transfer
learming technique commonly used in contemporary deep
learming, to enhance the generalizability of the model and
mitigate the overfitting resulting from the relatively small
dataset.

C. Evaluation Metrics

Various quantitative metrics were used to evaluate the
performances of the model.

1) Loss function

The loss function reflects the error rate between the
predicted and ground truth values. This is helpful for iterative
optimization during model training and effectiveness
evaluation of the model for detection. The model loss in the
object detector comprises a combination of disease and pest
classification losses, as well as a positive sample prediction
bounding box bias loss.

L - ‘[’cis + /"l‘[’reg‘ (2)

detec

where

N L
Ly, => wi x1In(s®) —w2 < In(l - s*) + 3 FL(s"0)

n=1 m=1

N
L., = > w.. x GIloli(Zoc, Ioc)

=1
FL —ax1—s")Y xlogs" s° =1 (3)
—a - all -0 - 5] xlog — s") others

=1 - Gloliec, Ioc)
Bbox,, — Uion(loc, Ioc‘)] (4)
Bbox,,, '

GloU

loss

=1-[hl -

In (2), the object detector loss I, comprises [, and

L. where [, _denotes the predicted category loss; L.,

ks

represents the predicted regression loss;, and £ is a

modulation factor. N and M represent the number of detected
frames in the candidate set and number of detected boxes
outside the candidate set, respectively. FL stands for focal
loss, whereas generalized intersection over union (GIoU) is
an important computational metric used to measure the
degree of difference between the predicted and target boxes
and 1s a key factor for improving model performance. foc and
loc' refer to the positions of the predicted and actual boxes. In
(3), a is responsible for balancing the importance between
positive and negative samples, and # regulates the rate of
weight reduction for simple samples. In (4), Bboxmin is the
smallest enclosing convex object of foc and loc”.

2) Average precision (AP)

Relying solely on either accuracy or recall for model
assessment 1s inadequate; therefore, a composite metric, AP,
was introduced to gauge model performance. In this study,
we specifically focused on detection precision for various
pests and diseases. AP is calculated as follows:

AP = j:P(}?)dr. 5

Here, /7 measures the precision of the model. Accuracy
refers to the ratio of correctly predicted instances to the total
number of predictions, which in this study pertains to the
proportion of correctly identified pest and disease counts
relative to the total number predicted by the model. g
denotes the ratio of correctly predicted samples to the total
sample size; in this context, it indicates the proportion of
correctly identified pest and disease counts to the overall
number of pests and diseases.

3) Mean average precision {mAP)

As a comprehensive metric that assesses the overall
performance of an algorithm, mAP refers to the average
detection accuracy across all categories of pests and diseases
in this study and is calculated as follows:

1 ¥ 6
mAP = — 37 AP ©)

The larger the mAP value, the better is the performance of
the algorithm. In addition, under different conditions, mAP
can take various forms, with mAP@50 and mAPS50-95
commonly used in object detection. mAP@50 refers to the
average precision across all classes when ToU reaches 0.5 in
an object detection task. In contrast, mAP@50-95 refers to
the average precision across all classes as IoU varies from 0.5
to 0.95. In this study, mAP(@50 was used as the standard.

D. Tesiing

The ProtoNet dataset, created using annotation software,
typically consists of the following elements: [class id x y *
h]. Here, class_id refers to the ID number of the category; x is
the x coordinate (horizontal) of the target center point relative
to the total width of the image; y is the y coordinate (vertical)
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of the target center point relative to the total width of the
image, w is the width of the bounding box relative to the total
width of the image, and h is the height of the bounding box
relative to the total height of the image. In the lower-right
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Fig. 6. Sample of labeled image data

In deep learning, the model-training process is typically
monitored using a loss-function curve. In the context of
YOLOvS, ProtoNet incurs three types of losses during
training: localization (box_loss), classification (cls_loss), and
dynamic feature (dfl _loss) losses.

During this calculation, the target box was scaled to the
size of the feature map by dividing it by the corresponding
stride and compared with the predicted bounding box to
compute the complete intersection over union (ClolU) loss.
Simultancously, the distance from the center of the predicted
anchors to the edges was used to calculate the regression
DFLLoss. As shown in Fig. 7, this process is part of the
ProtoNet training workflow, and the DFLLoss allows more
accurate adjustments to the predicted box location.

