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Abstract—The decision-making and planning module
plays a crucial role in the context of rapidly advancing
autonomous driving technologies. Despite extensive research
in autonomous driving decision-making and planning,
systematic reviews are still lacking, aligning with the
prevailing paradigm of large-scale models to consolidate
diverse architectures and methodologies. This review
systematically categorizes decision-making architectures,
critically analyzes the advantages and limitations of various
technical approaches, and synthesizes scenario-specific
performance metrics within evaluation frameworks. Multiple
performance evaluation methodologies are proposed to enhance
testing reliability through quantitative validation protocols.
These comprehensive analyses aim to establish standardized
criteria for algorithm selection and application boundaries,
providing actionable guidance for researchers and engineers.
This allows stakeholders to identify issues during testing
phases and develop more efficient validation strategies.

Index Terms—Autonomous Driving, Decision-making and
Planning, Architecture Classification, Performance Evaluation.

I. INTRODUCTION

HE criticality of the decision-making and planning

module in autonomous driving systems is self-evident.
Recent years have seen multidimensional technological
evolution in this domain, driven by concurrent advancements
in hierarchical, reactive, and end-to-end architectures, along
with breakthroughs in search-based algorithms, data-driven
methods, and large model technologies. As a core metric for
evaluating autonomous driving capabilities and the system’s
key component, it translates sensor-derived environmental
data into executable driving strategies and trajectory
plans [1]. This module critically governs vehicle safety,
driving efficiency, traffic coordination, energy consumption
optimization, user experience, and system reliability. To
establish standardized criteria for algorithm selection and
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application boundaries while enabling precise issue diagnosis
during testing, this study contributes:

e A comparative analysis of three primary
architectures—hierarchical, reactive, and
end-to-end—accompanied by discussions of their

respective advantages and limitations.

o It further classifies decision-making and planning
methods from the perspectives of search-based,
data-driven, and large-scale models, while discussing
the common scope and examples within each
category. Search-based methods include traditional
search, heuristic search, and more; data-driven methods
leverage big data and machine learning technologies
to support decision-making, and large-scale model
decision-making and planning employ deep learning
and reinforcement learning technologies, demonstrating
significant potential in addressing complex problems.

o The study subsequently synthesizes performance testing
metrics and proposes evaluation methodologies to
enhance benchmarking frameworks for autonomous
driving systems.

o Finally, it emphasizes existing challenges, future
development trends, and obstacles in decision-making
and planning.

A comprehensive understanding of the decision-making
and planning framework, methods, and evaluation schemes
not only fosters the advancement of autonomous driving
decision-making and planning technology but also lays a
strong foundation for achieving higher levels of reliability
in autonomous driving.

II. ARCHITECTURES FOR DECISION-MAKING PLANNING

Autonomous driving systems comprise three core
functional layers: perception, decision-making and planning,
and execution control. Decision-making and planning
synthesize environmental data from perception modules
as a critical functional layer to generate safe, efficient,
and regulation-compliant driving strategies and trajectory
plans. This process incorporates static and dynamic obstacle
avoidance and adaptability to complex traffic scenarios
[2] [3]. The module must account for vehicular social
behaviors, enabling effective interaction with other road
users (e.g., pedestrians, vehicles) through behavioral
prediction. Such capability is achieved by simulating the
social behavioral patterns of surrounding agents to anticipate
their intentions and potential actions [2] [4]. Rather than
treating path planning and behavioral decision-making as
isolated tasks, the module integrates these functions into a
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unified framework to ensure operational coherence [2]. This
hierarchical integration encompasses three core components:
global route planning, behavioral decision-making, and local
trajectory optimization. By integrating these layers, the
system enhances computational efficiency while ensuring
decision consistency and safety.

Building on theoretical and practical advancements,
this study categorizes decision-making architectures into
three paradigms: hierarchical, reactive, and end-to-end
frameworks. These paradigms exhibit distinct characteristics
in logical layering and environmental interaction
mechanisms. Subsequent sections will systematically
analyze their theoretical foundations, application boundaries,
and comparative features, as summarized in Table 1.

