
 

  

Abstract—Conventional iron ore sorting methods are 

intricate and time-intensive, impeding precise characterization 

and resulting in misclassifications. This study introduces a 

novel iron ore image detection model utilizing the ShuffleNetV2 

architecture, incorporating a hybrid attention mechanism 

merging Selective Kernel Attention (SK) and Efficient Channel 

Attention (ECA). The H-Swish activation function is 

implemented in lieu of the standard ReLU, alongside depthwise 

separable convolutions within the lightweight network design, 

with modifications to the stacked cell quantity. Assessments 

conducted on four in-house iron ore datasets demonstrate the 

efficacy of the SEH-ShuffleNetV2s model, boasting a 

streamlined, efficient structure. The enhanced model accuracy 

reaches 94.2%, a 2.1% enhancement over the original 

ShuffleNetV2, with reduced model parameters. Comparative 

analysis reveals that the SEH-ShuffleNetV2s model 

outperforms counterparts in terms of parameter efficiency, 

accuracy, and expedited detection, meeting the demands for 

real-time iron ore identification. 

Index Terms—Selective Kernel Attention, ECA attention, 

Image classification, SEH-ShuffleNetV2 network  

 

I. INTRODUCTION 

RE sorting plays a pivotal role in the mining process. 

Traditional ore sorting methods are often characterized 

by complexity and inefficiency, leading to issues such as high 

energy consumption, considerable costs, poor environmental 

sustainability, and suboptimal efficiency[1]. These factors 

have resulted in relatively low ore production efficiency in 

China. Traditional ore sorting methods not only require 

significant time and labor but also involve cumbersome 

processes that hinder the overall sorting speed, making it 

challenging to meet the requirements of rapid and real-time 

production. Therefore, implementing intelligent sorting 

methods can accelerate the rapid sorting of iron ore, 

significantly reducing subsequent production and labor costs. 

In recent years, traditional machine learning and deep 

learning techniques have been widely used in automated 

feature extraction during the analysis of mineral images. 

Regarding established machine learning algorithms, Patel et 

al. [2] utilized a machine vision-based support vector 
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machine to classify iron ores according to grades, they 

extracted 18 features from 2,200 images and achieved a 

classification error rate of 0.27%. However, this model 

depends on manually provided features and requires 

labor-intensive feature extraction techniques. Singh et al. [3] 

employed radial basis function neural networks to classify 

iron ores in manganese smelting plants, achieving an 

accuracy of only 88.71%. When traditional machine learning 

algorithms are applied to complex datasets, they may 

introduce biases that influence recognition results and 

demand substantial processing time. In contrast, deep 

learning can extract image features with greater precision, 

thereby reducing information bias. Deep learning has 

recently made remarkable progress in the field of mineral 

classification. For example, Apel et al. [4] applied transfer 

learning. They froze all convolutional layers of VGG16 and 

customized the fully connected layers, achieving an ore 

classification accuracy of 82.5%. However, the limited 

sample size limits its generalization ability. Wang et al. [5] 

utilized the Wu-VGG19 transfer network to conduct binary 

classification of black tungsten ore and surrounding rock, 

achieving a recognition rate of 97.51%. Baraboshkin et al. [6] 

and Bai Lin et al. [7] employed Inception v3 to classify 5 and 

15 types of ores. Xiao D et al. [8] utilized an infrared 

spectrometer to acquire spectral images of ores. These 

images were then fed into a custom convolutional neural 

network (CNN) for training, achieving an overall accuracy of 

98.11% for hematite, granite, magnetite, chrysotile, and 

chlorite. Nevertheless, these methodologies often involve 

complex architectures and a large number of parameters, 

resulting in suboptimal training efficiency and limited 

practicality. To address this issue, the present study proposes 

a simplified iron ore image detection model based on 

ShuffleNetV2. The improved model effectively overcomes 

the limitations imposed by traditional methods in the 

detection of iron ore. 

The primary contributions of this research are outlined 

below: 

The model integrates SK and ECA attention mechanisms 

to improve its feature extraction capabilities, allowing it to 

selectively amplify relevant features while suppressing 

irrelevant information. 

