
 

  

Abstract—Speaker recognition, reliant on voiceprint features, 

is often constrained by insufficient data samples. To mitigate 

this deficiency, this study proposes a novel approach that 

leverages generative adversarial networks (GANs) to augment 

speech features and the ResNet18 network for speaker 

recognition. Initially, spectrograms are extracted from speech 

signals, serving as input features. GANs are then employed to 

generate additional voiceprint features based on the original 

spectrograms. These generated features are fused with the 

original spectrograms at varying fusion ratios. The fused 

features are subsequently fed into a ResNet18 network for 

speaker recognition. Experimental results prove that the 

proposed method significantly enhances recognition 

performance, achieving a peak recognition rate of 97.92% at a 

20% fusion ratio. This study underscores the effectiveness of 

GANs-based feature augmentation in improving speaker 

recognition accuracy, especially in scenarios with limited 

training data. 

 
Index Terms—speaker recognition, generative adversarial 

network, spectrograms, ResNet18 network, feature fusion 

 

I. INTRODUCTION 

oiceprint recognition, also termed speaker recognition, 

is a biometric identification method that distinguishes 

individuals based on unique vocal characteristics embedded 

in their speech signals. This technique determines speaker 

identity by analyzing voiceprint features [1]. Speaker 

recognition techniques can be classified into three categories 

according to the task to be recognized and the application 

scenario: speaker verification [2], speaker identification, and 

speaker diarization [3]. According to the content of 

recognition, it can be divided into two categories: 

text-dependent and text-independent [4]. The text-dependent 

implementations, speakers must articulate predefined 

linguistic content. Tsai et al. [5] advanced this paradigm 

through evocative word modeling, demonstrating enhanced 
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recognition accuracy when incorporating psychologically 

salient vocabulary in authentication phrases. 

Text-independent imposes no constraints on linguistic 

content and the focus of recognition is to confirm the identity 

of the speaker. Mohammadi M et al. proposed a method of 

text-independent speaker verification in noisy environments 

by fusing different features such as Mel-Frequency Cepstral 

Coefficients, Linear-Frequency Cepstral Coefficients, and 

Power Normalized Cepstral Coefficients [6]. In forensic 

applications, Wang et al. [7-9] pioneered text-independent 

speaker recognition systems that analyze crime scene voice 

evidence to establish suspect identification, demonstrating 

particular efficacy in evidentiary voiceprint matching. 

Text-dependent speaker recognition is easy to implement, but 

the obvious limitation is that the same sentence has to be 

uttered during the recognition process [10]. Text-independent 

speaker recognition is challenging and usually requires more 

data to achieve better results, but is more versatile and has 

large developmental potential [11]. 

In recent years, the advancement of deep learning has 

driven extensive adoption of speech spectrograms as acoustic 

feature inputs to neural networks for enhanced recognition 

performance. [12, 13]. Within speaker recognition research, 

in order to improve the recognition rate, Zhang et al. [14] 

demonstrated that directly feeding speech spectrograms into 

neural networks with depth-separable convolution operations 

improves computational efficiency while reducing model 

complexity. To address feature stability, Jia et al. [15] 

proposed linear superposition of short-time speech 

spectrograms to construct pronunciation-stable 

representations for network training and classification. Zhu et 

al. [16] further expanded spectrogram datasets through 

segmentation of single-speaker audio, effectively mitigating 

data scarcity in deep learning model training. Shafik et al. [17] 

enhanced noise robustness by integrating Ladon-transformed 

spectrograms with convolutional neural networks. 

The GANs have demonstrated remarkable success across 

image generation and speech processing tasks, including 

feature representation learning [18], speech conversion [19], 

and emotion conversion [20]. Innovative integrations of 

GANs with other architectures have emerged: Cao et al. [21] 

combined GANs with variational autoencoders (VAEs) to 

disentangle and recombine emotion-related and 

content-related speech features, enabling emotion transfer 

while preserving speaker identity and linguistic content. 

Kameoka et al. [22] developed a GAN variant (Saran) that 

outperformed variational autoencoder-based methods in 

generating high-fidelity speech with improved speaker 
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similarity. Complementing these advances, Chen et al. [4] 

leveraged pre-trained autoencoders to extract discriminative 

otoacoustic emission features, significantly boosting speaker 

recognition performance. 

Despite these advancements, deep learning-based speaker 

recognition systems remain constrained by their dependence 

on large-scale datasets, and the recognition rate is difficult to 

improve effectively when only insufficient data are available. 

