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Abstract—The aim of this study is to analyze hybrid systems
modeled using hybrid Petri nets at different time intervals. A
new form of the state model is thus proposed, which explains
the time-changing of the system. It provides the limit bounds
for each element of the state vector. A new form of the state
calculator is then set up to evaluate the overall state of the
system as well as the inputs. The limit bounds are also provided
by this estimator. Counting and dating methods are used to
develop the state model and estimator. In the counting method,
the system state is the number of triggered transitions, while in
the dating method, it is the dates of these triggers. The obtained
model and the estimator have the form bmin ≤ Ax ≤ bmax.
They are applied to analyze a production process modeled by
a time interval hybrid Petri net. This application highlights the
robustness of the estimates of the state and the inputs. Finally,
these models are also used to detect, locate and estimate defects,
and the obtained results can be considered satisfactory.

Index Terms—hybrid Petri Nets, time intervals, state model,
state observer, defect detection, defect estimation

I. INTRODUCTION

REgarding Discrete Event Systems (DESs), it is essential
to evaluate and detect faults in order to ensure the

smooth operation and reliability of industrial processes [3],
[4]. As modeling tools, Petri Nets (PNs) represents these
systems graphically and mathematically, which allows a
better understanding of their dynamics [23], [24]. This
approach is extended by the use of Hybrid PNs (HPNs) to
model hybrid systems that combine continuous and discrete
behaviors. Time intervals are considered when it is crucial
to model systems where the timing of events significantly
impacts the overall behavior [1], [2], [15].

HPNs with time intervals take into account specific
temporal constraints, such as the start delays of transitions
and the residence times of tokens in places. Thanks to this
temporal modeling, it is possible to simulate the system
evolution while identifying undesirable situations. It is
therefore significant to estimate the system state and detect
any potential failures in order to avoid costly breakdowns and
ensure the continuity of operations [5], [6]. In this situation,
the analysis of the system state relies on advanced estimation
methods, which provide valuable data on the performance
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and reliability of the processes. Furthermore, to detect
defects, it is necessary to use robust methods to identify,
locate and assess anomalies that could disrupt the proper
functioning of the system. In collaboration, these methods
promote the improvement of hybrid system management by
providing a proactive response to potential failures [7]–[9].

This work aims to evaluate and estimate the state of hybrid
systems modeled using HPNs at several time intervals. By
integrating the temporal aspect into modeling, our goal is to
propose a new state model and a new observer to analyze
the system behavior. These model and observer can be used
to enhance the monitoring, control and diagnosis of hybrid
systems.

Our contribution is to use dating and counting approaches
for hybrid systems modeled by Time Interval HPNs
(TIHPNs) to propose a new state model and an observer. The
obtained state model and the observer take into account the
discrete and continuous behaviors and have the form bmin ≤
Ax ≤ bmax where bmin and bmax can be computed using
system matrices. The elaborated model allows analyzing
the time evolution of the system state, and the obtained
observer estimates the system state over time. This kind of
applications has not been done in the literature in the context
of TIHPNs. For the counting method, the elements of the
state vector are the numbers of triggers for each transition,
whereas for the dating approach, they refer to the precise
moments when these triggers occur. The state model and the
observer are applied to a manufacturer system modeled by a
TIHPN.

The paper is structured as follows. Section 2 sums up the
related studies and provides the main differences between
theses studies and our work. The fundamental concept of
HPNs and TIHPNs is presented and detailed in section 3,
and the used notations are also presented. The elaborated
state model is detailed in section 4. This model is conceived
following the counting and dating methods. Section 5
describes the design approach of the state observer, following
also the counting and dating methods. The application of the
obtained model and observer to a production system, already
modeled by TIHPN, is presented in section 6, where both
results of simulation and estimation are given in appropriate
tables. The simulation results show the accuracy of the
proposed model and observer for state and fault estimation.