The H-Swish activation function was employed instead of 

ReLU to address the "neuronal deactivation" phenomenon 

present in the original model and to prevent the vanishing of 

negative gradients. 

The number of stacked network units is reduced, this 

simplification leads to a less complex network structure and 

replaces the traditional max-pooling layer with depthwise 

separable convolution. A Dropout layer with a dropout rate of 
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0.3 is added before the final fully connected layer, effectively 

mitigating model overfitting. 

 

II. RELATED WORK  

A. CNNs and Lightweight Neural Networks 

Convolutional Neural Networks (CNNs) have been widely 

applied in various fields, such as image processing, video 

analysis, and speech recognition. These networks are 

designed to extract features by performing convolutional 

operations. The following section will discuss some of the 

more prominent CNN architectures, such as ResNet [9], 

DenseNet [10], and Transformer. These architectures have 

attracted much attention. The development of sophisticated 

architectures has brought about remarkable progress in 

feature extraction capabilities. However, these architectures 

often require significantly greater depth and width than 

previous networks, leading to millions or even billions of 

parameters. This increased complexity demands larger 

storage capacity and substantial computational resources. In 

platforms with limited computational resources, such as 

those used in iron ore detection, the necessity for efficient and 

lightweight algorithms is utmost importance. The goal of 

lightweight networks is to optimize the network architecture 

and reduce the number of parameters. In this way, high 

efficiency and low resource consumption can be achieved 

while maximizing performance. The following will discuss 

classic lightweight neural networks, such as MobileNet 

[11]-[13], ShuffleNet [14],[15], and GhostNet [16]. These 

networks mainly use depthwise separable convolution 

(DWConv). 

 

B. ShuffleNet V2 

Ma et al. suggested enhancing algorithm efficiency by 

advocating for the preservation of a consistent channel count 

in the ShuffleNetV2 network, an evolution of ShuffleNetV1. 

This network minimizes convolutional computations and 

group numbers while integrating channel partitioning and 

shuffling techniques. Serving as a lightweight architecture 

for high-performance Convolutional Neural Networks 

(CNNs), ShuffleNetV2 adeptly harmonizes speed and 

accuracy. 

In the ShuffleNetV2 network model, convolutional blocks 

are divided into two modules: the basic module (a) unit1 and 

the downsampling module (b) unit2. In the network 

architecture, the input feature map is first partitioned into 

channels, generating two branches, as shown in Figure 1a. 

The right branch incorporates three convolution operations: 

one 3×3 depthwise-separable convolution and two 1×1 

convolutions. Conversely, the left branch consists of an 

identity mapping. As illustrated in Figure 1b, in the absence 

of channel partitioning, the convolution operations of the 

right branch are characterized by a depthwise-separable 

convolution with a stride of two. Conversely, the left branch 

incorporates a depth-separable convolution with a stride of 

two and a standard convolution. Finally, the outputs of the 

two branches are concatenated and then subjected to channel 

shuffling to enable information exchange. The authors 

proposed the concept of channel shuffle, which involves a 

sparsely connected channel approach. This approach divides 

the input feature map into multiple subgroups and uses 

different convolution kernels to perform group convolutions. 

This process enables information exchange among different 

groups. 

The fundamental feature extraction module of the 

ShuffleNetV2 model consists of several key components. 

"Conv" is an abbreviation for "standard convolution," while 

"BN" denotes "batch normalization". The term "DWConv" 

represents "depthwise separable convolution," which 

includes both depthwise and pointwise convolutions. 

"ReLU" represents the term activation function, and 

"Concat" denotes channel splicing. As shown in Figure 1, 

unit 1 corresponds to the Basic module, and unit 2 is 

designated as the Downsampling module. The ShuffleNetV2 

unit is employed in stage 2, stage 3, and stage 4. 

 

 
Fig. 1. ShuffleNetV2 unit. 