To address this limitation, we utilize a ResNet18 network 

containing residual blocks to enhance feature extraction and 

classification [23]. In this paper, text-independent speaker 

recognition is taken into account for its versatility and 

developmental potential. In order to obtain better model 

training results and accurate recognition, generative 

adversarial network is used to generate additional vocal 

features, the generated features are fused with the original 

vocal features, and the fusion results are taken as the input to 

the ResNet18 network.  

 

II. FEATURE EXTRACTION FOR SPECTROGRAMS 

A large amount of information related to the utterance 

properties of speech is contained in the spectrogram, which 

combines the features of spectrum and time-domain 

waveforms to visualize the evolution of spectrograms, with 

any frequency component’s energy at a given moment 

represented by color depth [24]. A spectrogram's lines of 

varying degrees of color are called voiceprints [25]. Speech 

spectrogram is one of the main speech signal features used in 

voiceprint recognition models. The feature extraction process 

for spectrograms is subdivided into pre-emphasis, framing, 

windowing, and short-time Fourier transform (STFT), as 

shown in Fig. 1, where α is the pre-emphasis coefficient, x(n) 

is the speech signal, w(n) is the Hamming window, h(τ-t) is 

the window function, and N is the window length.  

The main purpose of pre-emphasis is to enhance the power 

spectrum of the high-frequency component of the speech 

signal [26]. After the pre-emphasis process, the 

high-frequency portion of the speech signal is increased, and 

the spectrum becomes flatter, making it easier to study and 

analyze the spectrogram later. Framing aims to convert an 

unsteady signal into a short-time steady signal. After framing, 

there will be breakpoints at the beginning and end of each 

frame, so the more frames are segmented, the greater the 

error with the original signal [27]. The purpose of adding a 

window is to make the signal continuous after framing, and 

each frame will show the characteristics of the periodic 

function. To combine the time-domain and 

frequency-domain characteristics of audio signals, this paper 

uses the short-time Fourier transform (STFT) to analyze the 

speech signal segment by segment after the windowing of 

subframes. Thus, the STFT can be reduced to the Fourier 

transform with windowing [28]. 

 

III. GENERATION AND DISCRIMINATION OF NEW 

SPECTROGRAM FEATURES BASED ON GENERATIVE 

ADVERSARIAL NETWORK 

A generative adversarial network consists of a generator 

and a discriminator network. The input to the generator 

network is random noise, and the output is fake data similar 

to real data. The goal of the generator network is to generate 

high-quality fake data that is as close as possible to real data 

distribution. The discriminator network compares the output 

generated by the generator network with the real spectrogram 

to distinguish between real and fake data. The generator 

network continuously optimizes the data it generates to 

increase the difficulty of the discriminator network's 

judgment; the discriminator network optimizes the loss 

function to make the judgment more accurate. The 

relationship between the two forms a confrontation, which 

coined the “adversarial network” term [29]. The two 

networks are trained through constant adversarial training, 

enabling the generator to gradually generate more realistic 

samples and eventually reach an indistinguishable level from 

the real samples. At the same time, the discriminator can 

distinguish the difference between real and generated 

samples. In this paper, the discriminator network compares 

the original spectrogram with the new features generated by 

the generator network so that the latter forms feature similar 

to the original spectrogram. The overall workflow of the 

GANs is shown in Fig. 2. 

(1) Generating new spectrogram features using generator 

network 

The workflow for the generator network is shown in Fig. 3. 

Considering the running time of the generator network and 

the clarity of the generated speech maps, in this paper, the 

size of the network output is set to 64 × 64× 3, i.e., the size of 

the generator network used to generate new speech maps. 

The network input is a random vector of 100 × 1× 1, with the 

aim of generating a different spectrogram each time. The 

vectors are converted to 4 ×4 × 512 arrays by Projection and 

Reshape operations, and then the generated arrays are scaled 

up to 64 × 64 × 3 arrays by a series of the Transposition 

Convolutions, the Batch Norm (BN) layers, and the ReLu 

layers, as shown in Fig. 3. 

The Transposed Convolution layers are used in the 

generator network to transform low-dimensional random 

noise into a high-resolution image. The four Transposed 

Convolution layers are used in the generator network, each 

layer has a decreasing number of filters and padding of the 

edge data. The purpose is to gradually multiply the length and 

width of the matrix while making the number of channels 

gradually decrease. For the final transposed convolutional 

layer, three filters are specified corresponding to each of the 

three RGB channels of the generated image. In the generator 

network except for the output layer using the Tanh activation 

function, all the other layers use the ReLu activation function, 

and the goal is to minimize the discriminative rate of the 

discriminator network. The structure of the generator 

network is shown in Fig. 3, where n is the number of 

convolution kernels, k is size of the convolution kernels, s is 

convolution stride. 