The precision-recall (PR) curve is typically used to
illustrate the relationship between precision and recall. The
PR curve for the training results of this study is shown in Fig,.
8. mAP represents the arca under the PR curve, with "m"
indicating the mean. The number following "@" represents

train/box_loss train/cls_loss train/dfi_loss metrics/precision(d)

metricsirecall(B)

0.4

0.2

1% | 20 —— results | 19 3
smooth ]
25 14 06 i =
06
0.4
m 02 l
0

0 100 200 0 100 200 100 200 o 100

valldfi_joss

04

03

Fig. 7. Model training results

metrics/mAPS0-85(1

i

cormner of Fig. 6, the results are shown in five columns of data
for each row of the 1.txt file. Before training, the dataset was
divided into training and validation datasets in an 8:2 ratio.

T 1 - i
T zen &EE) ERO) EEV REMH)
% 00582063 0.127734 0.359906 0.191406
' 00.398593 0.260937 0.375147 0.171875
0 0.888628 0.914062 0.222743 0.146875
X% 00674678 0.411328 0.273154 0.178906
800373974 0.421484 0.337632 0.139844
00.830012 0.290234 0.309496 0.191406
1 0.507620 0.546875 0.286049 0.137500
‘" 00451348 0688281 0.344666 0.170313
"“%00.296014 0.823438 0.267222 0.190625

the threshold used to determine the positive and negative
samples based on the IoU. For instance, mAP@J0.5 indicates
the average mAP when the threshold is greater than 0.5. The
average mAP@0.5 for the two object detection classes in this
model was 0.790, which is considered remarkably good. Fig.
9 shows an example of a real-time detection interface for
eagle-billed peaches.

From the object detection results, the location, category,
and confidence levels were extracted and passed to the
interface display module to draw the detected bounding
boxes on the interface.

Performance curve comparisons of the mAP, parameter
counts, and latency results for the proposed model, ProtoNet,
and YOLOVS, as tested on the dataset, are shown in Fig. 10.
Evidently, our model significantly improves the accuracy
compared to both ProtoNet and YOLOvS. However, the
corresponding parameter counts for the N/S/M models also
increase considerably, resulting in slower inference speeds
for most models compared with ours.

Precision-Recall Curve

Riped 0.851
UnRiped 0.728
= all classes 0.790 mMAP@0.5

08

0.6

Precision

0.4

0.2

0.0 1
0.0 0.2 0.4 0.6 08 1.0
Recall

Fig. 8. PR curve of the training results
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VII.

The trained model was saved for prediction purposes, and
the experimental results demonstrated strong performance on
the test dataset with an identification rate of 98.4%. The
model accurately predicted the outcomes in test experiments
using images of peach pests and diseases from other regions,
effectively classifying 14 categories of pests and diseases,
thereby demonstrating outstanding generalization ability.

The experimental results confirmed that FSL combined
with deep transfer learning can achieve excellent recognition
accuracy for identifying pests and diseases in peach trees.
This approach accelerates network training and convergence,
further improving defect detection rates while reducing errors
and missed detections. It aids in recognizing the occurrence
of pests and diseases in orchards, rapidly identifying affected
areas and their severity, providing reasonable solutions based
on insights from intelligent big data analysis systems. This

CoNCLUSIONS

sudy presents new ideas for digital and intelligent
management of agricultural production.

Compared to traditional detection methods, DL has shown
significant results in the field of plant pest and disease
identification, with deep residual networks extracting more
discriminative and comprehensive feature information.

Transfer learning can address the challenge of data
collection, thereby significantly enhancing the generalization
capability of the model. In summary, deep learning offers
robust solutions for pest and disease detection with a broad
application potential that can be extended to various types of
crop pests, disease recognition, and early warning systems.
This supports the development of unique rural industries and
provides a practical demonstration of smart agricultural
production.

Volume 52, Issue 8, August 2025, Pages 2665-2674



TAENG International Journal of Computer Science

ACKNOWLEDGMENT

The authors thank all the survey participants. In particular,

our

appreciation goes to the Shangping eagle-billed peach

industry base in the Heyuan-Lianping area for selfless
assistance and guidance.

1]

[2]

[3]

[4]

[3]

[e]

[7]

[8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

Nuthalapati, V, and Tunga A, "Multi-domain few-shot learning and
dataset for agricultural applications,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
2021, 19-25 June, 2021, Kuala Lumpur, Malaysia, pp1399-1408.
Gidaris S, Komodakis N, Paristech P, and Komodakis N, "Dynamic
few-shot visual learning without forgetting," Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
2018, 18-22 June, 2018, Salt Lake, USA, pp4367-4375.

Lake B, Salakhutdinov R, and Gross J, "One shot leaming of simple
visual concepts,” Proceedings of the 33rd Annual Meeting of the
Cognitive Science Society, 20-23 July, 2011, Boston, USA,
PP2568-2573.

