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Re-Evaluating the Performance of MIMSA as a
Criterion for Time-Series Model Selection

Maha Rani Pratama, Jonathan Hoseana, Agus Sukmana

Abstract—A novel time-series model selection criterion,
known as MIMSA (Mutual Information Model Selection
Algorithm), has demonstrated satisfactory performance in
a recent study, but not so much in an earlier study. In
this paper, we conduct modest numerical experiments to
re-evaluate the performance of MIMSA in detecting time-series
models and producing predictions, in comparison to standard
information- and error-based criteria. The results confirm that
MIMSA demonstrates less superior performance in detecting
time-series models, and a tendency to select higher-order
models. Furthermore, the prediction performance of MIMSA
varies depending on the type of the model used to generate the
actual data, with better performance observed in the cases of
AR models with smaller orders than in the cases of MA models.

Index Terms—time series, model selection, MIMSA, AR, MA.

I. INTRODUCTION

HE theory of time series and its wide-ranging
applications have been a fascinating research subject

for decades. Over the last three years, in particular, time
series theory has been applied in predictive studies of various
real-world phenomena, including wind speed [29], traffic
flow [42], stock prices [32], [45], and climate dynamics
[37]. Complementarily, its prediction accuracy has also been
assessed from the viewpoint of machine learning theory [38].
On the other hand, the problem of time-series model
selection has also been a subject of extensive research
[12], [13], with the existence of various criteria to
evaluate the suitability of each of some pre-specified
candidate models. The core of the problem lies in the
identification of a single model which best represents
a given dataset, possesses the most desirable properties,
and can subsequently be employed for data predictions.
To ensure the accuracy of such predictions, the criterion
used for the model selection must be chosen judiciously.
There are two classes of criteria from which one could
choose a desired criterion: information-based criteria and
error-based criteria. Information-based criteria are built upon
likelihood functions, and are formulated with the aim of
achieving an optimal balance between the model’s fittingness
for the dataset and the model’s complexity. Popular
information-based criteria include AIC (Akaike Information
Criterion) [4], BIC (Bayesian Information Criterion) [39],
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AIC. (Corrected Akaike Information Criterion) [16], and
HQIC (Hannan-Quinn Information Criterion) [11]. On the
other hand, error-based criteria assess the performance of
a model by comparing actual dataset values with those
predicted by the model. Common error-based criteria include
RMSE (Root Mean Square Error) [33], MAPE (Mean
Absolute Percentage Error) [24], and MASE (Mean Absolute
Scaled Error) [19].

Information-based criteria for model selection have been
applied in numerous studies. AIC alone, for instance, has
been applied in disease mapping [23], business forecasting
[30], and copula fitting [10], [7]. Moreover, as an alternative
to BIC, AIC has been applied in distribution fitting [9],
[44], portfolio risk estimation [21], non-life insurance capital
computation [35], and carbon-dioxide emission analysis
[31]. Likewise, AIC. has been applied in studies on the
spread of COVID-19 [1], the forecasting of value-added
tax [34], and the distribution of passenger flow at rail
stations [43], while HQIC has been applied in studies on
the effect of climate risks on bond yields [14], [15] as
an alternative to AIC. On the other hand, the error-based
criterion RMSE has been applied in automatic building
extraction [40], sea-level oscillation prediction [22], battery
state-of-charge identification [5], and electric power system
operation [26], while MAPE and MASE have been applied
as alternatives in studies on short-term mortality forecasting
[17], COVID-19 cases forecasting [41], residential building
energy efficiency [20], and axial compression capacity of
circular concrete-filled steel tubes [8].

In addition to the above criteria, the so-called LIC
(Likelihood Information Criterion) and its derivatives are
also known for use for time-series model selection [27].
Such criteria are information-based, and measure how well
a model captures the relationship between past and future
data in a time series, while also accounting for the model’s
complexity and sample size. Since the information generated
by LIC encompasses various aspects of dependency within a
time series, an algorithm has been developed to implement
this criterion, known as MIMSA (Mutual Information Model
Selection Algorithm) [2], [3].