II. DISCUSSION OF RELATED STUDIES

Numerous studies have addressed the issue of diagnosing
and estimating the state of DESs modeled by various PNs
classes in relation to the current marking of PNs [10]–[13].
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In [10], the authors used a P-timed PN model and applied
it to the validation of critical systems. This application
required some temporal validations and did not include
system simulation and state estimation. In [11], the authors
used labeled timed PNs to an online diagnosis of DESs
and gave several reduction rules to simplify the considered
system. The work presented in [12] used timed PNs for the
design of pipelined circuits based on synchronization and
temporal verification. In [13], the authors used Interval PNs
for the regulation of industrial quality and the management
of temporal intervals.

In [20], the authors modeled a biological regulatory
network by stochastic PNs in order to simulate and survey it.
Distributed systems were considered in [21] for the survey
of performance and the evaluation of models . In [22], the
authors proposed an adaptive PN to model a complex system.

Previous work has focused on modeling issues, temporal
validation, or specific industrial applications. They modeled
DESs by severel kinds of PNs such as stochastic, time
or timed PNs. In our work, we consider hybrid systems
modeled by TIHPNs. Hybrid systems combine a continuous
behavior and a discrete event behavior which makes our work
more general. Time intervals can also help consider system
uncertainties. In summary, our research introduces a new
state model and an observer able to simulate and estimate the
state and detect faults in hybrid systems modeled by TIHPNs.

III. FUNDAMENTAL CONCEPTS OF TIHPNS

A. Notations

A TIHPN represents a variant of traditional PNs, which
helps represent both continuous and discrete dynamics. It is
characterized by the following tuple [14] :

N = (P, T,Pre,Post,M0, λ, ξ)

where:
• P = Pd∪Pc represents the places set, where Pd denotes

the discrete places and Pc denotes the continuous places,
• T = Td ∪ Tc represents the transitions set, where

Td denotes the discrete transitions and Tc denotes the
continuous ones,

• Pre : P × T → N is the pre-incidence function,
• Post : P × T → N is the post-incidence function,
• M0 : P → R+ is the initial marking,
• λ : Tc → R+ is the rate function for continuous

transitions,
• ξ : Td → N is the time function for discrete transitions,
• The M marking is defined as follows: M : P → R+.

– For a discrete place p ∈ Pd, M(p) ∈ N.
– For a continuous place p ∈ Pc, M(p) ∈ R+.

The incidence vector C is defined as follows:

C(p, t) = Post(p, t)− Pre(p, t)

The result of a transition t ∈ T is possible if:

M(p) ≥ Pre(p, t) ∀p ∈ P

Once t is drawn, the M mark is updated as follows:

M∗(p) = M(p) + C(p, t) ∀p ∈ P

For a continuous transition t ∈ Tc, the flow can be
represented by:

f(t) = λ(t) · min
p∈Pc

(
M(p)

Pre(p, t)

)
It is necessary to initiate a transition t within a given time
interval [dmin, dmax] after its activation.

dmin ≤ tcurrent − tactivation ≤ dmax.

If t is not triggered before dmax, a specific action may be
enforced (e.g. forcing, cancellation, etc.).

Example: A sensor must send a signal between 2 and 10
seconds after detection.

In this paper, we denote by x the internal transitions, u
the input transition, and y the output transition. The set of
places can be decomposed into four subsets:

• Pux: the set of places between the input and internal
transitions,

• Pxx: the set of places between the internal transitions,
• Pxy: the set of places between the internal and output

transitions,
• Puy: the set of places directly linking the input and the

output.
Similarly, we define:

• Tux: the timing constraints of set places Pux,
• Txx: the timing constraints of set places Pxx,
• Txy: the timing constraints of set places Pxy ,
• Tuy: the timing constraints of set places Puy .
We also define:
• mux: the marking of set places Pux,
• mxx: the marking of set places Pxx,
• mxy: the marking of set places Pxy ,
• muy: the marking of set places Puy .
Additionally, we introduce:
• T−: a column vector of the minimal residence times of

a token in the places,
• T+: a column vector of the maximal residence times of

a token in the places,
• xi(t): a timing variable associated with transition xi in

a timed event graph,
• Xj(t): the set of transitions preceding transition xi(t),
• Xq(t): the set of transitions following transition xi(t).

