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Abstract—With the continuous development of artificial
intelligence, traffic sign recognition plays a crucial role in
intelligent vehicle perception systems. However, due to complex
environmental changes such as weather, lighting, and
occlusions, traffic sign recognition remains highly challenging.
This paper proposes a traffic sign detection model
DTSR-YOLO based on the improved YOLOv8n model to
address these issues. Firstly, the DAT (Deformable Attention)
module is introduced into the backbone network to adjust the
shape and size of the attention model dynamically, enhancing
the model's feature extraction capability. Secondly, the
RFAConv convolution is introduced into the C2f module to
construct a new C2f RFA module, simplifying the calculation
process and improving the detection speed and accuracy of the
model. To further enhance accuracy and robustness, ELAN and
SPPF are combined to form a new SPPELAN module,
improving computational efficiency and feature extraction
ability. Additionally, a small object detection head is added to
integrate multi-scale features better and improve detection
performance for small objects and complex scenes.
Experimental results show that compared with the original
YOLOV8n model, the proposed method enhances the mAP
values by 8.4% and 2.8% on the Tsinghua-Tencent 100K (TT
100K) and CUST Chinese Traffic Sign Detection Benchmark
2021 (CCTSDB 2021) datasets, respectively. Test results in real
complex scenarios indicate that the detection performance of
this algorithm is superior to that of the YOLOvVS8n algorithm,
and the DTSR-YOLO algorithm can accurately detect traffic
signs that the YOLOv8n algorithm cannot. Therefore, the
algorithm proposed in this paper can effectively improve the
detection accuracy of traffic signs, is suitable for complex
scenarios, and has good detection performance for small
objects.

Index Terms—Traffic sign detection, YOLOVS, Attention
mechanism, SPPELAN

I. INTRODUCTION

IN recent years, With the in-depth research of artificial
intelligence and computer vision[1] , object recognition
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technology has been rapidly developed in the field of
automatic driving. However, small object recognition in a
complex background has been a difficult problem in the
industry. With the development of autonomous driving
technology and the increase in car ownership, the safety of
autonomous driving has attracted more and more attention.
The detection and recognition system of traffic signs is one of
the critical components of automatic driving. In the current
road scene, many factors lead to missing and wrong detection
of traffic signs, such as trees, lighting, and so on. These
factors may affect the recognition of traffic signs. Traffic sign
detection is one of the core technologies in intelligent driving,
which is directly related to the safety of drivers and the
regular operation and commuting order of the city. However,
in practical applications, especially in driverless cars,
misjudgment of traffic signs often occurs and may even lead
to serious traffic accidents. Therefore, it is imperative to
improve the accuracy of traffic sign detection.

As one of the core technologies in intelligent
transportation System (ITS), traffic sign detection has been
widely studied and applied in recent years. Domestic and
foreign scholars in this field have experienced the
transformation from traditional image processing methods to
deep learning technology, and have made a lot of progress,
but still face some challenges.

In foreign countries, the research on traffic sign detection
started earlier, especially with the promotion of automatic
driving and advanced driver assistance systems (ADAS), and
related technologies have been rapidly developed [2].
Initially, foreign research mainly relied on traditional image
processing methods, such as colour, shape, and texture
feature extraction. It carried out mark detection based on
template matching, edge detection, Hough transform, and
other methods. However, these methods are more sensitive to
environmental changes (such as light, shadows, weather
changes, etc.) and are difficult to handle complex traffic
scenes. With the rapid development of computer vision
technology and deep learning, traffic sign detection methods
based on convolutional neural networks (CNN) and deep
neural networks (DNN)[3] have gradually become
mainstream. Especially since AlexNet won the ImageNet
competition in 2014, the advantages of deep learning in the
field of image recognition have gradually emerged, and more
and more traffic sign detection methods have adopted
end-to-end models based on deep learning. Examples include
Faster R-CNN, YOLO (You Only Look Once), and SSD
(Single Shot MultiBox Detector) [4]. These methods can
automatically learn compelling features from a large amount
of data, significantly improving the accuracy and robustness
of mark detection, especially in complex environments.
Foreign research institutions, such as Waymo and Tesla in

Volume 52, Issue 8, August 2025, Pages 2710-2718



TAENG International Journal of Computer Science

the United States, have also successfully applied traffic sign
detection technology to autonomous driving systems to
achieve efficient identification in different traffic scenarios.