TABLE I
DECISION-MAKING AND PLANNING SYSTEM ARCHITECTURE

Paradigm | Advantages Disadvantages
Data transmission  loss,
. . High safety and strong comp utatl(?nal flelays, error
Hierarchical | . . accumulation issues, high
interpretability .
system construction and
maintenance costs.
. Lack of global plannin
Minimal storage space | global plannming
. and optimization, limited
usage, robustness in | . .
. . . intelligence level, complex
Reactive response to immediate R .
. coordination mechanisms,
changes, strong real-time I
e weak predictive and
capabilities . . s
inferential capabilities.
Simple architecture, | Strong data dependency,
capable of automatically | high computational resource
End-to-End | learning complex | requirements, black-box
mappings and processing | nature, poor generalization
high-dimensional data ability.

A. Hierarchical Decision-Making and Planning Architecture

As the most fundamental and interpretable architectural
paradigm in autonomous driving, hierarchical design
achieves task specialization through layered decoupling. Its
defining characteristic is decomposing the decision-making
process into a three-tiered sequential system: global path
planning, behavioral decision-making, and local motion
planning [3]. As illustrated in Figure 1, this architecture
allows for granular problem-solving through top-down
task decomposition, enhancing system interpretability and
safety assurance. The modular structure enables independent
updates and optimizations, facilitating advanced intelligent
control implementations.

The canonical implementation in Baidu Apollo 7.0
[5] demonstrates this hierarchy: its global planning layer
generates kilometer-level reference paths using HD maps,
the behavioral layer manages lane-level strategies via finite
state machines (FSMs), while the motion planning layer
employs quadratic programming algorithms to produce
second-level control commands. 2023 California DMV
testing data reveals that this architecture achieved 0.18
interventions per thousand miles in structured highway
scenarios, outperforming end-to-end architectures’ 0.53
interventions [6], validating the safety advantages inherent
in hierarchical decoupling.

However, limitations persist: reliance on precise global
environment models may lead to sensor over-dependence,
while information transmission latency and task

Driving Environment Motion Execution .
. . - —Vehicle
Environment Sensing Control control
L Information Mission Trajectory J
Fusion Decision Planning
I Decision-making and Planning

Fig. 1. Hierarchical Architecture

fragmentation can cause operational inefficiency and
error accumulation. Furthermore, constraints on system
reliability arise since failures in individual modules may
cascade into global performance degradation, leading to
substantial maintenance costs. In San Francisco urban
testing scenarios, a 0.8-second synchronization delay
between global and motion planning layers increased
construction zone obstacle avoidance response time to 1.5
seconds—58% slower than end-to-end architectures [7].
Moreover, LiIDAR malfunctions accounted for 47% of local
planning module failures, highlighting vulnerabilities due to
tightly coupled module interdependencies [8].

B. Reactive Decision-Making and Planning Architecture

As shown in Figure 2, the reactive architecture employs
multiple parallel control loops, each encoding primitive
behaviors for localized objectives, generating purposeful
actions through coordination to achieve multi-level
operational capabilities. This structure grants low-level
controllers operational independence, eliminating the
reliance on high-level processing delays, thus enabling
rapid response and robust real-time performance [4]. With
distinct behavioral responsibilities across layers, the system
achieves flexible state transitions and fault tolerance,
maintaining functional integrity even during partial module
failures. However, the design must address coordination
challenges between control loops and increasing prediction
uncertainties as task complexity escalates, constraining the
development of advanced cognitive capabilities.

The “Boss” system, winner of the 2007 DARPA Urban
Challenge, exemplifies this paradigm through a hybrid
architecture that integrates hierarchical planning with reactive
behaviors, utilizing asynchronous process communication
for parallel obstacle detection and path planning. DARPA’s
official report indicates a 97% task completion rate in
intersection scenarios but reveals a global path replanning
frequency of 5.3 instances, resulting in a 9.2% increase in
energy consumption over baseline metrics [9].

C. End-to-End Architecture

End-to-end autonomous driving technology streamlines
the transformation from visual inputs to driving controls
using a unified neural network, removing intermediate steps
and manual interventions in conventional systems [10]. Its
core strength is autonomously learning complex mapping
relationships and avoiding manual feature engineering to
minimize data loss and error propagation. The architecture’s
ability to process high-dimensional data and capture
nonlinear correlations is essential for emulating human
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Fig. 2. Reactive Architecture

driving behaviors [11]. Large-scale data training enhances
model performance, improving system reliability and safety
while allowing seamless integration with perception modules
to lower adaptation costs for new scenarios. However,
challenges remain, including high computational resource
demands and reliance on extensively annotated datasets,
which increase training and iteration costs. The black-box
nature of neural networks complicates system diagnostics
due to limited interpretability. Insufficient generalization
capabilities may arise when faced with novel scenarios or
edge cases [12].