In a recent study conducted by Akca and Yozgatligil [3],
both MIMSA and BIC demonstrate the best performance
in the selection of time-series models representing given
time-series datasets. However, contrasting results are found
in an earlier thesis by Akca [2], where the performance of
MIMSA is observed to be inferior to that of BIC. These
differing results on the performance of MIMSA constitute
the motivation of the present study. In the present study,
we thus aim to re-evaluate the performance of MIMSA,
through numerical simulations involving two modest types of
time-series models: AR and MA, and carry out performance
comparisons using the aforementioned information-based
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and error-based criteria. At each stage of our simulations,
the best model selected using MIMSA is evaluated to assess
the accuracy of its predictions.

We organise our work as follows. In the upcoming section
II, we begin by defining the theoretical concept of mutual
information and subsequently MIMSA itself, and provide
empirical methods to estimate both mutual information and
MIMSA based on given datasets. In section III, we describe
an algorithm utilised in our numerical simulations, and
analyse the results it generates with the aim of re-evaluating
the performance of MIMSA. In the final section IV, we state
our conclusions and describe avenues for further studies.

II. MUTUAL INFORMATION AND MIMSA

In this section, we first review the theoretical concept of
mutual information, and describe a method to estimate its
value in an empirical setting (subsection II-A). Subsequently,
we recall the theoretical definition of MIMSA, and also
describe a method to estimate its value in an empirical setting
(subsection II-B).

A. Mutual information

Informally, mutual information is a metric representing the
degree at which two variables mutually depend or cooperate
[2], [3]. For an illustration, let X be a random variable having
range Rx = {1,2,3,4,5,6} representing the outcome of
rolling a fair die, and Y be a random variable having
range Ry = {0,1} taking the value O if the outcome of
the same roll is even and 1 otherwise. In this case, the
value of Y provides information on the value of X, and
vice versa. We therefore say that the two random variables
share mutual information. On the other hand, if Z denotes
a random variable having range Ry = {1,2,3,4,5,6}
representing the outcome of rolling a different fair die,
then the random variables X and Z do not share mutual
information. Indeed, the outcome of the first roll provides
no information whatsoever on the outcome of the second
roll.

More formally, the mutual information between two
random variables X and Y with ranges Rx and Ry is

defined as
N= [ [t £ o o

Ry Rx

where fx and fy denote the marginal probability density
functions of X and Y, while fxy denotes the joint
probability density function of X and Y [2], [3]. The
formula (1) constitutes a theoretical formula of the mutual
information between two random variables. Let us next
provide a method to estimate mutual information in an
empirical setting.

Let X = (21,...,zn) and YV = (y1,...,yn) be datasets
of values of two random variables X and Y. Fix a positive
integer n, denoting the number of subintervals into which
the intervals [min(X’), max(X’)] and [min(}), max(})’)| are
to be partitioned. Defining the subintervals’ widths

max(X) — min(X)

hax = 2)

and hy _ Inax(y) ; min()})’ 3)

we partition the interval [min(X’), max(X)] into n adjacent

subintervals I7¥, ..., I, where
I¥ = [min(X) 4 (i — 1)hy, min(X) + i hy)
for every i € {1,...,n — 1}, and

IY = [min(X) + (n — 1)hxy, max(X)],

n

and the interval [min()),max(})] into n adjacent
subintervals I, ..., I, where
1Y = [min(Y) + (i — 1)hy, min(Y) + i hy)

for every i € {1,...,n — 1}, and
[} = [min(Y) + (n — 1)hy, max(Y)].
Next, letting
S={(@,m),---, (@n,yn)}, “)
we define for every i,5 € {1,...,n},

|{(a:,y) ES:JZEI{YH’

X _
P = N )
|{(x,y)€8:y€[y}|
Py = ~ =, (6)
S: I¥ and y € IY
pp M esiactimye Bl g,

