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Abstract: Due to the susceptibility of short-term load 

forecasting to multiple influencing factors in short-term, 

traditional single prediction models often struggle to ensure 

sufficient accuracy. To address this challenge, this paper 

proposes a short-term power load modeling approach with 

error compensation. First, the Northern Goshawk 

Optimization (NGO) algorithm is used to optimize the 

hyperparameters in the CNN-BIGRU-AT framework, and an 

optimized basic model for short-term load forecasting is 

established. Subsequently, the same NGO-CNN-BIGRU-AT 

architecture is reapplied to construct an error prediction model, 

effectively simulating the residual patterns of the basic model. 

Ultimately, by integrating the outputs of the basic load 

forecasting model and error compensation model, the final 

prediction is obtained thereby enhancing the overall prediction 

accuracy. Comparative experiments with conventional single 

prediction models have verified the feasibility and superiority 

of the proposed error compensation model, demonstrating 

significant improvements in prediction performance. 

Index Terms—Power load forecasting, convolutional neural 

network, bidirectional gated recurrent unit, attention 

mechanism, north grey wolf optimization algorithm, error 

compensation. 

I. INTRODUCTION 

HORT-TERM load forecasting (STLF), as the 

foundation of power grid planning and construction, not 

only provides critical references for network framework 

design, site selection, and capacity determination, but also 

offers technical support for grid status analysis and 

saturation load prediction. Consequently, accurate STLF is 

essential for enhancing the efficiency of power grid planning. 

STLF typically accounts for meteorological factors and day-

type classifications to estimate electricity demand for the  
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next 24 hours, days or weeks. Thus, accurate STLF is vital 

for power system scheduling and grid stability. 

Common short-term load forecasting algorithms include 

backpropagation neural networks (BPNNs) [1], support 

vector machines (SVM) [2], deep learning [3], and grey wolf 

optimization (GWO) [4]. Although these methods achieve 

rapid convergence through a simplified internal architecture, 

they fail to adequately capture temporal dependencies 

between input and output data, resulting in poor prediction 

accuracy. To address this limitation, researchers utilize the 

robust temporal processing capabilities of long short-term 

memory (LSTM) and gated recurrent unit (GRU) networks 

for power load forecasting. For example, Chen [5] proposes 

an LSTM-based load modeling method, which improved the 

prediction accuracy. Similarly, Gong et al. [6] use a GRU 

model optimized by intelligent algorithms for full-day load 

forecasting, which enhanced the prediction performance. 

Most of the above-mentioned power load prediction 

models are single models with limited forecasting accuracy. 

Based on this, Wu et al. [7] used a combination of graph 

convolutional network (GCN) and gated recurrent unit 

(GRU) to predict the power load, and verified the feasibility 

of the GCN-GRU model by comparing it with the model 

based on distance adjacency matrix. Zhu et al. [8] 

decomposed the wind power series using VMD, 

reconstructed and preprocessed the data analysis foe each 

mode using SSA and finally compensated the error of the 

model using GPA, thereby improving the prediction 

accuracy and anti-interference ability of the model, further 

enhancing the prediction accuracy. Geng et al. [9] used 

LSTM to predict load, then used GRU to train the error for 

obtaining error compensation values, and finally used error 

compensation to obtain a more accurate load prediction 

value. Li et al. [10] established a stacked reverse double-

layer high-low-level gated recurrent unit (SRDHLGRU) 

network model to predict the short-term power load by 

improving the underlying structure of BIGRU. Based on the 

error sequence generated during the model prediction 

process, the SRDHLGRU model is established again for 

training and prediction to compensate the error of the first 

stage results. In conclusion, the prediction accuracy of the 

model can be improved by combining the model or 

compensating the error of the model. 

Building on the synergistic advantages of hybrid 

modeling and error compensation, this study integrates these 

two strategies into power load forecasting to achieve higher 

precision. First, a CNN-BIGRU-AT hybrid model is 

constructed by synergistically integrating convolutional 

neural networks (CNN), bidirectional GRU (BIGRU), and 

attention mechanisms (AT). Meanwhile, NGO algorithm is 

used to determine the parameters in the hybrid model, and 

an NGO-CNN-BIGRU-AT model is established for power 
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load forecasting. In addition, to address the problem of 

difficulty in describing the error of the power load 

forecasting model, NGO-CNN-BIGRU-AT is once again 

applied to characterize the model error, achieving the error 

compensation for the hybrid power load forecasting model 

and improving the prediction accuracy of the model. 