 

It can be argued that the ShuffleNetV2 network is most 

distinct from other traditional deep learning networks 

because of its relatively small network parameter scale. The 

parameter counts of commonly used deep learning networks, 

such as ResNet50, GoogLeNet, and EfficientNet, are 

tabulated in Table I. 
TABLE I 

COMPARISON OF PARAMETER COUNTS FOR DIFFERENT NETWORKS 

Network Name 
Number of 

Parameters/M 
Computational 
Load Flop/G 

ResNet50 

GooleNet 
EfficientNet 

ShuffleNetv2 2× 
ShuffleNetv2 1× 

ShuffleNetv2 0.5× 

25.66 

10.31 
6.54 

7.40 
2.30 

0.35 

4.11 

1.50 
0.59 

0.59 
0.146 

0.041 

 

C. Attention Mechanism 

The attention mechanism is a sophisticated technique that 

emulates the selective focusing process inherent in human 

vision. It has been widely applied in the field of deep learning, 

particularly when handling sequential and image data. The 

schematic diagram of the SK attention and ECA attention 

module is shown in Figure 2 and Figure 3. 
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Fig. 2. Selective Kernel Convolution. 

 

(1) Selective Kernel Attention 

The main features and functional aspects of the SK 

module[17] are described below, the schematic diagram of 

the SK attention module is shown in Figure 2. 

Adaptive rescaling: Initially, the SK module acquires the 

global feature representation for each channel through global 

average pooling, commonly referred to as the "squeeze" 

operation. Subsequently, it employs a fully connected layer 

to generate channel weights. These weights are utilized to 

rescale the features adaptively, and this process is termed 

"excitation". 

Depth separable convolution: Conventionally, the SK 

module utilizes depthwise separable convolutions. The 

purpose is to decrease computational complexity and reduce 

the number of parameters, all the while maintaining the 

feature representation capability. 

Channel selection: Through the application of channel 

weighting mechanisms, the SK module is able to 

automatically identify which channels are more crucial for 

the current task. Consequently, this enhances the quality of 

the feature representation. 

Improved information flow: The SK module adjusts 

channel information dynamically. This adjustment enhances 

the model's capability to capture vital details across various 

feature levels. 

The SK module substantially enhances both performance 

and efficiency of the model. This is particularly true for 

visual tasks such as image classification, where it is widely 

used. 

 

(2) ECA attention mechanism 

The ECA attention mechanism[18] is an extended version 

of the SE variant. It is incorporated into the relevant model. 

Subsequently, in the ECA module, a 1×1 convolutional layer 

is added after the global average pooling layer, thereby 

eliminating the necessity of a fully connected layer. This 

approach prevents dimensionality reduction, captures 

cross-channel relationships, and attains high performance 

while utilizing parameters efficiently. Specifically, the ECA 

module employs 1D convolutions to expedite cross-channel 

information exchange, and the kernel size is adaptively 

determined by a function. This enables layers with a larger 

number of channels to have more extensive cross-channel 

interactions. The primary objective of the ECA attention 

mechanism is to adaptively rebalance the weights of channel 

features. This enables a more focused emphasis on prominent 

features while suppressing less significant ones. This 

enhances the network's representational ability without 

substantially increasing the number of parameters or 

computational complexity. The ECA module achieves 

remarkable performance while keeping the model complexity 

relatively low. The ECA attention mechanism contributes to 

a further enhancement of the performance of ShuffleNetV2. 

The structure of the ECA module is shown in Figure 3. The 

operation of the ECA module will be described in detail 

below. 

After acquiring the aggregated features through Global 

Average Pooling (GAP), the ECA module produces channel 

weights by applying a fast 1D convolution with a kernel size 

of k. Specifically, the value of k is adaptively determined 

based on a meticulously designed mapping of the channel 

dimension C. The operational mechanism of the ECA module 

relies on a specific mapping function. The details of the 

adaptive function will be described as follows. 

 

 ( )
( )

2
log C b

k C

odd




+
= =  (1) 

 

Where | | represents the nearest odd number to t. In the 

experiments,  and 1b = . Through this mapping, 

high-dimensional channels have longer interactions, while 

low-dimensional channels use non-linear mapping for shorter 

interactions. 