Clearly, we have that

iPiX: Zn:Pjy:
i=1 =1

Using the above constructs, as an estimate for the theoretical
mutual information given by equation (1), we may calculate
the empirical mutual information between X and ) as
Py
Xy iy
IR 3 3 At Py B

j=11i=1

1, and ZZP”:1

j=11:=1

EXAMPLE. Suppose one wishes to compute the empirical
mutual information between X = (—3,0,0,4,5) and Y =
(2,3,4,3,6) using n = 2 subintervals: Zo(X,)). First, the
formulae (2) and (3) lead to Ay = 4 and hy = 2, so that the
interval [min(X’), max(X)] = [—3, 5] is partitioned into the
adjacent subintervals I;* = [—3,1) and I5* = [1, 5], whereas
the interval [min()), max())] = [2, 6] is partitioned into the
adjacent subintervals I = [2,4) and I = [4,6]. Next, the
set S specified in (4) is given by

S= {(_37 2)5 (07 3)7 (07 4)7 (47 3)7 (57 6)} .
The formulae (5) and (6) then lead to
3 2 3 2
Pf“:g, PQX:37 Pf’:g, and P2y:37
while the formula (7) gives
2 1 1 1

Substituting the above quantities into the formula (8) gives
the following value of empirical mutual information between
X and V:

Xy

2 2
P
— XY %J ~
»)=>3P%¥m (PX Py> ~ 0.0138.
j=1i=1 i

J
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B. The MIMSA

Informally, a desirable time-series model selection
criterion is that which selects models which provide
predictions that are reasonably consistent with the
corresponding values in the actual dataset [36]. More
precisely, such a criterion is that for which the mutual
information between the actual dataset and the prediction
dataset is maximised. This motivates the introduction of the
MIMSA (Mutual Information Model Selection Algorithm)
for time-series model selection, which declares as the best
time-series model one which minimises the criterion
2k (k+1)
n—k—1’
where Y; denotes the ¢-th term of the actual time-series
dataset, Yt denotes the ¢-th term of the prediction time-series
dataset generated using the candidate time-series model, n
denotes the dataset’s size, and k denotes the number of
parameters to be estimated in the candidate time-series model
(2], [3].

Empirically, consider an actual time-series dataset ()
along with a prediction time-series dataset (y})i\[: 1 generated
by a time-series model involving k parameters. By replacing
the mutual information [ (Y},ﬁ) in the formula (9) with
the estimate (8) obtained using n subintervals, one obtains
the following empirical formula for MIMSA:

MIMSA,, = —In {In ((yt)f[:l : (z]t)fllﬂ +%

EXAMPLE. Consider an actual time-series dataset

(y)?_, = (1,1.6165,0.8376,0.1949, —0.9822)

MIMSA = — In [I (YtY;ﬂ + )

N
t=1

. (10)

along with a prediction time-series dataset
(y})f:l = (1,0.5,0.25,0.125,0.0625)

generated using the AR(1) recursion g; = 0.5¢;_1 with gg =

1. Let us employ the formula (10) with n = 2 to calculate

the empirical MIMSA, associated to the AR(1). Using the

method described in the previous subsection, one obtains

the empirical mutual information Z, ((yt)le , (y})f_lg ~
y

0.1184, so that the desired empirical MIMSA is given
. 2-2-(2+1
MIMSA; = —1n [Iz ((yt)f:1 , (%)?:1)} + 5%_1)

~ 8.1336.

III. RESULTS AND DISCUSSION

In this section, we describe an algorithm which we use
to conduct our model-fitting tests, and subsequently the
obtained results. Although we shall execute the algorithm
using AR and MA models, we only describe the algorithm in
the case of AR models, the case of MA models being similar.
To evaluate the performance of MIMSA in comparison
to AIC, BIC, AIC., and HQIC, we carry out a series
of simulations involving various scenarios, designed by
combining the values parameters ranging from 0.1 to 0.5
while ensuring the validity of the stationarity assumption.
For each scenario, we generate two time-series datasets: one
of size 300 as a training dataset and another of size 75
as a testing dataset. The training dataset is to be used to
assess each criterion’s ability to detect the correct order of

the associated time-series model, whereas the testing dataset
is to used to evaluate the predictive performance. The latter is
conducted using the error criteria RMSE, MAPE, and MASE.