(2) Discriminating new spectrogram features using 

discriminator networks 

The workflow for the generator network is shown in Fig.4. 

The input of the discriminator network is the same as the 

output of the generator network, with the size of 64 × 64 × 3, 

and the predicted score is returned through a series of the 

convolutions, the BN and the Leaky ReLu layers. The output 

of the network is the prediction score, and after several 

iterations, the final ideal situation is that the discriminator 
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network cannot distinguish whether the samples come from 

the output of the generative network or the real spectrogram, 

i.e., the final prediction score is 0.5. 

There are four Convolution layers in the discriminator 

network, each layer has an increasing number of filters and 

padding of the edge data. A Dropout layer is used to add 

noise to the input spectrogram to improve robustness. The 

existence of the BN layers in the discriminator and the 

generator networks helps to deal with training problems 

caused by poor initialization, accelerates model training, and 

improve training stability. However, the BN for all layers can 

lead to sample oscillations and model instability, so the BN 

layers are not used for output layer of the generative network 

and input layer of the discriminator network. In the 

discriminator network, the Leaky ReLu activation function is 

used for all layers except output layer and the goal is to 

maximize the discriminative rate of the discriminator 

network. The structure of the discriminator network is shown 

in Fig. 4, where p is dropout rate, a is size of slope.

 
Fig. 1 Feature extraction process for spectrograms 

 

 
Fig. 2 Overall workflow of the GANs 

 

 
Fig. 3 Generator network structure 

 

 
Fig. 4 Discriminator network structure 
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Fig. 5 ResNet18 network structure model 

 
TABLE. Ⅰ 

NETWORK PARAMETERS 

Input Operator k s p 

2242×3 Conv 7 2 3 
1122×64 MaxPool 3 2 1 

562×64 Basic Block(a) 3 1 1 
562×64 Basic Block(a) 3 1 1 

562×128 Basic Block(b) 1 2 1 

282×128 Basic Block(a) 3 1 1 
282×256 Basic Block(b) 1 2 1 

142×256 Basic Block(a) 3 1 1 
142×512 Basic Block(b) 1 2 1 

72×512 Basic Block(a) 3 1 1 

12×512 Avgpool    
512×n Fullyconnect    

 

Ⅳ SPEAKER RECOGNITION BASED ON RESNET18 NETWORK 

ResNet18 is a conventional deep convolutional neural 

network model with good feature extraction and 

classification performances. It has been widely applied for 

image classification, target detection, and other problems. 

The residual block was introduced to ResNet18 to mitigate 

the problems of gradient vanishing and gradient explosion in 

deep convolutional neural networks [30]. This study selected 

the ResNet18 network for the speaker recognition task. The 

network structure is depicted in Fig. 5. The network 

parameters are listed in Table. Ⅰ, where k is the size of the 

filter convolution kernel, s is the step size, and p is the image 

padding. 

The two structures of the basic block are shown in Fig. 6. 

In the residual block, the shortcut connection allows the layer 

output to directly skip one or more layers and connect to the 

input of the subsequent layers, permitting the network to 

learn the residual information for better feature extraction 

and processing, as shown in Fig.6(a). When a shortcut 

connection is performed in the network, the input and output 

dimensions in the same residual block should be the same, 

and the information in the shallow layer can be directly 

transferred to the deep layer through the jump connection, 

solving the degradation problem and being treated as feature 

reuse. If the front and back dimensions differ, a dimension 

upgrading operation is required, as shown in Fig. 6(b). 

Figure 6(a) contains two filters with 3 × 3 convolutional 

kernels and the ReLu layers, with a stride size of 1 and a 

channel count of 64. The front and back dimensions are not 

the same in Fig. 6(b), so the dimension upgrading operation is 

required. The main branch in Fig. 6(b) contains two filters 

with 3 × 3 convolutional kernels and the ReLu layers. The 

first convolution has a step size of 2, and the second has a step 

size of 1, both with 128 channels. In the ResNet structure, the 

output feature matrix shape of the shortcut and the main 

branch must be the same; therefore, as shown in the right side 

of Fig. 6(b), a 1 × 1 convolution kernel upscales the shortcut 

branch and the resolution is changed by setting the step size 

to 2, which ultimately matches the number of channels. 