Finally, the channel weights are calculated using the one - 

dimensional convolution (1D) with a kernel size of k. The 

formula is as follows. 

Finally, calculate the channel weight using the 

one-dimensional volume(1D) of the volume kernel k, the 

formula is as follows. 

 

 ( )( )k
w C1D y=  (2) 

 

Here, w  represents the channel weight,   denotes the 

sigmoid function, and C1D stands for a one-dimensional 

convolution with the sigmoid function applied to it. 

The ECA module has fewer parameters than SE 

module,which consequently reduces the model's complexity. 

This design choice of the ECA module ensures excellent 

performance and remarkable efficiency.  

The attention mechanism enables the model to focus 

autonomously on more crucial information during the input 

data processing stage, thereby enhancing the model's 

performance and efficiency. 
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Fig. 3. Efficient Channel Attention. 

 

D. H-Swish and ReLU Activation Function 

As depicted in Equation (3), the Swish activation function 

surpasses the ReLU activation function and notably enhances 

the accuracy of the network. However, the computational and 

differentiable processes of the Swish activation function are 

intricate, posing a challenge to quantization. To address this 

issue, this paper employs the H-Swish activation function. 

The H-Swish activation function was introduced in 

MobileNetV3 as an approximation of the Swish activation 

function. The corresponding formulas are presented in 

Equation (4) and Equation (5). 

Compared with the Swish activation function, H-Swish 

activation function reduces computational complexity and is 

more suitable for hardware acceleration. In contrast to the 

traditional ReLU activation function, the H-Swish activation 

function offers a smoother gradient flow and circumvents the 

common "dead neuron" issue. For negative input values, the 

H-Swish activation function provides smooth transitions 

rather than causing the gradient to vanish.  

Owing to its straightforward computational architecture, 

the H-Swish activation function operates with higher 

efficiency on actual hardware platforms, reducing the 

dependency on computational resources, especially in the 

context of low-power devices. 
 

 ( ) ( )
1

1
x

Sigmoid x x
e


−

= =
+

 (3) 

 

 ( ) ( )Swish x x x=   (4) 
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( )

( )

0, 3
6 3

, 3
6

3 / 6,

x
ReLU x

H Swish x x x x

x x otherwise

 −
+ 

− =  =  +
  +

 (5) 

 

 ( ) ( )( )ReLU6 x = min max x,0 ,6  (6) 

 

The initial ShuffleNet V2 network employs the ReLU 

activation function. The primary advantages of the ReLU 

activation function include its computational simplicity, high 

operational efficiency, and its capability to alleviate issues 

like gradient vanishing and overfitting. However, one 

limitation of the ReLU activation function is that it sets 

negative gradients to zero. This can potentially cause neurons 

to become inactive since not all input data is activated by it. 

The formula for ReLU is given in equation (7). 
 

 
0

0

x x
ReLU(x) = max(0, x)

others


=

 
 
 

 (7) 

 

The graph of Swish and H-Swish activation functions are 

shown in Figure 4. 
 

 
Fig. 4. Swish and H-Swish activation functions. 

 

By effectively replacing the ReLU activation function with 

the H-Swish activation function, the model's nonlinear 

modeling capability is strengthened. In comparison with 

ReLU, the H-Swish activation function shows smoother 

behavior at the boundaries. This helps alleviate the gradient 

vanishing problem. Additionally, it demonstrates higher 

computational efficiency, which in turn improves the overall 

training speed and stability. Consequently, the adoption of 

the H-Swish activation function results in a substantial 

improvement in both the overall training speed and stability.  

 

III. PROPOSED METHOD 

A. SEH-ShuffleNetV2s Model Structure 

The original architecture of the ShuffleNetV2 1× network 

and the improved network are depicted in Figure 5.  