II. ANALYSIS OF INFLUENCING FACTORS OF POWER LOAD 

There are many factors that affect the power load, such as 

meteorology, temperature, etc., but considering that if all 

variables are added to the input of the model, it may lead to 

the problem that it is difficult to converge or the iteration 

time is too long in the model training process, so the Pearson 

correlation coefficient is used to analyze the factors 

influencing power load, and the actual values of the whole 

month of August 2018 are selected from the historical data 

samples for Pearson correlation analysis. The Pearson 

correlation coefficients  between electric load and six 

critical predictors are shown in Table 1, which are the 

maximum temperature, minimum temperature, average 

temperature, relative humidity, historical load, and rainfall, 

respectively. 
TABLE Ⅰ 

PEARSON PHASE RELATION TABLE OF POWER LOAD RELATED FACTORS 

 Mat Mit Avt Reh Rav Hil Elp 

Mat 1 0.452 0.901 -0.759 -0.342 0.033 0.311 

Mit 0.452 1 0.723 -0.501 -0.603 0.179 0.439 

Avt 0.901 0.723 1 -0.841 -0.475 0.132 0.496 

Reh -0.759 -0.501 -0.841 1 0.442 -0.061 -0.309 

Rav -0.342 -0.603 -0.475 0.442 1 -0.009 -0.186 

Hil 0.033 0.179 0.132 -0.061 -0.009 1 0.432 

Elp 0.311 0.439 0.496 -0.309 -0.186 0.432 1 

 

where Mat is the maximum temperature, Mit is the 

minimum temperature, Avt is the average temperature, Reh 

is the relative humidity, Rav is the rainfall volume, Hil is the 

historical load, and Elp is the electrical power load. 

The Pearson correlation coefficient ranges from -1 to 1. A 

value approaching 1 indicates a strong positive linear 

relationship, while a value approaching -1 signifies a strong 

negative linear relationship. A value of 0 suggests no linear 

association between the variables. Table 2 explains the 

relationship between the absolute value of Pearson 

correlation coefficient and the correlation strength. 

TABLE Ⅱ 

JUDGMENT CRITERIA OF PEARSON CORRELATION COEFFICIENT AND 

CORRELATION DEGREE 

Correlation coefficient Correlation degree 

0.0~0.19 Extremely low correlation 

0.20~0.39 Low correlation 
0.40~0.69 Moderate correlation 

0.70~0.89 High correlation 

0.90~1.00 Extremely high correlation 

 

According to Tables 1-2, the correlation between rainfall 

and power load is extremely low. The correlation between 

the maximum temperature, relative humidity and power load 

is relatively low. The correlation between the minimum 

temperature, average temperature, historical load and power 

load is moderate. Therefore, the maximum temperature, 

minimum temperature, average temperature, relative 

humidity, and historical load are finally selected as input 

variables for the model. 

III. NGO-OPTIMIZED CNN-BIGRU-AT PROCESS MODEL 

Accurate models are the cornerstone of power load 

forecasting research. The architecture of hybrid models has 

demonstrated superior capability in capturing the nonlinear 

dynamic patterns of power loads. However, such models 

face challenges in manual parameter adjustment and 

inherent randomness. Therefore, in order to improve the 

accuracy of the hybrid model, this study uses NGO to 

optimize the parameters of CNN-BIGRU-AT model, 

forming the initial model for subsequent load forecasting 

error compensation modeling. 

A. CNN-BIGRU-AT MODEL 

The structure of CNN-BIGRU-AT prediction model 

proposed in this paper is shown in Fig. 1. 
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Fig. 1 Structure diagram of CNN-BIGRU-AT model 

 

As can be seen from Fig. 1, the establishment steps of 

CNN-BIGRU-AT prediction model are as follows： 

Step 1 Take the factors that affect changes in power load 

as model inputs, including the maximum temperature, the 

minimum temperature, the average temperature, the relative 

humidity, and the historical load, to constitute the input 

vector. 