For TIHPNs, transitions can be continuous or discrete.
Therefore, the following notations are used:

u(t) =

[
uc(t)

ud(t)

]
, x(t) =

[
xc(t)

xd(t)

]
, y(t) =

[
yc(t)

yd(t)

]
where index c refers to continuous transitions and index d
refers to discrete transitions. Moreover, index cc models the
link between continuous places, index dd models the link
between discrete places, index dc describes the link from
discrete to continuous places, and index cd models the link
from continuous to discrete places.

IV. DESIGN OF NEW STATE MODEL

A. Objective

This part aims to design a new form of a state model
which can be used to analyze and simulate the evolution
of the state and the outputs of the system over time. The
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obtained state model is composed of two inequalities. The
calculation of the limit bounds of the state is possible thanks
to the first inequality, whereas the second one determines
the limit bounds of the system outputs. This suggested state
model is an extension of the model developed for classic
HPNs in [15]–[19]. This model is constructed following the
counting and dating methods.

B. Counting approach
The counting approach makes it possible to estimate the

number of firings of each transition. Indeed, each element
of the state vector corresponds to the number of firings
of the relevant transition at each moment t. The system
behavior can be described, for the four Pux, Pxx, Pxy and
Puy sets, by inequalities (1) to (8), where the matrices
w+

ux, w−
ux, w+

xx, w−
xx, w+

xy, w−
xy, w+

uy and w−
uy are the

elements of the incidence matrices W+ and W− and with
θ = t− T .

(mux) + (w+cc
ux uc(θ

+
l,ux) + w+cd

ux ud(θ
+
l,ux)) ≤ w−cc

ux xc(t) +

w−cd
ux xd(t) ≤ (mux) + (w+cc

ux uc(θ
−
l,ux) + w+cd

ux ud(θ
−
l,ux)) (1)

(mux) + (w+dc
ux uc(θ

+
l,ux) + w+dd

ux ud(θ
+
l,ux)) ≤ w−dc

ux xc(t) +

w−dd
ux xd(t) ≤ (mux) + (w+dc

ux uc(θ
−
l,ux) + w+dd

ux ud(θ
−
l,ux)) (2)

(mxx) + (w+cc
xx xc(θ

+
l,xx) + w+cd

xx xd(θ
+
l,xx)) ≤ w−cc

xx xc(t) +

w−cd
xx xd(t) ≤ (mxx) + (w+cc

xx xc(θ
−
l,ux) + w+cd

xx xd(θ
−
l,xx)) (3)

(mxx) + (w+dc
xx xc(θ

+
l,xx) + w+dd

xx xd(θ
+
l,xx)) ≤ w−dc

xx xc(t) +

w−dd
xx xd(t) ≤ (mxx) + (w+dc

xx xc(θ
−
l,xx) + w+dd

xx xd(θ
−
l,xx)) (4)

(mxy) + (w+cc
xy xc(θ

+
l,xy) + w+cd

xy xd(θ
+
l,xy)) ≤ w−cc

xy yc(t) +

w−cd
xy yd(t) ≤ (mxy) + (w+cc

xy xc(θ
−
l,xy) + w+cd

xy xd(θ
−
l,xy)) (5)

(mxy) + (w+dc
xy xc(θ

+
l,xy) + w+dd

xy xd(θ
+
l,xy)) ≤ w−dc

xy yc(t) +

w−dd
xy yd(t) ≤ (mxy) + (w+dc

xy xc(θ
−
l,xy) + w+dd

xy xd(θ
−
l,xy)) (6)

(muy) + (w+cc
uy uc(θ

+
l,uy) + w+cd

uy ud(θ
+
l,uy)) ≤ w−cc

uy yc(t) +

w−cd
uy yd(t) ≤ (muy) + (w+cc

uy uc(θ
−
l,uy) + w+cd

uy ud(θ
−
l,uy)) (7)