In Figure 5(a), the input feature map has dimensions of 

224×224×3. Initially, 24 standard 3×3 convolutions with a 

stride of 2 are employed to extract features. Subsequently, 

downsampling is carried out via a max-pooling layer. The 

network is then split into three distinct stages, each contained 
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Fig. 5.The original and improved network structure. 

 

multiple ShuffleNet V2 units. The repeat of unit2 and unit1 

are 1:3, 1:7,  1:3. At the end of each stage, a standard 1×1 

convolution is applied to increase the number of channels. 

This is combined with a global pooling layer to integrate 

feature information and prevent overfitting. The number of 

channels in each stage is 116, 232, and 464. 

The improved network structure is shown in Figure 5(b). 

In contrast to the original ShuffleNet V2 1× presented in 

Figure 5(a), the enhanced network integrates SK modules 

into Unit1 and Unit2, thus improving the network's capacity 

to capture image details. Meanwhile, upon the introduction of 

the ECA attention mechanism, the interdependence among 

the feature map channels is reinforced. This enables the 

intelligent enhancement or suppression of feature 

information and further boosts the network performance. To 

tackle the problem of "neural deactivation", the H - Swish 

activation function is employed to substitute the traditional 

ReLU activation function in the standard 3×3 and 1×1 

convolution operations. Since we are only classifying four 

types of iron - ore images, the number of times Unit1 and 

Unit2 are stacked in each stage is reduced to one to simplify 

the network structure while ensuring performance. 

Additionally, for more precise feature extraction, a 3×3 depth 

separable convolution with a stride of 2 is employed to 

substitute the conventional max-pooling layer. Before the 

final fully - connected layer, a dropout layer (with a dropout 

rate of 0.3) is also added to effectively mitigate the model's 

overfitting problem. 
 

B. Hybrid Attention Mechanism 

SK module: For the convolution layer within each stage, 

multi-scale convolution kernels (including 3x3, 5x5, etc.) can 

be used. Moreover, the size of the convolution kernel that is 

suitable for the current input can be dynamically chosen 

through the selection mechanism of the SK module. This, in 

turn, improves the capability to extract information across 

different scales. 

ECA module: After the convolution operation in each 

stage, the ECA module is incorporated to carry out weighted 

processing for the channel attention mechanism. It 

dynamically assigns a weight to each channel with the aim of 

enhancing the features of important channels while 

suppressing the features of unimportant channels. 

The module diagrams after the conversion are shown in 

Figure 6. 
 

 
Fig. 6. The module after the conversion. 

 

The SK module facilitates multi-scale feature extraction. 

Through the adaptive selection of the convolution kernel size, 

the model's capacity to represent information across various 
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scales can be improved. The ECA module offers an effective 

channel attention mechanism. This mechanism not only 

reduces the computational cost but also efficiently captures 

the interdependencies among channels and boosts the feature 

representation ability. When these two attention mechanisms 

are integrated with ShuffleNetV2, the performance of the 

model can be further enhanced. This combination allows 

maintaining efficient computational performance while 

improving accuracy. 

 

C. Activate function replacement module 

The H-Swish activation function integrates the ReLU6 

function with constant multiplication to eliminate the need 

for exponent calculations and sigmoid operations, 

particularly beneficial in hardware acceleration contexts like 

GPUs and TPUs, reducing computational complexity. This 

activation function offers a seamless activation mode akin to 

Swish but is more streamlined than Sigmoid. By addressing 

the "dead neuron" issue of ReLU and maintaining a favorable 

gradient flow with a smoother activation pattern that avoids 

the abrupt "dead zone" of traditional ReLU in negative 

intervals, H-Swish enhances model stability during training, 

effectively preventing the dead neuron problem. Its simple 

hardware implementation efficiently enhances inference 

speed, especially in edge computing, reducing energy 

consumption and improving performance under resource 

constraints while maintaining computational efficiency. 

The ReLU activation function following the initial layer's 

convolution operation has been substituted with H-Swish. 

Within each bottleneck module, the ReLU comprises the 

ReLU following the 1×1 convolution and the ReLU at the 

module's output. Furthermore, the ReLU preceding the fully 

connected layer has also been exchanged. 