Step 2 The CNN layer extracts features from power load 

sequences, primarily consisting of a one-dimensional 

convolutional layer, pooling layer, and fully connected layer. 
The one-dimensional convolutional layer (Conv1D) extracts 

feature from the power load data input to the CNN network. 
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Maximizing pooling eliminates irrelevant information to 

prevent overfitting. The output values of the CNN layer are 

obtained through the Sigmoid activation function. 

Step 3 BIGRU layer [11] is composed of forward GRU 

layer and reverse GRU layer. It receives new features 

extracted by CNN for training and captures the internal 

change rules of the sequence. The AT mechanism takes the 

output of BIGRU layer as input [12], and iteratively updates 

the weights to improve the contribution of important 

information. The fully connected layer calculates the 

predicted value through the Relu activation function [13]. 

Step 4 The output layer obtains the prediction result by 

calculation. 

Convolutional neural network (CNN) is used to extract the 

relevant features from the original data of power load[14], 

and based on these features, BIGRU composed of forward 

GRU and backward GRU captures the nonlinear dynamic 

laws of power load. In order to further strengthen the 

effective extraction of power load characteristic data, 

attention mechanism (AT) is introduced to discard useless 

information and strengthen important information [15]. By 

combining CNN, BIGRU and AT, a relatively complete 

framework for power load forecasting model has been 

constructed, which can effectively capture the 

spatiotemporal characteristics and nonlinear dynamic 

relationship of power load data.  

B. NGO-OPTIMIZED CNN-BIGRU-AT MODEL 

NGO is an intelligent group optimization algorithm. This 

algorithm simulates the hunting behavior of northern 

goshawk to find the optimal solution, with good global 

search ability, high accuracy, and stability. Therefore, this 

paper proposes an NGO-optimized CNN-BIGRU-AT power 

load forecasting model, its structure is shown in Fig. 2. 
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Fig. 2 Structure diagram of NGO-CNN-BIGRU-AT 

 

NGO [16] was used to optimize the number of hidden 

layer nodes, initial learning rate parameters, and 

regularization coefficients of BIGRU, in order to establish 

the optimal NGO-CNN-BIGRU-AT prediction model. The 

main steps for NGO to optimize BIGRU are as follows: 

Step 1: Set basic parameters, such as the population size 

and the maximum iteration number. 

Step 2: Initialize the Northern Goshawk population. 

Step 3: Using the root mean square error (RMSE) as the 

fitness function, and the number of hidden layer nodes, 

learning rate parameters, and regularization coefficients in 

BIGRU as the position of the Northern Goshawk to calculate 

the root mean square error between the actual load and the 

predicted load. 

Step 4: In the exploration stage [17], update the individual 

position of the northern goshawk, calculate the fitness 

function value, and compare the fitness function value with 

the original fitness value. If the fitness function value 

decreases, the position is regarded as the current optimal 

position. Otherwise, the original position will be retained as 

the optimal position. 

Step 5: In the development stage [18], when the Northern 

Goshawk chases its prey, the prey will try to escape, but due 

to its fast attack speed, it can eventually capture the prey 

successfully. Update the individual position of the northern 

goshawk, calculate the fitness function value, and compare 

it with the original value. If the fitness function value 

decreases, the position is regarded as the current optimal 

position. Otherwise, the original position will be retained as 

the optimal position. 

Step 6: Check whether the iteration count meets the 

termination criterion. If satisfied, the current optimal 

solution will be adopted as the final parameters. Otherwise, 

proceed to Step 3 for further optimization. 

Step 7: Obtain the BIGRU prediction model with the 

optimal parameters. 