A representative implementation is the DTPP system
co-developed by NTU and NVIDIA, which integrates
fragmented components (trajectory generation, interactive
gaming) into a single neural network through a differentiable
tree-structured policy search. By enabling backpropagation
for joint optimization of prediction and decision modules,
it achieved 45.7 miles per intervention in the nuPlan
Challenge—32% better than modular architectures—with
only 0.21m lateral error in construction zones [13]. Another
approach, UniAD, utilizes an all-transformer architecture
with multi-task co-training for perception-planning coupling,
reducing planning errors by 42% to 0.15m in Waymo
evaluations [2]. These examples validate the potential of
end-to-end architectures in generalizing complex scenarios;
however, computational latency (e.g., DTPP’s 98ms inference
time) and limitations in interpretability remain bottlenecks
for deployment.

III. CLASSIFICATION SYSTEM FOR DECISION-MAKING
AND PLANNING METHODS

Chapter II established the centrality of decision-making
and planning in the technological evolution of autonomous
driving. Critical analysis revealed distinct operational
paradigms—hierarchical, reactive, and  end-to-end
architectures—and their strengths and limitations. The
modular verification advantages of hierarchical architectures
have driven the refinement of search-based algorithms.
In contrast, the sensor-to-control direct mapping in
end-to-end architectures fundamentally enables data-driven
methodologies. The methodology landscape continues to
evolve through technological breakthroughs, particularly in
large-scale models and deep learning paradigms. Current
methodologies are shifting from partitioned problem-solving
approaches to holistic joint optimization frameworks.

In response to these developments, this chapter introduces
a new taxonomy that integrates existing technical approaches,
including search-based algorithms, data-driven strategies, and
large-model-enabled paradigms. This framework establishes
a systematic theoretical foundation for decision-making
in autonomous vehicles while identifying methodological
constraints and emerging challenges to guide future research
directions.

A. Search-Based Decision-Making and Planning Methods

In autonomous driving, search-based methods constitute
a fundamental technical approach for identifying optimal
solutions through systematically exploring action paths.
This category encompasses traditional, heuristic, dynamic
programming, and randomized search algorithms, as outlined
below.

o Traditional Search Algorithms

1) Breadth-First Search (BFS): BFS is a blind search
strategy that expands nodes layer-by-layer from the root
until reaching the target. While it guarantees shortest-path
discovery, its high spatial complexity limits its applicability
to large-scale problems [14].

2) Depth-First Search (DFS): A memory-efficient blind
search that explores individual paths to maximal depth,
though it may fail to identify optimal solutions [15].

3) Dijkstra’s  Algorithm: ~ Widely employed for
single-source shortest path problems in graphs with
non-negative edge weights. Its efficiency diminishes in
obstacle-rich environments but can be improved through
parallelization [16].

o Heuristic Search Algorithms

4) A* Algorithm: The A* algorithm integrates actual
costs with heuristic estimates to efficiently locate the
shortest paths, particularly in complex or obstacle-dense
environments [17]. Algorithmic efficiency heavily depends
on the selection of the heuristic function. For instance,
Zhou Chunhui et al. demonstrated the application of the
A* algorithm in path planning through its implementation
to solve the 8-puzzle problem [18]. Enhanced variants
incorporating turn penalty functions, obstacle grid
coefficients, and safety margins improve adaptability
to intricate road conditions while reducing path length and
steering frequency [19].

5) Ant Colony Optimization (ACO): A heuristic algorithm
inspired by ant foraging behavior, ACO is designed to solve
combinatorial optimization problems such as shortest
path identification. It can be adapted through framework
extensions for multi-source shortest-path problems involving
multiple origins and destinations. For example, assigning
virtual destinations to each origin and integrating them
into a unified network transforms multi-source problems
into single-source formulations. Performance enhancements
include directional guidance mechanisms, pheromone
redistribution ~ strategies, and dynamic factor-based
pheromone concentration updates to accelerate search
initiation and prevent excessive pheromone depletion on
optimal paths [20]. Quantum-inspired variants redefine ant
positions via qubits and replace conventional heuristics with
quantum fidelity measures, improving convergence rates and
global optimum discovery probabilities [21].
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6) Artificial Bee Colony (ABC): ABC is a swarm
intelligence algorithm mimicking honeybee foraging
behavior. It can address multi-source shortest-path
problems. Enhancements such as large-scale neighborhood
searches [22], dual-layer evolutionary structures [23],
and multi-colony parallel evolution strategies strengthen
global exploration capabilities and convergence rates while
mitigating premature convergence.