 

D. Network Structure Adjustment 

Since this paper only aims at classifying four different 

types of iron ore images, the classification task is relatively 

straightforward. Consequently, the depth of the required 

network model does not have to be excessive. Therefore, in 

order to decrease both the parameter count and the 

computational complexity, the number of ShuffleNetV2 

Unit1 stacks in Stage 2, Stage 3, and Stage 4 of the original 

network is decreased to one. After the 3×3 conventional 

convolution, the original network employs the max-pooling 

layer for downsampling to decrease the parameter number. In 

contrast, the enhanced network substitutes the max-pooling 

layer with a 3×3 depth-separable convolution. This 

convolution has a relatively small parameter count and a 

stride of 2. During the training process, the majority of the 

convolution layers are frozen, and only the last fully 

connected layer or some of the upper layers of the network 

are updated. The weights derived from the pre-training of 

ShuffleNetV2 can be utilized to reduce the training time and 

avoid the necessity of training the entire network from the 

beginning. 

After the improvement and experimental verification of 

the methods mentioned above, it was determined that these 

enhancements were effective and could significantly boost 

the accuracy and speed of iron ore image classification. In the 

following section, the experimental results will be presented 

together with the corresponding analysis. 

 

IV. EXPERIMENTAL AND ANALYSIS 

A. Experiment Details 

(1) Dataset and environment 

This study utilizes an iron ore dataset assembled by our 

research group via web crawling and on-site imaging. The 

dataset is composed of images of four common types of iron 

ore, namely hematite, magnetite, siderite, and chlorite, and 

shows a substantial data imbalance. To address the problem 

of data imbalance, this study initially conducts data 

equalization and subsequently expands the datasets by 

applying simple random cropping and mirroring techniques. 

Seventy percent of the dataset is allocated for training, and 

thirty percent is set aside for testing. The training set contains 

3947 iron ore images, and the test set contains 1692 iron ore 

images. 

The network model for classifying iron ore images was 

developed in the Pycharm integrated development 

environment (IDE) by leveraging the Pytorch framework. It 

was trained on an NVIDIA GeForce GTX 1060Ti graphics 

processing unit (GPU) with the utilization of Pytorch version 

2.3.1 and Python version 3.11. 

 

(2) Parameter Settings 

In the experiment, the Stochastic Gradient Descent with 

Momentum(SGD) optimizer was employed. It had a 

momentum value of 0.9, an initial learning rate of 0.001, and 

a weight decay coefficient of 3E-4. The training process 

comprised one hundred iterations, where the batch size for 

each iteration was set to 32. The dropout rate was set to 0.3. 

The loss function employed was the cross-entropy loss. The 

images were randomly rotated horizontally, cropped to a size 

of 224×224 pixels, and uniformly normalized. Subsequently, 

their final dimensions were standardized to 224×224×3. 

 

B. Experiment Result 

During the training of deep learning network models, 

accuracy serves as a key metric for measuring the correctness 

of model predictions, while the loss value acts as an indicator 

to quantify the discrepancy between predicted results and 

actual outcomes. These two metrics are fundamental in 

evaluating model performance: accuracy reflects the 

proportion of correctly classified instances, directly 

indicating the model's prediction precision; the loss value, 

calculated through specific cost functions (e.g., cross-entropy 

loss or mean squared error), measures the cumulative 

difference between predictions and ground-truth labels, 

guiding the optimization process by providing gradients for 

parameter updates. Together, they offer complementary 

insights into model behavior, enabling researchers to balance 

prediction accuracy with the minimization of systematic 

errors during iterative training. 

The experimental results of the original network training 

are depicted in Figure 7. It can be noticed that the loss value 

for the training set is comparatively low, and the accuracy of 

the test set is high, reaching 92.1%. 
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Fig. 7.  Loss and accuracy curves for original Shufflenetv2 1× 

 

The results of the modifications made to the original 

network are illustrated in Figure 8. 
 

 

 
Fig. 8.  Loss and accuracy curves for ECA-Shufflenetv2-SK and original 
network.  