(muy) + (w+dc
uy uc(θ

+
l,uy) + w+dd

uy ud(θ
+
l,uy)) ≤ w−dc

uy yc(t) +

w−dd
uy yd(t) ≤ (muy) + (w+dc

uy uc(θ
−
l,uy) + w+dd

uy ud(θ
−
l,uy)) (8)

The system must evolve in a non-decreasing way, so the
following inequalities (9) to (12) are added:

xc(θ
+
l,xx) ≤ xc(t) ≤ xc(θ

−
l,xx), (9)

xd(θ
+
l,xx) ≤ xd(t) ≤ xd(θ

−
l,xx), (10)

yc(θ
+
l,uy) ≤ yc(t) ≤ yc(θ

−
l,uy), (11)

yd(θ
+
l,uy) ≤ yd(t) ≤ yd(θ

−
l,uy). (12)

Inequalities (31) to (12) can be aggregated to design state
model (13). The new state model is provided by Theorem 1.

Theorem 1: A TIHPN can be described by state model
(13) using the counting method:

Φc
m ≤ A−

cd

[
xc(t)

xd(t)

]
≤ Φc

M

Ψc
m ≤ C−

cd

[
yc(t)

yd(t)

]
≤ Ψc

M

(13)

with
Φc

m = A+
cd

[
xc(θ

+
l,xx)

xd(θ
+
l,xx)

]
+ B+

cd

[
uc(θ

+
l,ux)

ud(θ
+
l,ux)

]
+

[
Mx

]
Φc

M = A+
cd

[
xc(θ

−
l,xx)

xd(θ
−
l,xx)

]
+ B+

cd

[
uc(θ

−
l,ux)

ud(θ
−
l,ux)

]
+

[
Mx

] (14)

and
Ψc

m = C+
cd

[
xc(θ

+
l,xy)

xd(θ
+
l,xy)

]
+D+

cd

[
uc(θ

+
l,uy)

ud(θ
+
l,uy)

]
+ I

[
yc(θ

+
l,uy)

yd(θ
+
l,uy)

]
+

[
My

]
Ψc

M = C+
cd

[
xc(θ

−
l,xy)

xd(θ
−
l,xy)

]
+D+

cd

[
uc(θ

−
l,uy)

ud(θ
−
l,uy)

]
+ I

[
yc(θ

−
l,uy)

yd(θ
−
l,uy)

]
+

[
My

]
(15)

where : I is the identity matrix and :

A+
cd =



0 0

0 0

w+cc
xx w+cd

xx

w+dc
xx w+dd

xx

I I

 ,B+
cd =


w+cc

ux w+cd
ux

w+dc
ux w+dd

ux

0 0

0 0

0 0

 ,Mx =


mux

mux

mxx

mxx

0



C+
cd =


w+cc

xy w+cd
xy

w+dc
xy w+dd

xy

0 0

0 0

0 0

 ,D+
cd =


0 0

0 0

w+cc
uy w+cd

uy

w+dc
uy w+dd

uy

0 0

 ,My =


mxy

mxy

muy

muy

0



A−
cd =


w−cc

ux w−cd
ux

w−cc
xx w−cd

xx

w−dc
ux w−dd

ux

w−dc
xx w−dd

xx

I I

 , C−
cd =


w−cc

xy w−cd
xy

w−cc
uy w−cd

uy

w−dc
xy w−dd

xy

w−dc
uy w−dd

uy

I I

 , andI =


0

0

0

0

I

■

The proof of Theorem 1 is given in Appendix A.

C. Dating approach
The dating method assigns a specific date to each transition

when it can be initiated. Each element of the state vector
indicates the possible start dates for the relevant transition.
The system behavior can be described, for the four Pux,
Pxx, Pxy and Puy sets, by the following inequalities, with
µ = k −m.