¢ Dynamic Programming Search Algorithms

7) D*Lite: A dynamic path-planning algorithm is

designed for rapid path recalculation in changing
environments. It updates existing paths locally
to accommodate dynamic  obstacles. Performance

improvements include integrating a safety coefficient to
prevent diagonal path traversal through obstacle grid vertices
[24]. Enhanced variants based on cell decomposition apply
modified Boustrophedon rules to partition environmental
maps into cellular units, constructing cell-node graphs.
Bidirectional graph search algorithms identify optimal unit
sequences for the shortest paths and utilize core grids to
guide search directions, accelerating planning efficiency
[25].

8) The  Floyd-Warshall  algorithm: A dynamic
programming algorithm computes all pairs shortest
paths in a graph. Iterative updates of shortest path estimates
between all vertex pairs address the all-source shortest path
problem, making it suitable for small-scale graphs [26].

o Randomized Search Algorithms

9) Rapidly-exploring Random Trees (RRT): An efficient
strategy for path planning in high-dimensional and nonlinear
dynamical systems, which employs random sampling
and tree expansion to explore configuration spaces [27].
While RRT may require extensive iterations to identify
optimal solutions and faces the risk of local minimum
entrapment, improvements such as Luo Hui’s two-phase
RRT algorithm—utilizing cubic Bézier curves and heuristic
functions—enhance path smoothness and continuity [28].
Xu Wan’s regionally constrained RRT generates smooth
trajectories through intelligent sampling and path pruning,
enabling uninterrupted steering maneuvers for vehicles or
robots [29].

As decision-making and planning problems increase
in scale and complexity, traditional algorithms encounter
dual challenges in computational efficiency and solution
feasibility, necessitating the integration of novel technical
approaches.

B. Data-Driven Decision-Making and Planning Methods

Data-driven methods leverage big data analytics and
machine learning to extract actionable insights from
real-world driving data, enhancing decision accuracy and
scenario adaptability [30]. Key methodologies include:

1) Deep Reinforcement Learning (DRL): As a core
methodology, DRL identifies optimal policies by simulating
human driving behaviors through various models:
deterministic policy gradient-based actor-critic frameworks
for continuous action spaces [31], demonstration-augmented
DDPG [32], and ECDDPG [33] algorithms that enhance
training efficiency, along with proximal policy optimization
(PPO) for improved sample complexity through alternating

data sampling and objective optimization [34]. Extended
applications include Qi Liu et al’s graph reinforcement
learning (GRL) framework, which integrates graph neural
networks to model vehicle interactions in dynamic traffic
[35]; Yang Guan et al’s hierarchical architecture that
combines model-based RL for multi-path planning [36];
Yuchuan Fu et al’s hybrid system that merges DRL with
expert knowledge to address black-box limitations [37]; and
Zhang Qian et al.’s multi-agent RL with goal decomposition
for collaborative long-term optimization [38].

2) Mixed-Integer Quadratic Programming (MIQP):
For motion planning in complex scenarios (e.g., lane
changes), MIQP formulates problems with logical constraints
to generate feasible, safe, and comfortable maneuvers.
The AutonoVi algorithm [39] exemplifies this approach
by incorporating traffic rules and constraints into an
optimization framework for path planning.

3) Behavior Cloning and Behavioral Modeling: These
methods learn behavioral patterns from real or simulated data
for transfer to novel scenarios. Using simplified synthetic
datasets, M. Stoll et al. [40]demonstrated reliable and
comfortable driving through behavior cloning.

4) Ensemble Learning with Uncertainty Estimation:
Ensemble techniques enhance decision safety by integrating
motion predictions with uncertainty quantification. Xiaolin
Tang et al. [41] developed a deep neural network-based
predictor using deep ensembles for uncertainty-aware
decisions. At the same time, Yang Hao combined ensemble
learning with RL through multi-strategy coordination
algorithms that blend human and machine decision logic
[42].