 

In Figure 8 Shufflenetv2 represent the original network, 

whereas ECA-Shufflenetv2-SK denotes the network after 

integrating the combined attention mechanism. As is evident, 

compared with the original network, the network 

incorporating the SK and ECA attention mechanisms in Unit 

1 and Unit 2 exhibits higher accuracy, faster convergence, 

and smaller fluctuations during the convergence process. 

Compared with the original network, the training set loss of 

the network with the addition of hybrid attention mechanism 

is 0.16 lower than that of the original network; The accuracy 

of the test set is 1.1% higher than that of the original network. 

Moreover, the loss value is notably lower, which further 

validates the effectiveness and reliability of the improved 

network, as well as the enhanced performance brought about 

by these alterations. 

This study presents several modifications to the existing 

network, including replacing the ReLU activation function 

with the H-Swish activation function and adjusting the 

stacked unit ratio in Stages 2, 3, and 4 to 1:1. The efficacy of 

these modifications is depicted in Figure 9, 
 

 
 

 
Fig. 9. A comparison chart of the loss values and accuracy of three models. 
 

In Figure 9 Shufflenetv2 represents the original network, 

ECA-Shufflenetv2-SK denotes the network with the hybrid 

attention mechanism, and SEH-Shufflenetv2s signifies the 

enhanced network. The improved network demonstrates 

notably superior accuracy, reduced loss, and quicker 

convergence. Compared with the original network, the 

improved SEH-Shufflenetv2s network has a training set loss 

0.21 lower than the original network, the accuracy of the test 

set is 2.1% higher than that of the original network. These 
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outcomes validate the effectiveness of the proposed 

enhancements, enhancing network performance and 

classification accuracy. The application of the proposed 

methodologies and subsequent comparative experimental 

analysis has led to a marked decrease in training set loss and a 

significant enhancement in test set accuracy. Subsequent 

sections will present various evaluation metrics for both the 

original and enhanced networks, thereby affirming the 

effectiveness and feasibility of the implemented 

enhancements. 

 

C. Analysis and Evaluation 

This study employs precision, recall, and accuracy as the 

metrics to assess network performance. In the confusion 

matrix, TP (True Positive) refers to the number of samples 

correctly classified as positive, FP (False Positive) refers to 

the number of samples incorrectly classified as positive, FN 

(False Negative) refers to the number of samples incorrectly 

classified as negative, and TN (True Negative) refers to the 

number of samples correctly classified as negative. The 

specific formula for the classification evaluation index can be 

obtained from the confusion matrix shown in Table II. 

 
TABLE II 

CONFUSION MATRIX  

Confusion matrix Actual results 

Forecast TP FP 

results FN TN 

 

Precision measures the proportion of correctly classified 

positive samples out of the total number of positive samples 

identified by the model. 

 

 
TP

P
TP FP

=
+

 (8) 

 

Recall is a measure of the proportion of correctly classified 

true positive samples out of all true positive samples. 

 

 
TP

R =
TP + FN

 (9) 

 

Accuracy refers to the proportion of correctly identified 

samples (both positive and negative) among the total number 

of samples. 

 

 
TP +TN

Acc =
TP +TN + FN + FP

 (10) 

 

These metrics are employed to assess the classifier's ability 

to correctly classify both positive and negative samples in 

terms of accuracy and overall performance. By leveraging 

these quantitative metrics, researchers can gain a more 

comprehensive understanding of the classifier's performance 

across different scenarios. This understanding facilitates the 

optimization of the classification algorithm and enhances its 

effectiveness. 

The confusion matrix of the three models in this paper is 

shown in Figure 10. The following three images are 

Shufflenetv2 network, ECA-Shufflenetv2-SK, and 

SEH-Shufflenetv2s network, respectively. In this matrix, the 

rows represent the predicted classes by the model, the 

columns represent the actual classes, and the values on the 

diagonal indicate correct predictions by the model, i.e., the 

predicted classes are consistent with the actual classes. The 

larger the number of predicted samples on the diagonal of the 

confusion matrix, the better the model's performance.  