IV. ERROR COMPENSATION MODEL 

For complex power load forecasting, the model is 

established by simply using the NGO-CNN-BIGRU-AT 

algorithm, and the results obtained are often not ideal. In 

order to reduce the error between the output of the model and 

the actual value, it is of positive significance to 

characterizing the error distribution characteristics of the 

built model. Therefore, based on the initial model 

constructed by NGO-CNN-BIGRU-AT, the error model is 

constructed, and then the initial model is compensated. For 

the modeling method of the error compensation model, this 

paper still adopts the NGO-CNN-BIGRU-AT algorithm, 

which takes the initial model input and the predicted value 

of the model as the input variables of the error compensation 

model, and the training error as the output variable to form 

the training sample of the error compensation model. The 

error compensation model is trained by the NGO-CNN-

BIGRU-AT algorithm, so that the model is achieved. That is, 

the relationship between the initial model and the error 

compensation model is as follows:  

𝑍𝑥 = 𝑍𝑥𝑖 + 𝑍𝑥𝑙 (1) 
where 𝑍𝑥 is the predicted value after error compensation, 

𝑍𝑥𝑖 is the predicted value of the initial model and 𝑍𝑥𝑙 is the 

predicted value of the error model.  

To sum up, the structure of the error compensation NGO-

CNN-BIGRU-AT model is shown in Fig. 3.  
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Fig. 3 Flow chart of error compensation model 

 

As shown in Fig. 3, the specific steps are as follows: 

Step 1 Determine the input and output variables for the 

initial NGO-CNN-BIGRU-AT model. The maximum 

temperature, minimum temperature, average temperature, 

relative humidity and historical load are taken as input 

variables of the model, and the power load is taken as the 

output.  

Step 2 Establish the initial NGO-CNN-BIGRU-AT model 

and obtain the load predicted value 𝑍𝑥𝑖 of the initial model. 

Step 3 Construct the error compensation model. The input 

variables of the initial NGO-CNN-BIGRU-AT model are 

taken as the input variables of the error model, and the error 

𝑉 = 𝑍 − 𝑍𝑥𝑖  between the predicted value of the initial 

NGO-CNN-BIGRU-AT model and the actual value is taken 

as the output variable, and he above data is used to compose 

of the training samples for the error model. By training the 

error model, the predicted value of the error compensation 

model 𝑍𝑥𝑙 is obtained. 

Step 4 Calculate the final predicted value 𝑍𝑥  of the 

model by Equation (1). 

V. EXAMPLE VERIFICATION AND ANALYSIS 

To validate the effectiveness of the proposed forecasting 

model, historical load data spanning three months (July 10 

to October 10, 2018) from a southern region was selected for 

experiment. The dataset comprises 96 daily sampling points 

at 15-minute intervals and was partitioned into training and 

testing sets at a 7:3 ratio.  

To evaluate the distinctiveness of the proposed model, 

under identical conditions, NGO-CNN-BIGRU-AT was 

compared with error-compensated models including E-

BIGRU, E-CNN-BIGRU-AT, and E-NGO-CNN-BIGRU-

AT. Comparative analysis includes load comparison curves 

and evaluation metrics, as illustrated in Figs. 4-5. Fig. 4 

displays the alignment between the actual values of 288 

consecutive data points (3 days) in the testing sample and the 

predicted values of different models. Fig. 5 presents a 

comparative visualization of error metrics for the testing set. 
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Fig 4. Comparison of power load prediction for three consecutive days. 
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Fig 5. Comparison of power load prediction error results in test set. 

 

The performance evaluation indicators of each model in 

the test set can be obtained from Figs. 4 -5, as shown in Table 

3. 

TABLE Ⅲ 

PERFORMANCE EVALUATION INDEXES OF EACH MODEL IN THE TEST SET 

 MAE RMSE R2 MAPE/% 

NGO-CNN-BIGRU-AT 171.16 263.824 0.989 2.25 

E-BIGRU 153.74 221.18 0.990 2.12 
E-CNN-BIGRU-AT 113.95 179.09 0.991 1.5 

E-NGO-CNN-BIGRU-AT 87.21 151.97 0.992 1.10 

 

As can be seen from Fig. 4, among the experimental 

scheme compared by various models, the load prediction 

curve of the E-NGO-CNN-BIGRU-AT model proposed in 

this paper is closest to the actual load curve and has the best 

fit compared to the prediction curves of the other three 

models. From Table 3 and Fig. 5, it can be seen that the MAE, 

RMSE, MAPE and R2 of E-CNN-BIGRU-AT and E-BIGRU 

have significantly improved compared to the NGO-CNN-

BIGRU-AT model, indicating that the error compensation 

model can effectively improve the prediction accuracy. 