5) Genetic Algorithm-Big Data Fusion: Integrating the
global search capabilities of genetic algorithms with big data
analytics enhances path planning precision. Zhang Caiming
et al. [43]proposed a GA-based framework incorporating big
traffic data for target vehicle routing.

6) Deep Gaussian Processes with Feedback Control: This
approach reduces data requirements while enabling real-time
closed-loop control. As demonstrated in [44], deep Gaussian
processes with feedback mechanisms achieve smooth driving
trajectories under limited training data.

Despite the potential of data-driven methods for handling
uncertain information, their performance is not always
optimal, particularly in incomplete data, unpredictable
environments, or unclear objective functions.

C. Decision-Making and Planning Based on Large Models

In recent years, significant advancements have been made
in research on decision-making and planning for autonomous
driving, utilizing large models fueled by progress in deep
learning and reinforcement learning technologies.

1) LLMs (Large Language Models): LLMs have
demonstrated their potential in autonomous driving
applications. The model can output the vehicle’s subsequent
motion by inputting surrounding objects as textual prompts
into LLMs, along with their coordinate and velocity
information [45]. This approach highlights the -critical
importance of spatial recognition and compliance with
traffic rules for autonomous driving.
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2) The BEVGPT model: The BEVGPT, a generative
pre-trained large model, integrates driving scene prediction,
decision-making, and motion planning, underscoring the
significance of incorporating various modules in autonomous
driving tasks [46]. This framework makes driving decisions
based on Bird’s Eye View (BEV) images through a two-stage
training process—initially training a causal transformer
with vast autonomous driving data, followed by online
fine-tuning with a simulator to learn scene prediction and
decision-making. The model can predict trajectories for the
next 4 seconds and scenes for the next 6 seconds, ensuring
the feasibility and smoothness of the trajectory.

3) DriveMLM: DriveMLM, developed by SenseTime,
is a multi-modal large model that achieves closed-loop
autonomous driving by integrating multi-modal inputs
and behavioral planning states. This framework
utilizes multi-modal LLMs to bridge the gap between
language-based decisions and vehicle control commands,
demonstrating the potential application of LLMs in
closed-loop autonomous driving simulators [36]. This
method improves the efficiency and safety of autonomous
driving systems by standardizing decision states and utilizing
existing motion planning modules. In practical applications,
DriveMLM achieved a driving score of 76.1 in the CARLA
Town05 Long test, outperforming the Apollo baseline
by 4.7 points under the same settings [47], proving the
effectiveness of its model.

4) Apollo ADFM: Apollo ADFM, released by Baidu,
is the world’s first L4-level autonomous driving large
model. It reconstructs autonomous driving based on
large model technology, featuring ultra-long-tail scene
detection and high-order scene semantic understanding
capabilities, enabling fully unmanned autonomous driving.
It employs a variety of advanced technologies and methods.
For example, it uses a semi-definite relaxation-based
collaborative planning and control framework with ADMM
(Alternating Direction Method of Multipliers), which helps
solve non-linear and non-convex optimization problems,
thereby improving computational efficiency and real-time
performance [48]. Additionally, Apollo adopts the Adaptive
Pole Grid method, an algorithm designed based on local
search space, which effectively avoids collisions and smooths
paths [49].

5) UniAD: The UniAD, a general large model for
perception and decision-making integration proposed by
the CVPR 2023 best paper, improves the accuracy and
robustness of prediction and planning tasks through efficient
multi-modal data fusion and advanced planning algorithms.
This approach not only enhances the performance of
detection and tracking tasks but also significantly reduces
prediction errors and collision rates [50].

6) DriveGPT4: DriveGPT4, developed by Haomo Al, is
a generative large model trained on 40 million kilometers
of mass-produced vehicle driving data, with a parameter
scale of 120 billion. It primarily addresses cognitive
decision-making issues in autonomous driving. It can predict
low-level control signals and optimize performance through
a customized, visual instruction-tuned dataset. This method
allows DriveGPT4 to excel in various tasks and generalize
to more unseen scenarios via zero-shot learning [51].
DriveGPT4 possesses the potential to handle distributed

scenarios and recognize intentions, enabling it to make
informed decisions in real driving situations, such as
direction recognition and traffic light identification [52].