Jake Snell, Kevin Swersky, and Richard Zemel, "Prototypical networks
for few-shot learning,” Proceedings of the 30th Neural Information
Processing Systems Conference and Workshop (NIPS) 2017, 4-9
December, 2017, California, USA, pp175-187.

Deng I, Dong W, and Socher R, "ImageNet: a Large-Scale Hierarchical
Image Database," Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2009, 20-25 June, 2009,
Florida, USA, pp520-532.

Konig J, Jenkins M, Mannion M "What’s cracking? A Review and
Analysis of Deep Learning Methods for Structural Crack Segmentation,
Detection and Quantification. Arxiv Preprint Arxiv, vol. 22, no.2,
ppl-18, 2022.

Lin TY, Maire M, and Belongie S, "Microsoft coco: common objects
in context," Proceedings of the 13th European Conference on
Computer Vision (ECCV) 2014, 6-12 September, 2014, Zurich,
Switzerland, pp740-755.

Everingham M, Van Gool L, and Williams C, " Unk Pascal Visual
Object Classes (VOC) Challenge. International Journal of Computer
Vision, vol. 88, no.2, pp303-338, 2010.

Fu H, Meng D, Li W, "Bridge crack semantic segmentation based on
improved deeplabv3+," Journal of Marine Science and Engineering,
vol. 9, no.6, pp671-684, 2021.

Hsieh Y, et al.: "Machine leamning for crack detection: review and
model performance comparison,” Journal of Computing in Civil
Engineering, vol. 34, no.5, pp1943-5487, 2020.

Liang Yong, Qiu Rongzhou, and Li Zhipeng, "Identification Method of
Major Rice Pests Based on YOLO v5 and Multi-source Datasets,”
Transactions of the Chinese Society for Agricultural Machinery, vol.
53, no.7, pp250-258, 2022.

Wang CX, Qi X, Ma G, Zhu L, Wang BX, and Ma CS, "Intelligent
identification system of grape diseases based on YOLO V3," Plant
Protection, vol. 48, no.6, pp278-288, 2022.

Sain, R. Stephan, "The Nature of Statistical Leaming Theory,"
Technometrics, Vol. 38, no.4, pp409-420, 1999.

Lake, Brenden M, Salakhutdinov, R., Tenenbaum, J., "The Omniglot
challenge: a 3-year progress report,” Current Opinion in Behavioral
Sciences, vol. 29, no.4, pp97-104, 2019.

Bertinetto L, Torr S, Henriques I, and Vedaldi A, "Meta-learning with
differentiable closed-form solvers,” Proceedings of the 7th
Intemational Conference on Leaming Representations, (ICLR) 2019,
6-9 May, 2019, Louisiana, USA, ppl-15.

Chen Z, Fu Y, Chen K, and Jiang Y, "Image block augmentation for
one-shot leaming," Proceedings of the 33rd Intemational Conference
on Artificial Intelligence (CVPR) 2019, 27-31 January, 2019, Hawaii,
USA, pp3379-3386.

Chen Z, Fu Y, Wang X, Ma L, Liu W, and Hebert M, "Image
deformation meta-networks for one-shot learning," Proceedings of the
IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR) 2019, 15-21 June, 2019, Los Angeles, USA,
Pp8672-8681.

Fu H, Meng D, Li W, "Bridge crack semantic segmentation based on
improved deeplabv3+," Journal of Marine Science and Engineering,
vol. 9, no.6, pp671-683, 2021.

Rusu, and Andrei A, "Meta-learning with latent embedding
optimization,” Proceedings of the 7th International Conference on
Learning Representations, (ICLR) 2019, 6-9 May, 2019, Louisiana,
USA, ppl-17.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Ravi S, and Larochelle H, "Optimization as a model for few-shot
learning," Proceedings of the 5th International Conference on Learning
Representations, (ICLR) 2017, 24-26 April, 2017, Toulon, France,
ppl-11.

Chen Y, Liu Z, and Xu H, "Meta-baseline: exploring simple
meta-learning for few-shot learning," Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR) 2021, 19-25 June, 2021, Kuala Lumpur, Malaysia,
pPpo042-9051.

NIE Ganggang, RAO Honghui, and KANG Lichun, "Research on
Camellia oleifera disease recognition based on lightweight
convolutional neural network,” Acta Agriculturae Universitatis
Jiangxiensis, vol. 2, no.11, pp502-515, 2024.

Lin Jianwu, Zhang Xin, and Chen Xiaoyulong et al, "Tomato Disease
Image Recognition Based on Lightweight Convolutional Neural
Network," Radio Engineering, vol. 52, no.8, ppl347-1353, 2022.

K. Zhang, Y. Guo, X. Wang, J. Yuan, Q. Ding, "Multiple feature
reweight densenet for image classification," IEEE Access, Vol. 7,
no.11, pp9872-9880, 2019.