 

   
（a）Shortcut connection   （b）Dimension upgrading operation 

Fig. 6 The two structures of Basic Block 
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Ⅴ EXPERIMENTAL SETUP AND RESULT ANALYSIS 

(1) Experimental dataset and parameter settings 

The voice data used in this paper are acquired from the 

voice set of twelve characters in a game, which are recorded 

in Chinese in a professional recording studio. The voices of 

the twelve characters are extracted from the voice set, and 

150 voice segments are randomly selected from each 

character's lines to generate spectrograms. The duration of 

each voice exceeds 2 s. Each spectrogram data set in the 

experiment is subdivided into training and validation sets at 

8:2. 

The original spectrograms and the generated ones are 

preprocessed into images in size of 224 × 224× 3 as input to 

the classification network. The sampling frequency of the 

speech signal is 16,000 Hz, the frame length is 25 ms, the 

frameshift is 10 ms, and the number of Fourier transform 

points is 1024. The model is executed on a graphics 

processing unit (GPU), which is usually more efficient than a 

central processing unit (CPU) for neural network processing, 

and the computer configurations used in the experiment are 

listed in Table Ⅱ. 

 
TABLE. Ⅱ 

EXPERIMENTAL ENVIRONMENT CONFIGURATIONS 

Hardware Platform Parameters 

CPU AMD Ryzen 5 7500F 

6-Core Processor 

GPU NVIDA RTX4060 Ti 

8 GB 

Operating Memory 32GB 

 

The backpropagation algorithm based on stochastic 

gradient descent is applied to the ResNet18. The model 

parameters are optimized by minimizing the Cross-Entropy 

Loss function, which is expressed as the difference between 

the true probability distribution and the predicted probability 

distribution, as shown in Equation (1). The smaller the 

cross-entropy value, the better the model prediction. The 

training options that need to be pre-set in the ResNet18 

network contain the initial learning rate, number of training 

rounds, number of classifications, validation frequency, and 

batch size. Considering the dataset size, computer 

configurations, network structure, and other factors, the 

values of the training parameters are set in Table Ⅲ. 

                2

1

log -
n

i i i

i

Loss y y z
=

= − （ ）                         (1) 

where yi is actual value, zi predicted value, and n sample 

size. 

The proposed framework comprises the GANs model and 

the ResNet18 mode, as shown in Fig. 7. Each speech is 

extracted into a spectrogram as a feature input. In the GANs 

network, spectrograms are used as input to generate new 

spectrograms at different ratios. In the ResNet18 network, 

new spectrograms are fused with the original speech 

spectrograms as input to train the network. In the testing 

phase, 20% of the original spectrograms are input to the 

ResNet18 network to predict the result. 

(2) Experimental program and result analysis 

To verify the effectiveness of spectrograms generated by 

the GANs network, 150 original spectrograms of each 

character are input to the GANs network, and additional 

voiceprint features are generated according to different ratios 

of the original spectrograms. The additional voiceprint 

features generated by the GANs are fused with the original 

speech spectrogram for experimental comparison, and eleven 

groups are designed according to the fusion ratio and labeled 

as Groups 1~11. The number of the original spectrograms in 

each group is 1440, and the new voiceprint features are 

generated for each group at ratios of 0%, 5%, …, and 50%, 

respectively. Group 1 includes only the original spectrograms. 

Group 2 consists of 90 new and 1440 original spectrograms. 

Group 3 contains 180 new and 1440 original spectrograms. 

The eleven sets of data are used to train the ResNet18 

network. A data set of 30 spectrograms pre-separated from 

the original spectrograms at 20% is used for testing the 

recognition rate. The numbers of new and total spectrograms 

in the eleven groups are listed in Table Ⅳ. 

The relationship between the recognition rate and fusion 

ratio is shown in Fig. 8. Experimental simulations are 

performed for the nine data sets, and the results are listed in 

Table. Ⅴ. 
 

 

TABLE. Ⅲ 

TRAINING OPTIONS AND PARAMETERS 

Training options Parameters 

Initial learning rate 0.01 

Number of training rounds 30 
Number of classifications 12 

Validation frequency 20 
Batch size 64 

 

 
Fig.7 Architecture of the proposed framework 
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TABLE. Ⅳ 
THE NUMBER OF NEW SPECTROGRAMS AND TOTAL SPECTROGRAMS 