A. The AR model-fitting test algorithm

For every p € {1,2,3}, we carry out the following steps
to generate time-series datasets using the time-series model
AR(p) to be used to test the fittingness of the models AR(1),
..., AR(6).

1) Choose values for the parameters ¢, 1, ..., ¢p, and
the standard deviation o, and generate the time-series
dataset (yt)fiol using the time-series model AR(p),
namely,

Yt = Pp1Yt—1 T+ OppYi—p + €4,

with yg = 1. The dataset (yt)fg% is to be used as our
actual training dataset. In addition, generate also the
time-series dataset (:Jct)Zil using the same values of
parameters and standard deviation, initial value xg = 1,
and the model

Tt = Pp1Tt—1+ -+ PppTi—p + Et,

as our actual testing dataset.

2) For every i € {1,...,6}, we test the fittingness of
the model AR(p) with respect to the actual dataset
generated in the previous step, in the following way.

(a) Fit the model AR(7), namely,
Yt = Qi1Y—1+ -+ ©iY—i + €ty

to the actual training dataset (yt)i’iol, using the
maximum likelihood method to estimate the values
of the parameters ¢; 1, ..., Qi ;.
(b) Using the estimated values of the parameters ¢, 1,
. . ~ 1300
.., i, generate the time-series datasets (y),_;
with o = yo using the model

Ut = @i1fi—1 + -+ Qi —s-

(c) Calculate the value of
MIMSAs (5225 (0)72)). This
the fittingness of the model AR(:) with respect
to our actual training dataset (yt)fg(i generated
using the AR(p) recursion on step (1). To provide
comparisons, also calculate the corresponding
values of AIC, BIC, AIC,., and HQIC.

(d) Recall our actual testing dataset (xt)zl generated
on step (1). Compute the errors RMSE, MAPE,
and MASE of (y}):il with respect to (xt):il

3) From step (2), we obtain the values of MIMSAs5,

AIC, BIC, AIC,, and HQIC for every p € {1,2,3}
and i € {1,...,6}. For every p € {1,2,3}, choose
i € {1,...,6} for which the value of MIMSAj; is
the smallest over all values of MIMSAj5; computed
for all ¢ € {1,...,6}. This allows us to conclude
that according to MIMSA, the best model representing
our actual training dataset (yt)fgol generated for the
associated value of p is AR(7).

quantifies

The above algorithm yields:

1) the best model chosen among AR(1), ..., AR(6) for
each p € {1,2,3} and ¢ € {1,...,6} according to
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TABLE I
MODEL IDENTIFICATION FREQUENCIES IN THE CASE WHERE OUR
ACTUAL TRAINING DATASET IS GENERATED USING THE MODEL AR(1).

Parameter | Criterion |AR(1) |AR(2)|AR(3) |AR(4)|AR(5)|AR(6)
MIMSA5 5 5 4 9 9 18
AIC 36 5 4 0 3 2
v1,1 = 0.8 BIC 48 2 0 0 0 0
AIC. 38 5 3 0 2 2
HQIC 46 3 0 0 0 1
AR(1)
0.6
0.4 1
0.2 -
g
g
0.0 1
—0.2
—0.4 - T T T T T T T
0 50 100 150 200 250 300
Time (t)
Fig. 1. A training dataset generated using AR(1) with o117 = 0.8.

each of the criteria: MIMSA;, AIC, BIC, AIC,, and
HQIC;

2) the values of the errors RMSE, MAPE, and MASE for
each p € {1,2,3} and i € {1,...,6}.