Compared with E-BIGRU, MAE, RMSE and MAPE of E-

CNN-BIGRU-AT decreased by 25.8%, 18.6% and 29.2%, 

respectively, and R2 increased by 0.001. This indicates that 

by extracting the features of influencing factors through 

CNN network and using attention mechanism (AT) to focus 

on key information, more information can be taken into 

account, thereby further improving the prediction 

performance of the model. 

In addition, compared with E-BIGRU, E-NGO-CNN-

BIGRU-AT and E-CNN-BIGRU-AT has further improved 

MAE, RMSE, MAPE and R2. Compared with other models, 

the proposed E-NGO-CNN-BIGRU-AT had MAE, RMSE, 

MAPE and R2 of 87.21, 151.97, 1.10% and 0.992, 

respectively, and all indicators are optimal. Compared with 

the NGO-CNN-BIGRU-AT model, the MAE, RMSE, 

MAPE and R2 of the E-NGO-CNN-BIGRU-AT are reduced 

by 49%, 42.3%, 0.51% and 0.001, respectively. This shows 

that the construction of error compensation model can 

effectively improve prediction accuracy. Therefore, the error 

compensation model can effectively predict the changes in 

actual load, and its performance is better than other 

comparative models, making it more suitable for short-term 
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load forecasting. 

Fig 6 shows the comparison curve between the actual 

values of each sampling point and the predicted values of 

different models on September 29, 2018. 
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Fig. 6 Comparison of load prediction results on rest days. 
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Fig. 7 Comparison of load prediction error results on rest day  

 

The performance evaluation indicators of each model on 

rest days can be obtained from Figs. 6-7, as shown in Table 

4. 

TABLE Ⅳ 

PERFORMANCE EVALUATION INDEXES OF EACH MODEL ON REST DAYS 

 MAE RMSE R2 MAPE/% 

NGO-CNN-BIGRU-AT 181.83 297.03 0.97 2.00 
E-BIGRU 161.81 232.15 0.98 1.78 

E-CNN-BIGRU-AT 129.94 210.95 0.99 1.36 

E- NGO-CNN-BIGRU-AT 100.42 171.99 0.992 1.08 

 

According to Table 4, compared with E-BIGRU and E-

CNN-BIGRU-AT, the MAPE of E-NGO-CNN-BIGRU-AT 

decreased by 0.22% and 0.64%, respectively. RMSE 

decreased by 64.88 and 86.08, respectively. MAE decreased 

by 20.02 and 51.89, while R2 increased by 0.01 and 0.02, 

respectively. The prediction accuracy of the model is 

improved, and proves the validity of the model. Moreover, 

comparing the prediction results of rest days based on the E-

NGO-CNN-BIGRU-AT model with the NGO-CNN-

BIGRU-AT model, the weekly average MAPE decreased 

from 2.00% to 1.08%, a decrease of 0.92%. The weekly 

average RMSE decreased from 297.03 to 171.99, a decrease 

of 125.04. These two critical metrics have been significantly 

optimized, further validating the effectiveness of the E-

NGO-CNN-BIGRU-AT model in enhancing prediction 

accuracy. As can be seen from the load prediction curve of 

E-NGO-CNN-BIGRU-AT in Fig. 6, the load prediction 

curve is very close to the actual load curve, achieving the 

expected effect. 

Fig. 8 shows the comparison curve between the actual 

value of each sampling point and the predicted value of 

different models on working days. 
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Fig. 8 Comparison of load prediction results on working days. 
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Fig. 9 Comparison of load prediction error results of working days. 

 

The performance evaluation indicators of each model on 

working days can be obtained from Figs. 8-9, as shown in 

Table 5. 