Group Fusion proportion Number of new spectrograms Total spectrograms 

1 

2 

0% 

5% 

0 

90 

1440 

1530 
3 

4 

10% 

15% 

180 

270 

1620 

1710 
5 

6 

20% 

25% 

360 

450 

1800 

1890 

7 
8 

30% 
35% 

540 
630 

1980 
2070 

9 40% 720 2160 
10 45% 810 2250 

11 50% 900 2340 

 
TABLE. Ⅴ 

RECOGNITION RATE IN DIFFERENT FUSION RATIOS 

Group Fusion proportion Recognition rate Increase Rate 

1 0% 96.39%  
2 5% 97.22% 0.83% 

3 10% 97.47% 1.08% 

4 15% 97.78% 1.39% 

5 

6 
7 

8 

9 

20% 

25% 
30% 

35% 

40% 

97.92% 

97.5% 
97.22% 

96.95% 

96.63% 

1.53% 

1.11% 
0.83% 

0.56% 

0.24% 
10 45% 96.52% 0.15% 

11 50% 96.29% -0.10% 

 

 
Fig. 8 Fusion proportion vs. recognition rate 

 

(1) At fusion ratios below 40%, the recognition rate of 

Group 2~10 with fusion features is improved to a certain 

extent compared with Group 1, including only the original 

spectrograms. Further calculations show no significant 

improvement in the recognition rate at fusion ratios 

exceeding 40%. 

(2) At fusion ratios below 20%, the recognition rate 

increases with the fusion ratio. The reason is that the new 

spectrograms generated by the GANs networks combine 

different features of the original spectrograms, thus enriching 

the diversity of the training spectrograms. And the new 

spectrogram is trained as an additional feature, which 

effectively expands the number of samples and solves the 

problem of insufficient sample size. The recognition rate 

reaches its peak at a 20% fusion ratio, exceeding that of the 

original spectrograms by 1.53%. 

(3) At fusion ratios exceeding 20%, the recognition rate 

starts to decrease with the fusion ratio. At a 50% fusion ratio, 

the recognition rate is already lower than that of the original 

spectrogram data. This can be attributed to the fact that at 

fusion ratios exceeding a certain value, an excessive number 

of new spectrograms with lower resolution and graphical 

quality are generated. Another reason may be the insufficient 

number of samples at too high fusion ratios; the generated 

results will produce overfitting, affecting the recognition 

accuracy when speaker recognition is performed. 

Figure 9 shows the relationship between the recognition 

rate and the number of iterations of several data sets for 

clarity. The recognition rate tends to stabilize after 15 

iterations, the model converges, and the recognition rate 

obtained from the five data sets differs. The fusion feature 

method based on the generative adversarial network 

proposed in this paper can effectively improve the 

recognition rate. 

To further verify the effectiveness of this method, its 

recognition rate is compared with those of several other 

speaker recognition methods for the experimental results, as 

listed in Table VI. The comparative analysis of the results in 

Table VI shows that the recognition performance of Group 1 

before feature fusion in the experiments of this paper is lower 

than the two classical models, D-VECTOR and X-VECTOR, 

while as the fusion ratio grows, the recognition performance 

of the different groups is gradually better than that of the 

existing models. Group 3 with 10% fusion ratio is higher than 

D-VECTOR and lower than X-VECTOR in terms of 

recognition performance, but Group 5 with 20% fusion ratio 

is higher than all the compared models. This proves that the 

proposed method of feature fusion based on a GANs network 

mitigates the problem of low recognition rates due to 

insufficient data samples. 

 
TABLE. VI 

COMPARISON OF RESULTS 

Method Recognition rate 

MFCC+LSTM 95.86% 

GROUP1 96.39% 

D-VECTOR 96.46% 

GROUP3 97.47% 

X-VECTOR 97.62% 

GROUP5 97.92% 
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Fig. 9 Number of iterations vs. recognition rate for several dataset 

 

Ⅵ CONCLUSION 

Training of deep learning network models usually requires 

large data samples, implying that training results are less 

effective if the data samples are insufficient. In this paper, we 

propose a method of speaker recognition based on the GANs 

and ResNet18 network, given that the speech spectrogram 

contains rich voiceprint information, utilizing the speech 

spectrogram as voiceprint features. The GANs network 

generates additional voiceprint features according to different 

ratios of the original spectrogram, and the additional 

voiceprint features are fused with the original spectrogram 

for speaker recognition using the ResNet18. The simulation 

results show that in the example, the recognition rate is 

improved with the fusion ratio less than 40%; when the 

fusion ratio is larger than 40%, the recognition rate hardly 

improves but decreases instead. Therefore, it is appropriate to 

control the fusion ratio within a suitable range when using 

this method for voiceprint recognition. The proposed method 

of speaker recognition based on the GANs and feature fusion 

can effectively improve the recognition rate in the situation of 

insufficient training sample data. This study’s findings 

provide a methodological basis and technical guidance for 

developing speaker recognition systems with high 

recognition rates. 
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