In China, the research of traffic sign detection started
relatively late, but in recent years, with the rapid development
of intelligent transportation systems and autonomous driving
technology, the research intensity and application demand
have also increased sharply. There are many kinds of traffic
signs in China; their forms are complex, and they involve
different cultural and linguistic backgrounds. Realizing
efficient and accurate sign detection has become the focus of
domestic research. Domestic scholars' research on traffic sign
detection mainly focuses on the following aspects: first, the
robustness of the algorithm, especially its performance in
complex environments such as different weather,
illumination, Angle, and occlusion; Second, multi-modal and
multi-scale detection methods are combined with different
image features and deep learning models to improve the
generalization ability of the model. The third is real-time and
computational efficiency, especially in the process of
real-time detection and reaction framework, combined with
algorithms such as YOLO[5] and Faster R-CNN[6], and
improved the auction time. Domestic researchers proposed
an improved object literacy and real-time performance of
traffic sign detection through multi-task learning, data
enhancement, and transfer learning. In addition, with the rise
of autonomous driving technology, domestic technology
companies and universities are also engaged in cross-field
cooperation to develop sign detection systems suitable for
China's complex traffic environment.

At present, some significant challenges in domestic and
international research include: 1) Robustness in complex
environments, especially in extreme weather, night driving,
intense light or shadow, and the existing detection methods
still have certain limitations; 2) Classification and
recognition of multi-category signs, especially in the case of
apparent diversity and heterogeneity of traffic signs, how to
efficiently and accurately distinguish different types of signs
is still a challenge; 3) Data sets and labelling problems. Due
to the inconsistent labelling standards of traffic sign data and
the lack of large-scale and high-quality labelling data, using a
small amount of labelled data for practical training is still a
research hotspot.

In general, traffic sign detection technology has made
remarkable progress at home and abroad, and the
introduction of deep learning has greatly improved the
detection accuracy and real-time performance. However,
there are still challenges in adapting to complex
environments, effectively recognizing multiple signs, and
acquiring and labelling large-scale data sets. With the
continuous progress of technology and the gradual maturity
of intelligent transportation systems, the research and
application prospects of traffic sign detection will be broader.

With the application and development of deep learning in
the field of target detection, the advantage of fast target
acquisition and accurate detection is achieved by using the
target detection algorithm. In the automatic driving scenario,
the captured traffic sign information is fed back to the vehicle
system and the driver, and the subsequent driving guidance is
given. However, the recognition of traffic signs is easily
affected by trees, weather, light changes, and other factors. At

present, most traffic sign detection can only be carried out in
a typical environment. If the environment is complex, the
detection of traffic signs will have certain inaccuracies.
Inspired by the YOLO[7] series of object detection
algorithms, this study introduces an improved traffic sign
detection algorithm, DTSR-YOLO. The experimental results
on the benchmark data set show that DTSR-YOLO
significantly improves the performance of traffic sign small
target detection.

The main contributions of this paper are as follows:

e Incorporating the deformable Attention (DAT)[8]
mechanism into the backbone tail of YOLOVS[9]. In this
mechanism, the attention is dynamically sparse, only a few
key positions are calculated, and the efficiency is improved.
At the same time, the deformable attention window is used to
adjust the area of attention to the data content dynamically.
Effectively address the challenges posed by complex
backgrounds common in traffic scenarios.

¢ An efficient C2f RFA module constructed by RFAConv

is further introduced to replace the original C2f module,
enhance the capability of the receptive field of the
convolutional layer, improve the efficiency of large-size
convolutional nuclei, and thus improve the detection
efficiency.

* The SPPELAN[10] module then extends the model's

receptive field, enhances its robustness, and improves the
integration of features at different scales.
Finally, a small target detection head is added to the head

to enhance the model's ability to detect small targets.