Bah M D, Hafiane A, CanalsR, "Deep learning with unsupervised data
labeling for weed detection in line crops in UAV images,” Remote
Sensing, vol. 10, no.11, pp1690-1704, 2018.

Wang B, and Wang D, "Plant leaves classification: a few-shot learning
method based on Siamese network," IEEE Access, vol. 7, no.151,
pp754-763, 2019.

Hu Gensheng, Wu Haoyu, Zhang Yan, and Wan Mingzhu, "A low shot
learning method for tea leaf’s disease identification," Computers and
Electronics in Agriculture, vol. 163, no.104, pp852-863, 2019.
Sardogn M, Tuncer A, Ozen Y, "Plant leaf disease detection and
classification based on CNN with LV Q algorithm,” Proceedings of the
3rd Intemnational Conference on Computer Science and Engineering
(UBMK) 2018, 20-23 September, 2018, Sarajevo, Bosnia, and
Herzegovina, pp382-385.

Miaohui Zhang, Yunzhong Chen, Bo Zhang, Kangning Pang, and
Bingxue Lv, "Recognition of Pest Based on Faster RCNN," Lecture
Notes in Engineering and Computer Science: Proceedings of the 6th
International Conference on Signal and Information Processing,
Networking and Computers (ICSINC) 2020, 13-16 August, 2020,
Guiyang, China, pp62-69.

V Senthil Kumar, M Jaganathan, A Viswanathan, M Umamaheswari,
and J Vignesh, "Rice leaf disease detection based on bidirectional
feature attention pyramid network with YOLO v5 model,"
Environmental Research Communications, vol. 5,no0.6, pp14-32,2023.
Zhang, Shanwen, and C. Zhang, "Modified U-Net for plant diseased
leaf image segmentation,” Computers & Electronics in Agriculture, vol.
204, pp107511, 2023.

Kerkech, Mohamed, A. Hafiane, and R. Canals, "Vine disease
detection in UAV multispectral images using optimized image
registration and deep learning segmentation approach,” Computers and
Electronics in Agriculture, vol. 174, ppl05446, 2020.

Afzaal, U, Bhattarai, B., Pandeva, Y. R., & Lee, I, "An instance
segmentation model for strawberry diseases based on mask R-CNN."
Sensors, vol. 21, no.19, pp6565-6584, 2021.

GAO Jiajun, ZHANG Xu, GUO Ying, LIU Yukun, GUO Anqi, SHI
Mengmeng, WANG Peng, YUAN Ying, “Research on the optimized
pest image instance segmentation method based on the Swin
Transformer model,” Joumnal of Nanjing Forestry University (Natural
Science Edition), 47(3): 1-10, 2023,

K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for
Image Recognition," Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) 2016, 26-30 June,
Las Vegas, USA, pp770-778, 2016.

Sinno Jialin Pan, and Qiang Yang, "A Survey on Transfer Learning,"”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no.10,
pp1345-1359, 2010.

Yongfu Zhou was bomn in 1979. He received his B.E. degree in Computer
Science from Jiangxi Normal University in 2001 and M.E. degree in
Computer Science from Huazhong University of Science and Technology in
2005. His research interests include Al with a focus on intelligent detection
in agriculture. In recent years, he has published more than 10 papers.

Zhi Zeng was born in 1971 and is currently a Professor at the College of
Computer Science and Engineering, Huizhou University, Guangdong, China.
He received his B.E. in Computer Science from Jiangxi Normal University
in 1995, M.E. in Computer Science from Zhejiang University in 2005, and
PhD. in GIS from Zhejiang University in China in 2012. His research
interests include AT, GIS, and SLAM, with a focus on visual tracking and
navigation. In recent years, he has published over 30 papers.

Volume 52, Issue 8, August 2025, Pages 2665-2674



TAENG International Journal of Computer Science

Yuwan Gan was bomn in 1996. She received her B.S. degree in Internet of  from Guilin University of Electronic Technology in 2021. His research
Things engineering from Harbin University of Science and Technology in interests include machine learning and intelligent image processing.
2018 and an M.E. degree in Electronics and Communications Engineering

Volume 52, Issue 8, August 2025, Pages 2665-2674



	1-camera-may distorted_Page_01
	1-camera-may distorted_Page_02
	1-camera-may distorted_Page_03
	1-camera-may distorted_Page_04
	1-camera-may distorted_Page_05
	1-camera-may distorted_Page_06
	1-camera-may distorted_Page_07
	1-camera-may distorted_Page_08
	1-camera-may distorted_Page_09
	1-camera-may distorted_Page_10