B. Results of AR model-fitting test

We execute the algorithm described in the previous
subsection 50 times. Out of these 50 executions, let ngl),
. ngs) be the number of times AR(7) is selected as the
best model according to the criteria MIMSAj5, AIC, BIC,
AIC,, and HQIC, respectively.

In Table I, we present a performance comparison of
MIMSA against AIC, BIC, AIC,., and HQIC in the case
where our actual training and testing datasets are generated
using AR(1) with 11 = 0.8. A training dataset generated
using this model is visualised in Figure 1. Table I shows that
BIC has the highest frequency in correctly identifying the
order of the utilised AR model. Indeed, out of 50 algorithm
executions, BIC correctly identifies AR(1) as many as 48
times and misclassifies it as AR(2) twice. On the other hand,
the frequencies of correctly identifying the model in the same
case for criteria other than BIC are lower, namely, 5 for
MIMSA, 36 for AIC, 38 for AIC,, and 46 for HQIC.

Computing the prediction errors, we find that the model
AR(1) exhibits the smallest average RMSE value of 0.2775,
compared to the models AR(2), ..., AR(6) whose average
RMSE values increase with the models’ order. This shows
that the model AR(1) provides predictions with the highest
accuracy with respect to our actual testing dataset, compared
to the other models. Conversely, the model AR(6) exhibits
the largest average RMSE value of 0.3743, demonstrating
the worst prediction performance. The model AR(1) also
exhibits the smallest average MAPE value of 1097.94%,

RMSE
0.6
0.5 .
0.4 ‘
0.3 !
0.2
0.1

0
MASE

N

w

i

Fig. 2. Boxplots representing the values of RMSE and MASE associated
to our testing datasets generated using the model AR(1).

N

TABLE II
MODEL IDENTIFICATION FREQUENCIES IN THE CASE WHERE OUR
ACTUAL TRAINING DATASET IS GENERATED USING THE MODEL AR(2).

Parameter | Criterion |AR(1) |AR(2)|AR(3) |AR(4)|AR(5) |AR(6)
MIMSA;5 0 E 7 6 14

AIC o] 34 9 3 2 2

w21 106055 BIC o 48 ] i o o
#2.2 =59 AIC, o 36 8 3 1 2
HQIC o 45 3 2 0 0

indicating the best prediction performance. The average
MAPE values also increase with the models’ order, showing
that higher-order AR models, despite being more complex,
are less effective in capturing our actual testing dataset
generated using AR(1). Consistently, the model AR(1) also
exhibits the smallest average MASE value of 2.5471, while
the model AR(6) exhibiting the highest average MASE value
of 3.2371. This once again indicates that the prediction
performance of the model AR(1) is better than that of the
model AR(6).

Figure 2 shows boxplots visualising the values of RMSE
and MASE associated to our testing datasets generated using
the model AR(1). We observe that the model AR(1) itself
exhibits the best performance compared to the other AR
models. This is apparent from the lower mean and median
values of both error criteria, which indicate a lower prediction
error level. Additionally, the error distribution does not
exhibit significant variation, with a narrower range, although
some outliers are still present in MASE.

As in the case of AR(1), Table II shows that BIC has
the highest frequency in correctly identifying the order of
the AR model, with 48 correct identifications. On the other
hand, MIMSA has the lowest frequency in detecting the
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RMSE
1.6
14
1.2
1
0.8
0.6
0.4 R X
i e
0.2 —i—_‘-
0
MASE
25

-

Fig. 3. Boxplots representing the values of RMSE and MASE associated
to our testing datasets generated using the model AR(2).

TABLE III
MODEL IDENTIFICATION FREQUENCIES IN THE CASE WHERE OUR
ACTUAL TRAINING DATASET IS GENERATED USING THE MODEL AR(3).