II. RELATED WORK

A. Traffic sign detection

Traffic sign detection is an important field of application in
computer vision. With the rapid development of deep
learning technology, this field has experienced significant
technical evolution. From the early traditional methods to the
current advanced methods based on deep learning, the
technology of traffic sign detection has been continuously
improved, improving the accuracy, robustness, and real-time
detection.

1) Traffic sign detection based on colour

Before the wide application of deep learning, the detection
of traffic signs was mainly through traditional image
processing methods. The colour-based traffic sign detection
method mainly includes converting images from RGB space
to other colour Spaces and extracting candidate areas by
using the three unique colours of traffic signs (red, yellow,
and blue). The edge information in the image is extracted by
the Canny compilation and detection algorithm to match the
common shape of traffic signs, such as circles and rectangles.

2)Traffic sign detection based on shape
With the development of machine learning methods such as
vector machine (SVM), the performance of traffic sign
detection has been improved. Through the research of
scholars, feature extraction and classification are derived by
combining machine learning algorithms, such as HOG
features and SVM, AdaBoost, and Cascade Classifiers. In
2012, the success of AlexNet's model heralded the
widespread application of deep learning, including
convolutional neural networks (CNNS) in computer vision.
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In terms of traffic sign detection, from traditional algorithms
to CNN-based automatic feature learning methods, deep
learning can learn more robust features from large data sets
without the need for manual design. The convolutional neural
network can be used to extract and classify traffic signs. CNN
can extract complex features from images, with the
development of deep learning frameworks and the emergence
of large-scale datasets (such as CCTSDB[11] and GTSDB).
With the development of YOLO[12] (You Only Look Once)
and other end-to-end object detection frameworks, the
research on traffic sign detection has entered a new stage.

B. YOLOvS

YOLOVS is the latest iteration in the YOLO series of
object detection algorithms, combining cutting-edge
technologies for enhanced performance. Building on the
advantages of YOLOvS5 and YOLOv7, YOLOVS offers a
balanced approach to accuracy and speed. Key features
include an improved feature pyramid network (FPN)[13] and
path aggregation network (PANet), providing scalability for
diverse applications. The model is composed of several
components, such as input modules, backbone networks,
neck layers, and detection heads, each optimized for better
performance. YOLOvV8 comes in five versions (n, s, m, 1, x),
varying in depth and width to cater to different requirements,
from lightweight to high-precision models. Compared to
previous versions, YOLOvVS reduces computational load
while boosting accuracy for more complex tasks[14]. The
input module uses adaptive scaling to adjust image size
dynamically and incorporates the Mosaic data augmentation
technique to improve robustness. The backbone network

ackbone

MBackbone lerch_____

includes convolutional layers[15], the C2f module, and SPPF
(Space Pyramid Pooling Fast Edition), which enhance feature
extraction and information flow. The C2f module optimizes
gradient flow and maintains network efficiency, while the
SPPF module improves multi-scale feature fusion for better
overall performance. YOLOVS exemplifies the latest
advancements in object detection, offering both efficiency
and accuracy for complex scenarios.

III. IMPROVEMENTS

This paper presents the DTSR-YOLO network,
significantly improving object detection compared to
traditional YOLOvVS8n. Specifically, the DTSR-YOLO
integrates DAT, SPPELAN modules, and a custom layer
designed explicitly for small object detection. Together, these
enhancements significantly improve the detection capability
of the model, shorten the convergence time, enlarge the
receptive field, and enhance the robustness of the model in
various environments. In addition, the optimization of the
model also improves the efficiency and accuracy of the
detection process, making it perform better in complex
scenarios. The architecture of the improved YOLOvVS
network is shown in Fig 1.

C. Added a detection header

The data set used in this study to describe traffic signs on
the road contains many tiny signs, some of which are even
smaller than 10x10 pixels. In the original YOLOv8 model,
after five downsampling stages, many details in the image,
especially the features of these tiny traffic signs, were mostly
lost. Despite using 80x80 detection heads, detecting these

A

Fig.1.improved YOLOvVS8 network structure diagram
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tiny defects at high resolution remains a significant challenge.