 

 
(a) Shufflenetv2 confusion matrix 

 

 
(b) ECA-Shufflenetv2-SK confusion matrix 

 

 
(c) SEH-Shufflenetv2s confusion matrix 

 

Fig. 10.  Confusion matrix of the three models. 
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Through observation, it can be found that the overall 

classification accuracies of the original model, the model 

with hybrid attention mechanism, and the improved model 

are 91.4%, 93.27%, and 94.2%. The improved 

SEH-ShuffleNetV2 correctly classified 78 more images 

compared to the original network The improved model 

performs best in detection hematite, following closely behind 

are siderite, chlorite, and magnetite. The model demonstrates 

superior performance in the iron ore image classification task, 

with high overall accuracy and good recognition ability for 

each iron ore type, but there is some misclassification 

phenomenon, which may be related to the feature similarity 

of iron ore images. 

A comparison of the evaluation metrics among the 

improved network and other networks is presented in Table 

Ⅲ. 

 
TABLE Ⅲ 

EVALUATION METRICS FOR DIFFERENT NETWORKS 

Method Recall(%) Precision(%) Accuracy（%） 

VGG16 88.82 90.12 89.16 

GLCM+SVM 91.19 92.38 92.15 

Moiblenetv2 91.83 91.81 91.92 

Shufflenetv2  92.04 91.95 92.10 

ECA-Shufflen
etv2-SK 

93.22 93.10 93.21 

SEH-Shufflen
etv2s 

94.11 94.04 94.20 

 

The table provided illustrates that the Shufflenetv2 

network exhibits superior performance in recall, precision, 

and accuracy compared to alternative networks, while 

maintaining a lightweight architecture with minimal 

parameters. Specifically, the ECA-Shufflenetv2-SK network 

demonstrates a 1.16% higher recall, 1.15% higher precision, 

and 1.1% higher accuracy than the baseline Shufflenetv2 

network. Furthermore, the improved Shufflenetv2 network 

shows enhancements of 2.07% in recall, 2.09% in precision, 

and 2.1% in accuracy over the original network. These 

notable advancements in performance metrics underscore the 

efficacy and validity of the enhanced model, surpassing the 

original model for tasks related to iron ore image 

classification. 

The subsequent section presents the results of the iron ore 

image classification, as illustrated in Figure 11. 

 

 

 

 
 

 
 

 
 

Fig. 11.  Some iron ore image classification results. 
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The test images demonstrated a mean recognition accuracy 

of above 94%, with mean recognition speeds ranging from 

0.1 to 0.5 seconds. These results indicate that the enhanced 

model in this study exhibits superior performance in terms of 

classification accuracy and speed when compared to other 

networks. 

 

V. CONCLUSION 

In the realm of iron ore sorting, conventional methods and 

manual detection face obstacles stemming from the similarity 

of ore characteristics, occlusion, and complex environmental 

factors. This study introduces a streamlined detection model 

for classifying iron ore images. The model integrates an SK 

module at each phase to determine an appropriate 

convolution kernel size for the current input, thereby 

improving the extraction of feature information across 

different scales. To enhance the prominence of crucial feature 

information while suppressing less significant features, an 

ECA module is introduced. The ShuffleNetV2 activation 

function module is adapted to enhance the efficiency of the 

H-Swish activation function, mitigating neuron 

"inactivation" and promoting model training stability and 

performance. Furthermore, the network structure is 

optimized to reduce both parameter count and recognition 

time effectively. The efficacy of this approach is validated by 

achieving a recognition accuracy of 94.20% across four 

self-compiled iron ore image datasets. The enhanced model 

showcases versatility in diverse production settings, 

exhibiting notable enhancements in classification accuracy 

and inference time reduction. Future research will focus on 

addressing additional challenges in iron ore image 

classification within more complex contexts. Comprehensive 

optimization and iterative enhancements are anticipated to 

further augment the model's practical utility, ensuring 

alignment with the varied demands of real-world 

applications. 
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