Parameter | Criterion |AR(1) |[AR(2) |AR(3)|AR(4)|AR(5) |AR(6)
MIMSA;5 |0 2 16 7 8 17
w31 =0.1] AIC |0 0 41 2 3
3,2 =0.1] BIC |0 0 49 1 0 0
p3,3=0.7 AIC. |0 0 41 4 2 3
HQIC |0 0 45 5 0 0

correct AR model among the other criteria, with only 8
correct identifications. Computing the errors of the associated
predictions, we conclude that the model AR(1) provides the
best prediction performance, due to its lower RMSE, MAPE,
and MASE values compared to those of the higher-order AR
models. The increase of orders of the models from AR(2)
to AR(6) leads to increases of the errors.

Let us next examine the RMSE and MASE boxplots shown
in Figure 3. In the RMSE boxplot, the AR(1) model exhibits
the lowest and most stable RMSE value compared to other
models, with a relatively small error range. On the other
hand, for the AR(2), ..., AR(6) models, the RMSE values
tend to gradually increase, with greater variation and some
significant outliers. This indicates that model performance
deteriorates as the AR order increases, both in terms of the
mean and the stability of prediction results. In the MASE
boxplot, we observe a similar pattern, with an increase from
AR(1) to AR(6).

From Table III we see the better performance of BIC
compared to MIMSA and the other criteria, in identifying
the correct order of the AR model. In particular, MIMSA
incorrectly detects AR(6) as our actual training dataset’s
time-series model with the highest frequency of 17 times.

Evaluating the RMSE, MASE, and MAPE for our actual
testing dataset generated using the model AR(3), we infer

MA(1)

15
1.0 1

|
0.5

Value

1.5+

—2.0 -

T T T T T T T
0 50 100 150 200 250 300
Time (t)

Fig. 4. A training dataset generated using MA(1) with 61 1 = 0.8.

that the model AR(1) demonstrates the best performance
in providing predictions, with average RMSE and MASE
values of 0.1980 and 1.0617. On the other hand, the model
AR(2) exhibits an average MAPE value of 571.71%, while
the models AR(3) to AR(6) exhibiting a significant decline
of prediction performance. This indicates that as the models’
order increases, the prediction errors become larger and
the model tends to be less stable. Extreme values are also
observed in higher-order AR models, both in MASE and
MAPE.

C. The MA model-fitting tests

The MA model-fitting tests are carried out using an
algorithm similar to that in subsection III-A, with MA(q),

Yt =€t — 9q,1€t—1 - 9q,25t—2 — eq,qet—qv

replacing AR(p). The algorithm yields:

1) the best model chosen among MA(1), ..., MA(6) for
each ¢ € {1,2,3} and ¢ € {1,...,6} according to
each of the criteria: MIMSA;, AIC, BIC, AIC,, and
HQIC;

2) the values of the errors RMSE, MAPE, and MASE for
each ¢ € {1,2,3} and i € {1,...,6}.

In Table IV we present a comparison the performance of
MIMSA with those of the AIC, BIC, AIC., dan HQIC, in
the case where the our actual training and testing datasets are
generated using MA(1), with 67 ; = 0.8. A training dataset
generated using this model is visualised in Figure 4. Table IV
shows that BIC possesses the highest frequency in correctly
determining the order of the employed MA model.

We observe that BIC correctly identifies MA(1) as many
as 49 times, and misclassifies it as MA(2) once. On the other
hand, the frequencies of correctly identifying the model for
criteria other than BIC are lower, namely, 10 for MIMSA,
38 for AIC, 39 for AIC,., and 45 for HQIC.

Our error computations reveal that the model MA(3)
exhibits the best prediction performance compared to the
other models, with the average RMSE and MASE values
of 0.7557 and 0.6808, respectively. By contrast, the MA(6)
model exhibits the worst performance, with the highest
average RMSE of 0.7879 and the highest average MASE of
0.7070, indicating the largest prediction error. Meanwhile,
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TABLE IV
MODEL IDENTIFICATION FREQUENCIES IN THE CASE WHERE OUR
ACTUAL TRAINING DATASET IS GENERATED USING THE MODEL MA(1).