To improve the recognition ability of minor traffic signs, a
new 160x160 small target detection head [16],[17],[18]was
introduced into the model, as shown in Fig 2. This component
can provide more comprehensive information about the
essential characteristics of the target so that small-size targets
can be handled more effectively. Although introducing a
small target detection head will increase the computational
overhead, it significantly improves the efficiency of small
target detection[19]. It greatly improves the detection and
recognition performance of minor traffic signs.

Backbone

Neck

> 80x80

— 40x40

—» 20x20

Fig. 2. Improvements to the head

D. Deformable attention mechanism

DAT (Vision Transformer with Deformable Attention) is
a Transformer that introduces a new deformable attention
mechanism. A notable feature of a traditional Transformer is
that it processes all the pixels in the image, resulting in more
computation. In this experiment, a deformable attention
mechanism (DAT) is introduced, focusing on only a part of
the key areas in the pixel, which can improve the model's
performance with less computation.

The Deformable Attention Module consists of two key
parts, the offset module and the attention module, as shown in
Fig 4. The core role of the offset module is to generate spatial
offsets that can be dynamically adjusted according to the
input data, which allows the attention mechanism to choose
the focus area more flexibly. By introducing this dynamic
shift, the deformable attention mechanism breaks through the
limitation that the traditional attention mechanism can only
calculate the attention weight in a fixed and regular area so
that the attention distribution can be adjusted adaptively in an
irregular or changing space. Compared with the traditional
global self-attention mechanism, the deformable attention
mechanism shows stronger adaptability and modelling ability

i
)
i
]
Bilinear :
v

when dealing with complex scenes, deformable objects, or
local details.

In addition, the offset module plays a crucial role in
enhancing the effectiveness of the attention mechanism by
enabling adaptive spatial sampling. Unlike conventional
fixed-grid attention, the offset mechanism allows the model
to dynamically adjust its sampling locations based on the
input features, thereby focusing more precisely on key
informative regions within the image. This adaptive
capability is particularly beneficial in scenarios involving
dynamic environments, rapid object motion, or significant
spatial  transformations, where traditional attention
mechanisms may struggle to maintain alignment with
important features. By guiding the attention computation
toward more relevant regions and away from background
noise or less informative areas, the offset mechanism not only
improves the accuracy of feature extraction but also reduces
unnecessary computational overhead, leading to more
efficient learning. Furthermore, this flexible attention
strategy demonstrates substantial advantages in tasks
characterized by intense spatial deformation or temporal
variation, such as object tracking, action recognition, and
video understanding. By combining the offset mechanism
with the attention framework, the deformable attention
module significantly boosts the model’s representational
power, enabling it to capture complex structural patterns and
dynamic relationships within the data. This synergy enhances
the network's capacity to learn from diverse and challenging
visual inputs, ultimately resulting in improved performance
across a wide range of computer vision applications.

E. C2f RFA Structure

In practical application scenarios, such as the traffic sign
detection task of a car, the size of the traffic sign changes
significantly from near to far, and the traditional C2f module
makes it easy to lose the detection details of small targets. In
this experiment, a new convolutional structure, RFAConv, is
introduced. As shown in Fig 5, this paper introduces
RFAConv convolution into the C2f architecture. RFAConv
not only improves the feature representation capability of the
model but also effectively reduces the computational
complexity, thus improving the computational efficiency of
the model by grouping and mixing operations in the channel
dimension. In YOLOVS, the C2f module was replaced by the
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Fig. 3. DAT dynamic sampling diagram
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Fig. 4. DAT dynamic sampling diagram

C2f RFA module. The C2f RFA module still adopts
theCross-Stage Partial (CSP) method and consists of two
Convolution-BatchNorm-Swish (CBS) modules and several
bottleneck modules. The optimization of the module
structure further improves the performance of the model,
enabling it to achieve efficient feature extraction and
information flow while remaining lightweight.