7) Drive-WM: The first end-to-end autonomous driving
world model, Drive-WM, proposed by the Institute of
Automation at the Chinese Academy of Sciences, generates
high-fidelity driving scenes through joint spatial-temporal
modeling. Drive-WM employs a model predictive control
(MPC)-based method for behavioral planning. This approach
allows vehicles to adjust their driving paths and speeds based
on current road conditions and surrounding environments,
ensuring safety and efficiency [53]. Drive-WM also explains
its decisions, enhancing transparency and user trust in
autonomous driving systems. This aspect is crucial for public
acceptance and adoption of autonomous driving technology.

8) DriveVLM: DriveVLM, a large visual-language model
arising from a collaboration between Tsinghua University
and Li Auto, integrates visual perception and language
understanding capabilities to enhance autonomous driving
systems’ decision quality and safety. DriveVLM incorporates
the strengths of large language models, enabling it to
comprehend and process natural language instructions and
dialogues related to driving. This integration allows the
system to respond to preset commands and adjust its behavior
based on real-time dialogues [54].

9) Drive-OccWorld:  The Drive-OccWorld  model,
collaboratively developed by Zhejiang University and
Huawei, innovatively integrates semantic and motion
condition normalization, enhancing prediction and planning
performance in autonomous driving. It also provides a
flexible behavioral condition interface, improving the
model’s controllability [55].

Large model-based decision-making and planning
showcase immense potential in autonomous driving.
However, despite these promising advancements, challenges
and limitations remain. For instance, real-time planning
under uncertainty is critical, as autonomous vehicles must
engage in short-term and long-term planning in complex,
dynamic environments [56]. Furthermore, integrating
prediction and planning is essential for safe, efficient, and
comfortable driving [57]. Challenges also arise in effectively
blending different functional modules, managing uncertainty,
improving real-time performance, and reliably deploying
these technologies in vehicles.

IV. EVALUATION STRATEGY

As autonomous driving technologies evolve from
search-based approaches to data-driven and large model
paradigms, decision-making and planning systems face
challenges such as insufficient adaptability to complex
environments, inadequate safety assurance, and limited
interpretability. To address these challenges, this work

proposes a four-dimensional evaluation framework
encompassing  fundamental = performance, robustness,
safety, and interpretability, enabling a comprehensive

multi-perspective assessment of decision-planning systems.
The schematic diagram of the evaluation methodology in
this article is shown in Figure 3.
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Fig. 3. Evaluation Methodology

A. Fundamental Performance Evaluation

Fundamental performance evaluation examines the
essential capabilities of decision-planning systems in
nominal environments, using metrics encompassing

trajectory quality, computational efficiency, and regulatory
compliance.

Trajectory quality quantifies path optimality through
metrics of length and curvature continuity. Computational
efficiency assesses real-time performance via planning
latency and memory utilization. Compliance verifies legal
boundaries by statistically analyzing frequencies of traffic
rule violations. Empirical studies indicate that search-based
methods excel in structured road networks. For instance,
Dijkstra’s algorithm achieves trajectory errors below 0.3
m in static maps [58], yet exhibits exponential growth
in replanning latency in dynamic scenarios. Data-driven
methods show 0.5 m trajectory errors on the nuScenes
benchmark [59] with consistent 50 ms response times, though
they experience a 15% compliance degradation compared to
traditional approaches. While Wayve’s GPT-Drive enhances
trajectory smoothness in complex intersections, it requires
post-hoc rule engines to mitigate the risks of wrong-way
driving [60].

B. Robustness Evaluation

Robustness evaluation quantifies the stability and
adaptability of decision-planning systems under dynamic
disturbances, parameter perturbations, and anomalous
inputs. Core metrics include performance fluctuation rate,
disturbance stability, and scenario generalizability.

The performance fluctuation rate, calculated as the
ratio of trajectory errors before and after non-adversarial
natural perturbations, directly reflects system resilience.
Lower ratios indicate superior robustness, representing
minimal performance degradation under sensor noise or
environmental transients.