Parameter | Criterion | MA(1) |MA(2) [MA(3)|MA(4) |MA(5) [ MA(6)
MIMSA5 10 9 6 6 10 9

AIC 38 5 5 1 0 1

01,1 =0.8| BIC 49 1 0 0 0 0
AICC, 39 4 5 1 0 1

HQIC 45 2 3 0 0 0

the MA(2) and MA(4) models are almost comparable
in performance with MA(3), but with slightly higher
average RMSE values of 0.7592 and 0.7682, respectively.
Additionally, the MA(6) model, which has the highest
MASE value in most experiments, indicates that increasing
the MA order does not always improve model performance
and could lead to larger prediction errors.

On the other hand, the MA(2) model performs the best,
with the lowest average MAPE of 363.41%. However,
the MA(6) model again has the highest average MAPE
of 734.23%, indicating the largest prediction error and
therefore unreliability. The high MAPE values across all
models, particularly in one of our experiments where the
MA(6) model achieves an exceptionally high MAPE value
of 20,214.22%, show that the MA(6) model is not suitable
as a predictive model for the actual dataset generated using
MA(1).

From the boxplots shown in Figure 5, we can see that the
model MA(3) exhibits lower medians in the cases of RMSE
and MASE, with a narrower data range. This indicates that
the MA(3) model performs notably well in prediction. By
contrast, the other MA models are associated to wider data
ranges and outliers in both RMSE and MASE, suggesting
that their performance tends to be less stable and has a higher
potential for large errors. The significant outliers indicate that
models with higher orders may produce highly inaccurate
predictions in some cases.

In Table V, we present a performance comparison of
MIMSA, AIC, BIC, AICc, and HQIC in identifying the
correct model in the case where our actual training and
testing datasets are generated using MA(2). It is apparent
that BIC has the highest number of times in identifying
the correct order, namely 49. On the other hand, MIMSA
records a suboptimal performance, with a notable difference
in the frequency of correctly identifying the MA(2) model,
achieving correctness only 13 times.

In terms of prediction errors, our computation shows
that the model MA(2) exhibits the best performance based
on its lowest average RMSE value of 0.6426, thereby
demonstrating its lowest level of prediction errors compared
to the other models. The model MA(3) stands out in
prediction accuracy, with the lowest average MAPE of
260.54%, making it the most reliable model in minimising
relative error. Furthermore, both models perform almost
equally in terms of MASE, the average MASE values for
MA(2) and MA(3) being 0.7466 and 0.7465, respectively.
By contrast, MA(6) and MA(5) both show the notably
poor performance, the former exhibiting the highest average
RMSE of 0.6721 and MASE of 0.7746, the latter exhibiting
a MAPE value of 425.08%, clearly suggesting unreliability.

RMSE
0.95 - T
0.9
0.85

0.8
0.75 l

0.65
0.6
0.55
0.5

MASE

0.95

0.9 .

0.85 .

0.8 : [
0.75

0 l = ]
0.65 ‘
0.6

0.55
0.5

Fig. 5. Boxplots representing the values of RMSE and MASE associated
to our testing datasets generated using the model MA(1).

TABLE V
MODEL IDENTIFICATION FREQUENCIES IN THE CASE WHERE OUR
ACTUAL TRAINING DATASET IS GENERATED USING THE MODEL MA(Z).

Parameter | Criterion |MA(1)|MA(2) |MA(3) |MA(4) [ MA(5) [MA(6)
MIMSAs 4 13 9 10 9 5

AIC D 5 4 2 1

Z“ B 8‘2 BIC o 49 1 0 0 0
22 = U2 AIC, S 5 4 2 0
HQIC 0 45 4 1 0 0

A similar conclusion can be drawn from the boxplots
shown in Figure 6. The model MA(2) demonstrates the best
performance in prediction. In terms of RMSE, the MA(2)
model has a low median value, with no outliers. On the
other hand, despite the presence of outliers, MA(2) still
excels in MASE, as indicated by a smaller median value
and a narrower data range compared to the other models.
By contrast, the model MA(6) consistently shows the worst
performance, with higher median and average RMSE and
MASE values, along with a wider data range.