[ Bottleneck
|' Bottleneck

C2f RFA - —(CBS,8=1,K=1— Split — Bottleneck ———— Concat— CBS.S=1,K=1—

Fig. 5. C2f RFA structure

F. SPPFELAN

The development of Single Path Feature Pyramid (SPPF)
stems from the evolution of feature pyramid network (FPN)
and spatial pyramid pooling (SPP), aiming to solve the key
needs of multi-scale feature fusion and context information
extraction.FPN, as an early multi-scale feature fusion method,
significantly improves the feature expression ability through
layer-by-layer fusion, but the computational complexity is
high. SPP effectively introduces global context information
through multi-scale pooling, which provides excellent
performance support for object detection models such as
YOLO v3. SPPF debuted in YOLOVS for the first time. As an
optimized version of SPP, it achieves more efficient feature
fusion through single-path design. It uses pooled cores of
fixed size to generate multi-scale features and stack fusion,
significantly reducing the computational cost while
maintaining a strong feature expression capability. ELAN
(Efficient Layer Aggregation Network) is an efficient neural
network architecture design strategy that improves gradient
flow through hierarchical aggregation and parallel
connection structures. In contrast to CSPNet, ELAN uses
stacked convolution layers, where each layer is combined
with the output of the next layer. It provides new ideas for
efficient neural network architecture. In this experiment,
SPPF and ELAN are combined to help the model introduce
more global context information in the aggregation process
and solve the local feature loss problem that may be caused
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by hierarchical aggregation alone. The SPPELAN structure is

shown in Fig 6.
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Fig. 6. SPPELAN structure

IV. EXPERIMENT AND RESULT ANALYSIS

A. Use of datasets

Two datasets were used in this paper's experiment. To
evaluate the detection capability of the proposed model under
severe weather conditions, the China Traffic Sign Detection
Dataset (CCTSDB) was used. The data set includes complex
background information, different lighting variations,
multiple shooting angles, and situations where the image is
blurred due to weather factors or background occlusion.

The CCTSDB data sets are divided into Mandatory,
Warning, and Prohibitory categories. The dataset has a total
of 13,828 images, of which 11,062 were used for training and
2,766 for testing. With this dataset, we were able to
comprehensively evaluate the model's performance in
different environments, especially its robustness under
complex and adverse conditions. The legend is shown as Fig.
7 follows:

Another dataset, TT100K, is a traffic sign dataset jointly
developed by Tsinghua University and Tencent, consisting of
10,000 high-resolution images, each with a resolution of
2048x2048 pixels. It covers a total of 30,000 traffic signs, all
captured from real-world scenes in diverse environments.
Notably, this dataset includes a significant proportion of
small traffic signs, with some as small as 32x32 pixels,
making accurate target detection particularly challenging for
deep learning models[20],[21]. To address the issue of
sample imbalance, where certain traffic sign categories have
very few instances, potentially hindering effective network
learning, we selected only categories with more than 100
instances for training and testing. Labels for categories with
fewer instances were excluded to improve overall model
performance and reduce overfitting. The processed dataset
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ultimately includes 45 traffic sign categories, with the
training set containing 6,105 images and the test set
comprising 3,065 images, thus providing a more balanced
sample distribution. The corresponding legend is shown in
Fig.8below.
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Fig. 7. CCTSDB dataset illustration
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Fig. 8. Illustration of TT100K dataset

B. Evaluation index

The experimental results presented in this paper utilize the
commonly used evaluation indexes for object detection:
precision (P), recall (R), and mean average precision at 0.5
IoU (mAP@Q0.5) as the primary metrics for evaluating model
performance. Among these, mAP@0.5 is a critical measure
that captures the average accuracy of the model across all
target classes when the overlap between the predicted
bounding box and the actual bounding box of the target
reaches 0.5. Specifically, mAP is calculated by first
determining the precision and recall of the model under
various detection confidence thresholds, and then computing
the area under the resulting P-R (Precision-Recall) curve. In
this curve, the vertical axis (Precision) represents the
proportion of correctly predicted positive samples out of all
predicted positive samples, while the horizontal axis (Recall)
indicates the proportion of actual positive samples that were
correctly identified by the model. This comprehensive metric
allows mAP to effectively evaluate the overall performance
of the model across different detection tasks, providing a
balanced assessment of both the accuracy and recall
capabilities of the model in handling diverse target detection

challenges.
These indicators are calculated by the following formula:
.. TP
Precision TiFp (1)
Recall=——— @)
TP+EN