Disturbance stability quantifies tolerance thresholds
through the minimum adversarial perturbation distance—the
smallest sensor input deviation (e.g., = 500 lux illumination
changes or £ 5 cm LiDAR noise) the system can withstand
while maintaining safe planning. Higher thresholds indicate
stronger disturbance resistance. For example, traditional
search methods achieve more than 90% disturbance stability
in static maps but exhibit a 40% replanning failure rate in
dynamic scenarios like pedestrian intrusions [61], revealing
sensitivity to transient disturbances. Adversarially trained
data-driven methods enhance adaptability: studies [62] report

lane retention improvement from 68% to 89% under sudden
illumination changes. However, trajectory deviations increase
by 2.1 x in rain and fog conditions, indicating unresolved
robustness challenges in adverse weather.

C. Safety Evaluation

Safety evaluation identifies vulnerabilities in data-driven
models against adversarial attacks, privacy breaches, and
malicious tampering. Key metrics include the adversarial
sample attack rate, model theft risk level, and real-time
defense capability.

The adversarial sample attack rate measures the probability
of planning failures induced by perturbed LiDAR point
clouds or camera images. Higher rates indicate weaker
security. Studies show that adversarial perturbations can
increase lateral errors by 300% in end-to-end models, with
adversarial road textures leading to wrong-way driving [63].

Model theft risk quantifies the similarity between
proxy models (constructed via distillation or trajectory
reconstruction attacks) and original models. For example,
proxy models achieve Dynamic Time Warping (DTW)
distances less than or equal to 0.3 in trajectory reconstruction,
indicating near-identical path planning to original systems
[63].

Real-time defense requires low-latency anomaly detection
and high interception rates. Multimodal attacks increase path
deviation by 45%, necessitating the use of security sandboxes
to isolate critical modules [64]. Expanding attack surfaces
demand comprehensive dynamic protection frameworks.

D. Interpretability Evaluation

Interpretability evaluation deciphers the decision logic of
black-box models by quantifying the alignment between
model outputs and human cognition. Metrics include causal
traceability, semantic consistency, and human trust.

Causal traceability utilizes SHAP (Shapley Additive
Explanations) values to quantify the contributions of sensors
to decisions. Higher SHAP values indicate greater sensor
influence and enhanced system transparency. Li Shengbo
et al. [60] demonstrated that camera-dominant decisions
under lighting interference lead to increased misjudgments.
By dynamically reweighting multi-sensor fusion (e.g.,
prioritizing radar SHAP values), the misjudgment rates
decrease by 50%, thereby enhancing system robustness.

Semantic consistency evaluates the alignment between
planned trajectories and human intent. Custom simulation
tests [60] reveal that models lacking semantic explanations
achieve 72% of intent matching in complex intersections.
Counterfactual explanation tools that perturb obstacle speeds
improve matching rates to 89% and reduce misjudgments by
21%.

Human trust is quantified via EEG 6-wave energy
and subjective Likert-scale ratings. Higher #-wave energy
indicates greater user unease with system decisions. A
driving simulator experiment by Wu Zheng et al. [65] showed
that when trust scores reach 4, the takeover frequency
drops by 60%; if §-wave energy exceeds 30 pV, takeover
probability surges by 80%.

Volume 52, Issue 8, August 2025, Pages 2675-2683



TAENG International Journal of Computer Science

V. FUTURE DEVELOPMENT TRENDS

Despite the remarkable research achievements in both
domestic and international fields of decision-making and
planning for autonomous vehicles, numerous technical
challenges persist at this stage. Future research endeavors
ought to prioritize the following aspects:

1)  Versatile High-Generalization Large Models:
Developing models capable of adapting to diverse
driving environments to address the current limitations
in generalization and training efficiency. The development
of universal large models that can accommodate a variety of
driving environments and scenarios is a significant research
direction in the field of autonomous driving. Currently,
autonomous driving models face several challenges,
including low environmental exploration efficiency, slow
initial training speed, poor generalization ability, low training
efficiency, and limited applicability in various scenarios.
These models must possess a high degree of generalization
capability to make accurate decisions when encountering
unseen situations.

2) Self-Learning and Evolutionary Decision-Making and
Planning Algorithms: Leveraging principles from modern
bionics inspired by biological neural intelligence, the
development of decision-making and planning algorithms
with capabilities for self-learning, self-evolution, and
self-upgrade will be crucial for comprehensively enhancing
the intelligence level of autonomous driving. Integrating
bionic principles into algorithms primarily involves drawing
inspiration from nature, simulating biological perception,
decision-making, and adaptation mechanisms to improve
algorithm performance and adaptability.