Finally, the results in the case where the actual training
dataset is generated using the model MA(3) shows that
MIMSA performs worse than AIC, BIC, AIC,., and HQIC in
identifying the order of the utilised time-series model. This
is demonstrated in Table VI.

In the case where the actual training dataset is generated
using the model MA(3), the model MA(1) exhibits the
lowest average RMSE, MAPE, and MASE values of 0.5895,
122.96%, and 0.7432, respectively. By contrast, the model
MA(6) exhibits the highest average RMSE, MAPE, dan
MASE values of 0.6491, 325.01%, and 0.8055, respectively.

Based on the RMSE and MASE boxplots in Figure 7,
the model with the best overall performance tends to have
lower average and median values, accompanied by a narrow
interquartile range. For both RMSE and MASE, the model
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Fig. 6. Boxplots representing the values of RMSE and MASE associated
to our testing datasets generated using the model MA(2).

TABLE VI
MODEL IDENTIFICATION FREQUENCIES IN THE CASE WHERE OUR
ACTUAL TRAINING DATASET IS GENERATED USING THE MODEL MA(3).

Parameter | Criterion | MA(1) |MA(2) [MA(3)|MA(4) |MA(5) [ MA(6)
MIMSA5 0 1 18 16 6 9

03,1 =0.1] AIC 0 0 35 10 2 3
03,2 =0.2| BIC 0 0 48 2 0 0
03,3 =0.5 AIC. 0 0 37 8 2 3
HQIC 0 0 44 5 0 1

MA(1) stands out, as it has lower average and median
values compared to the other models, indicating a smaller
prediction error. Additionally, the model MA(1) also shows
a more stable distribution with fewer outliers. By contrast,
the MA(6) model proves to be the worst-performing model
based on the analysis of both error criteria.

IV. CONCLUSIONS AND FUTURE RESEARCH

The numerical experiments conducted in the present study
lead to the following conclusions. First, MIMSA shows
inferior performance compared to other criteria such as AIC,
BIC, AIC., and HQIC in detecting the correct time series
model. This is evident across AR(1), AR(2), and AR(3),
as well as MA(1), MA(2), and MA(3), where MIMSA
tends to select more complex models with higher orders.
Moreover, based on the values of RMSE, MAPE, and MASE,
MIMSA shows a range of different prediction performances,
depending on the time-series model used to generate our
actual dataset. In the case of AR models, MIMSA tends
to be more consistent in providing predictions with high
accuracy, especially for models with smaller orders, with
better RMSE, MAPE, and MASE values compared to other
models. However, in the case of MA models, the prediction
performance of MIMSA is inconsistent. For example, in the
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Fig. 7. Boxplots representing the values of RMSE and MASE associated
to our testing datasets generated using the model MA(3).

case where our actual dataset is generated using MA(1), the
most accurate RMSE and MAPE values are obtained from
the MA(3) model, while in the case where our actual dataset
is generated using MA(3), the MA(1) model provides better
prediction results.

There are various recommendations for further studies.
First, we recommend applying the method used in the
present study to datasets with a larger size, to see whether
the results are consistent or show any significant changes.
One could also employ other classes of time-series models,
such as ARMA and ARIMA. Additionally, since the present
study consistently estimates mutual information using five
subintervals, we also recommend the use of different
numbers of subintervals. In fact, one could consider using
more sophisticated methods to estimate mutual information,
such as the non-parametric kernel density estimation [3]
as well as the so-called k-nearest neighbours method [25],
which may also necessitate numerical methods to compute
double integrals, for which one could employ, for instance,
the two-dimensional trapezoidal rule [28, sec. 6.7].
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