_ Z%\il P
AP==— 3)
N AP
mAP:% 4)

C. Experimental environment

This experiment uses the Windows 10 operating system,
Python as the programming language, and the PyTorch deep
learning framework, version 2.4.0, CUDA version 12.1. In
terms of hardware, the graphics card is GeForce RTX 3070,
and the video memory is 8GB. The CPU is Intel(R) Core(TM)
17-10700F. In order to adjust the size of the input image to
640%640 during the training process, the model was trained
for 150 periods in the TT100K data set, and the batch size
was set to 4 CCTSDB2021 data sets. The model was trained
for 100 periods, and the momentum and attenuation
parameters were set to 0.937 and 0.0005, respectively. The
learning rate is 0.01, and a cosine annealing scheduling
algorithm is adopted. In the last 10 training periods, the
Mosaic enhancement technique was used.

D. Experimental results and analysis

As illustrated in Fig 9, this study systematically reveals the
significant advantages of the improved model by comparing
the performance evolution curves of DTSR-YOLO and
YOLOVS8n during training. Experimental results demonstrate
that DTSR-YOLO comprehensively outperforms YOLOvS8n
across four core metrics: precision, Recall, mAP@0.5, and
mAP@0.5:0.95. Specifically, DTSR-YOLO achieves rapid
convergence in the early training phase, with its precision
surging to over 0.85 within the first 20 epochs—an 18%
improvement compared to YOLOv8n (0.72). By the
mid-training stage (50 epochs), the recall rate stabilizes at
0.92, exceeding YOLOv8n (0.85) by 8.2%, indicating a
substantial reduction in missed detections. In terms of
detection accuracy, DTSR-YOLO ultimately attains
mAP@0.5 and mAP@0.5:0.95 scores of 0.89 and 0.67,
respectively, representing 8.5% and 15.5% improvements
over YOLOvS8n's corresponding metrics (0.82 and 0.58).
Notably, DTSR-YOLO maintains approximately 3%
continuous optimization potential in later training stages,
while YOLOv8n enters a performance plateau after 100
epochs. This performance gap originates from
DTSR-YOLO's enhanced cross-scale feature fusion module
and dynamic sparse training strategy, which yield smoother
loss function convergence trajectories and reduce validation
metric fluctuations by 40% compared to YOLOvS8n,
confirming superior generalization capability. Remarkably,
DTSR-YOLO's exceptional performance under strict loU
thresholds (0.5:0.95) reflects its robust multi-scale object
detection capabilities in complex scenarios. Coupled with a

TABLE I
ABLATION EXPERIMENTS ON TT100K

DAT C2f RFA  SPPFELAN  HEAD mAP
66.7%

\ 67.9%
\ J 68.9%
v \ v 69.8%
\ J y 75.1%
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TABLE I

COMPARING WITH OTHER METHODS ON TT100K
Approaches P(%) R (%) mAP
Fster R-CNN 60.5 70.4 69.8%
YOLOv6 68.8 60.6 65.9%
YOLOvV7-Tiny 53.0 61.1 60.4%
YOLOvS8n 70.2 60.1 66.7%
ReYOLO[22] - - 68.3%
Ours 74.7 64.9 75.1%

12% improvement in real-time inference speed over
YOLOvS8n, these advancements highlight DTSR-YOLO's
critical application value in high-resolution multi-scale
detection scenarios such as remote sensing image analysis
and UAV inspection tasks.

Precision-Recall Curv
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Fig. 9. Comparison of model performance on TT100K dataset before and
after improvement

In this section, we analyze the effects of various
enhancement modules on the YOLOv8n algorithm model
through ablation experiments using TT100K datasets. The
results are summarized in Table I, The table shows the

effectiveness of several key improvements, including
integrating the DAT attention mechanism into the model,
fusing RFAConv with the C2f module into a new C2f module,
replacing the SPPF module in the original algorithm with
SPPELAN, and adding a small object detection head at the
end of the model head. Through the analysis of table data, it
can be seen that the accuracy of the enhanced network model
is significantly better than that of the original model, and the
mAP value is increased by 8.4%. These improvements are
especially outstanding in the detection of small traffic signs,
which significantly improves the recognition accuracy of
small targets. At the same time, these enhancement measures
did not cause a significant increase in the number of
parameters and successfully improved the performance of the
model while maintaining the computational efficiency. This
series of optimization shows that fine design and module
integration not only improve the accuracy of the model but
also enhance its adaptability in complex scenarios, especially
when dealing with small target detection tasks.