3) Interpretability of End-to-End Models: End-to-end
algorithm frameworks utilize raw sensor inputs to generate
motion plans for vehicles rather than focusing on separate
tasks such as detection and motion prediction. The
advantages of joint feature optimization for perception and
planning are rapidly evolving with this approach [66].
However, the precision and responsiveness of end-to-end
solutions rely on complex network architectures, large-scale
training datasets, and substantial computational resources.
Due to the closed nature of end-to-end models, their
decision-making processes lack transparency, making it
difficult to explain and trace issues when they arise,
which does not align with the high reliability, safety,
and trustworthiness required for autonomous driving.
Therefore, future research should focus on breaking through
the nonlinear, high-dimensional mapping mechanisms of
end-to-end models, elucidating their internal hierarchies
and multidirectional dynamic feedback patterns to enhance
model interpretability and predictive accuracy, thereby
ensuring the stability and reliability of decision-making and
planning outcomes. 4) Interactive Planning and Personalized
Decision-Making: Interactive planning can address complex
decision-making challenges by emphasizing human-machine
interaction, flexibility, a scientific approach, and public
participation [67]. In future driving scenarios, it is essential
to consider the decision-maker’s preferences for plans and
to fully leverage known objective information to achieve
better decision-making outcomes through human-machine
interaction. Moreover, suppose the driving behaviors of
autonomous vehicles align with those of human drivers and

can be recognized and accepted by other road users. In that
case, it will facilitate smooth interactions in mixed traffic
environments. This further underscores the importance of
personalized decision-making and planning design.

5) Collaborative Optimization Algorithms for Multimodal
Data: In dynamic real-world traffic scenarios, numerous
interactive factors with complex attributes, such as
time-varying and nonlinear characteristics, exist. In addition
to considering the vehicle’s dynamic information, it is crucial
to integrate a wide array of environmental data from various
sensors. In response to this challenge, future research must
develop a robust multi-objective collaborative optimization
algorithm capable of managing multimodal data. This
algorithm will uncover and utilize the complementarity
and exclusivity among objectives, achieving balance and
coordinated optimization amid dynamic changes.

6) Collaborative Intelligence and Smart Transportation
Systems: Autonomous driving technology necessitates
constructing a highly intelligent and collaborative
decision-making and planning system. This system
places vehicles as intelligent nodes within the traffic
network, capable of independently executing complex
decision-making and planning while engaging in real-time
interaction and collaboration with other traffic participants.

At the micro level, autonomous vehicles simulate game
theory and interactions among multiple agents to understand
better and predict dynamic changes in the surrounding
environment. Based on multi-agent collaborative interaction,
this swarm decision-making approach emphasizes the
importance of continuous, strong interactive behaviors, such
as exploratory games, in algorithm design, thereby enhancing
the adaptability and robustness of decision-making.

At the macro level, the development of intelligent
transportation systems offers broader informational support
and decision-making space for autonomous driving. Through
the collaboration of vehicle-road-cloud, autonomous vehicles
can overcome the limitations of onboard sensors to
achieve comprehensive perception, thus addressing safety
hazards caused by incomplete information. This collaborative
mechanism expands the perception range of individual
vehicle intelligence and fosters the deep integration and
mutual empowerment of various elements within the
transportation system.

Looking to the future, research will focus on integrating
the complexity of multi-agent interactions with the benefits
of intelligent transportation systems to create a unified
decision-making and planning framework. This framework
will enhance the structural consistency and systematic
nature of swarm decision-making, promoting the realization
of personalized and human-like driving experiences and
providing new momentum and direction for the development
of autonomous driving technology.

VI. CONCLUSION

This paper presents a comprehensive overview of the
architectures, methodologies, and evaluation strategies
in autonomous driving decision-making and planning
while also outlining future development trends. Regarding
architectures, the paper delves into the strengths and
weaknesses of hierarchical, reactive, and end-to-end
architectures. The classification of methods at this level
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provides a detailed account of various decision-making and
planning approaches, including search-based algorithms,

data-driven
supported by numerous

strategies, and large model technologies,

examples. Additionally, the

paper proposes a four-dimensional evaluation framework
encompassing fundamental performance, robustness, safety,
and interpretability, offering a robust tool for comprehensive

system assessment.

Future research will continue to

address existing technical challenges while exploring novel
methodologies and technologies to achieve safer, more
efficient, and reliable autonomous driving systems.
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