TABLE Ⅴ 

PERFORMANCE EVALUATION INDEXES OF EACH MODEL IN WORKING DAYS 

 MAE RMSE R2 MAPE/% 

NGO-CNN-BIGRU-AT 144.35 239.45 0.982 1.71 
E-BIGRU 131.06 197.72 0.983 1.55 

E-CNN-BIGRU-AT 98.66 166.19 0.985 1.12 

E- NGO-CNN-BIGRU-AT 86.77 144.49 0.990 1.01 

 

As can be seen from Table 5, MAE, RMSE, MAPE and 

R2 of E-CNN-BIGRU-AT reached 98.66, 166.19, 1.12 and 

0.985, respectively. Compared with E-BIGRU, MAE, 

RMSE and MAPE decreased by 25.7%, 16% and 0.43% 

respectively. R2 has been improved by 0.02. which verifies 

that CNN and attention mechanism can improve the 

forecasting performance of load forecasting model. 

Compared with NGO-CNN-BIGRU-AT, MAE, RMSE and 

MAPE of E-NGO-CNN-BIGRU-AT decreased by 39.8%, 

39.6% and 0.7%, respectively, and R2 increased by 0.08. 
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Obviously, when dealing with a single model, the load 

forecasting model incorporating error compensation 

demonstrates superior forecasting accuracy and strong 

predictive performance. 

Fig.10 shows the comparison curve between the actual 

value of each sampling point and the predicted value of 

different models on National Day. 
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Fig. 10 Comparison of load prediction results on National Day 
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Fig. 11 Comparison of load prediction error results on National Day 

 

According to Figs. 10-11, the performance evaluation 

indicators of each model on National Day can be obtained, 

as shown in Table 6. 

TABLE Ⅵ 

PERFORMANCE EVALUATION INDEXES OF EACH MODEL ON NATIONAL DAY 

 MAE RMSE R2 MAPE/% 

NGO-CNN-BIGRU-AT 90.52 110.86 0.97 11.98 

E-BIGRU 83.49 103.24 0.961 2.12 

E-CNN-BIGRU-AT 33.87 47.65 0.990 0.75 

E- NGO-CNN-BIGRU-AT 30.56 38.22 0.991 0.65 

 

As can be seen from Fig. 10 and Table 6, there is a large 

deviation between the NGO-CNN-BIGRU-AT model and 

the actual load value in predicting holidays, in this prediction 

scenario, the hybrid model NGO-CNN-BIGRU-AT has 

reached its performance ceiling. After adding the error 

model, the E-BIGRU prediction results were relatively 

stable, MAE, RMSE and MAPE decreased by 7.76%, 6.87% 

and 9.86%, respectively, and R2 increased by 0.01 compared 

with the NGO-CNN-BIGRU-AT model. The prediction 

results of the mixed forecasting model for holidays are 

relatively more accurate. The MAE, RMSE, MAPE and R2 

of the error model CNN-BIGRU-AT model reached 33.87, 

47.65, 0.75% and 0.99. The NG-CNN-BIGRU-AT mixed 

prediction model with error compensation decreased by 

63.3%, 62.8% and 69.3% compared with E-BIGRU's MAE, 

RMSE and MAPE, and the R2 increased by 0.03. Compared 

with E-CNN-BIGRU-AT, the accuracy of MAE, RMSE and 

MAPE increased by 9.7%, 19.7% and 13.3%, and the R2 

increased by 0.001. In summary, the E-NGO-CNN-BIGRU-

AT model has higher accuracy for power load forecasting 

than other models. 

VI. CONCLUSION 

The error-compensated NGO-CNN-BIGRU-AT short-

term forecasting model proposed in this paper significantly 

enhances the accuracy of power load forecasting. 

Experimental results demonstrate that when applied to real-

world 2018 datasets encompassing weekends, weekdays, 

and holidays, the model outperforms non-error-compensated 

counterparts, exhibiting smaller mean absolute error (MAE) 

and root mean square error (RMSE) values, as well as higher 

coefficient of determination (R²). These findings confirm 

that the proposed model not only achieves superior 

prediction precision, but also maintains robustness in fitting 

degree, laying a theoretical foundation and practical 

framework for future research and application of short-term 

load forecasting. 
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