In order to fully verify the effectiveness of the algorithm in
this paper in the traffic sign detection task, this paper selects
classic algorithms as Fster R-CNN,YOLOv6,YOLOv7tiny
and YOLOv8n as comparison models. The performance
comparison results of different algorithms are shown in Table
2, where ours represents the algorithm proposed in this paper.
As can be seen from Table II, the values of P,R and
mAP@0.5 of the algorithm in this paper are the highest,
reaching 74.7%, 64.9% and 75.1% respectively; Compared
with YOLOvS8n, P, R, and mAP@0.5 increased by 4.7%,
6.9%, and 9.4%, respectively. It indicates that the method
proposed in this paper can improve the detection accuracy
and is more suitable for the target detection task in complex
scenarios.

TABLE III
ABLATION EXPERIMENTS ON CCTSDB

DAT C2f RFA  SPPFELAN  HEAD mAP

95.2%

J 95.4%

J J 95.7%

J J J 96.0%

v v v N 97.7%

TABLE IV
COMPARING WITH OTHER METHODS ON CCTSDB
Approaches P(%) R (%) mAP
YOLOvVS1L 84.8 95.2 95.4%
YOLOvS8n 94.8 91.1 95.2%
YOLOv10n 94.2 93.1 96.5%
ReYOLO[22] - - 83.9%
Ours 96.4 93.2 97.7%
In order to more intuitively reflect the detection

performance of this model, we carefully selected two groups
of four pictures for analysis and comparison. Fig 10 shows
the test results on the TT100K dataset. The images on the left
and right are the test results of the improved model and the
baseline model, respectively. Observing the top two figures
on the left, it can be seen that the baseline model has missed
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the detection of small targets, while the improved model has
significantly improved the recognition of small targets. By
observing the figure below on the right, the baseline model
has misdetected traffic signs in the dark caused by factors
such as sunlight blocking, and this model has preliminarily
solved the problem of misdetection through improvement.

Table III also shows the ablation experiments of this model
on the CCTSDB dataset, and it can be seen from the
experimental results that this model can still show
performance optimization on this dataset. mAP value
increased from 95.2% to 97.7%, in addition to significant
improvements in accuracy and Recall.

Table IV presents the comparison experiments of the
model proposed in this paper with other mainstream
algorithms on the CCTSDB dataset. The experimental results
show that this model has improved in terms of P, R, and
mAP@0.5 compared to other algorithms. Tables II and
Tables IV further demonstrate that the algorithm in this paper
maintains good performance in dataset testing, especially in
the detection of small targets.

(b)DTSR-YOLO
Fig. 10. Detection results on the TT100K dataset

V. CONCLUSION

Based on the YOLOVS8n algorithm, this paper proposes an
enhanced traffic sign detection algorithm, DTSR-YOLO.
Key improvements to the algorithm include the integration of
an attentional mechanism, DAT, designed to enhance
attentional operations in both spatial and channel dimensions.
This enhancement measure effectively improves the model's
attention to key information, thus enhancing the feature
extraction ability. Then, we replace the traditional C2f
module with the C2f RAF module to further expand the
model's receptive field and improve the model's feature
capture capability in complex scenes. At the same time, a
special small target detection head is added to enhance the
model's performance in small target detection so that the
network can better identify targets of different scales and
improve the overall detection efficiency.

In addition, the introduction of the SPPELAN module
further expands the receptive field of the model, enhances its
robustness and elasticity, and significantly improves the
detection performance of the model[24]. Through these
improvements, DTSR-YOLO has made remarkable progress
in the traffic sign detection task, which not only greatly
improves the accuracy but also shows stronger adaptability in
terms of performance and versatility. These optimizations
enable DTSR-YOLO to have higher accuracy and better
generalization ability in complex traffic sign detection
scenarios.
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