(T−
ux) + (w+cc

ux uc(µ
−
ux) + w+cd

ux ud(µ
−
ux)) ≤ w−cc

ux xc(k) +

w−cd
ux xd(k) ≤ (T+

ux) + (w+cc
ux uc(µ

+
ux) + w+cd

ux ud(µ
+
ux)) (16)

(T−
ux) + (w+dc

ux uc(µ
−
ux) + w+dd

ux ud(µ
−
ux)) ≤ w−dc

ux xc(k) +

w−dd
ux xd(k) ≤ (T+

ux) + (w+dc
ux uc(µ

+
ux) + w+dd

ux ud(µ
+
ux)) (17)

(T−
xx) + (w+cc

xx uc(µ
−
xx) + w+cd

xx ud(µ
−
xx)) ≤ w−cc

xx xc(k) +

w−cd
xx xd(k) ≤ (T+

xx) + (w+cc
xx uc(µ

+
ux) + w+cd

xx ud(µ
+
xx)) (18)

(T−
xx) + (w+dc

xx uc(µ
−
xx) + w+dd

xx ud(µ
−
xx)) ≤ w−dc

xx xc(k) +

w−dd
xx xd(k) ≤ (T+

xx) + (w+dc
xx uc(µ

−
xx) + w+dd

xx ud(µ
−
xx)) (19)

(T−
xy) + (w+cc

xy uc(µ
−
xy) + w+cd

xy ud(µ
−
xy)) ≤ w−cc

xy yc(k) +

w−cd
xy yd(k) ≤ (T+

xy) + (w+cc
xy uc(µ

+
xy) + w+cd

xy ud(µ
+
xy)) (20)

(T−
xy) + (w+dc

xy uc(µ
−
xy) + w+dd

xy ud(µ
−
xy)) ≤ w−dc

xy yc(k) +

w−dd
xy yd(k) ≤ (T+

xy) + (w+dc
xy uc(µ

+
xy) + w+dd

xy ud(µ
+
xy)) (21)

(T−
uy) + (w+cc

uy uc(µ
−
uy) + w+cd

uy ud(µ
−
uy)) ≤ w−cc

uy yc(k) +

w−cd
uy yd(k) ≤ (T+

uy) + (w+cc
uy uc(µ

+
uy) + w+cd

uy ud(µ
+
uy)) (22)

(T−
uy) + (w+dc

uy uc(µ
−
uy) + w+dd

uy ud(µ
−
uy)) ≤ w−dc

uy yc(k) +

w−dd
uy yd(k) ≤ (T+

uy) + (w+dc
uy uc(µ

+
uy) + w+dd

uy ud(µ
+
uy)) (23)

To guarantee a non decreasing system behavior, the
following inequalities are added:

T−
xx + xc(µ

−
xx) ≤ xc(k) ≤ T+

xx + xc(µ
+
xx), (24)

T−
xx + xd(µ

−
xx) ≤ xd(k) ≤ T+

xx + xd(µ
+
xx), (25)

T−
uy + yc(µ

−
uy) ≤ yc(k) ≤ T+

uy + yc(µ
+
uy), (26)

T−
uy + yd(µ

−
uy) ≤ yd(k) ≤ T+

uy + yd(µ
+
uy). (27)
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Theorem 2: A TIHPN can be described by state model
(28) using the dating method:

Φd
m ≤ A−

cd

[
xc(k)

xd(k)

]
≤ Φd

M

Ψd
m ≤ C−

cd

[
yc(k)

yd(k)

]
≤ Ψd

M

(28)

with 
Φd

m = A+
cd

[
xc(µ

−
xx)

xd(µ
−
xx)

]
+ B+

cd

[
uc(µ

−
ux)

ud(µ
−
ux)

]
+

[
T−
x

]
Φd

M = A+
cd

[
xc(µ

+
xx)

xd(µ
+
xx)

]
+ B+

cd

[
uc(µ

+
ux)

ud(µ
+
ux)

]
+

[
T+
x

] (29)

and
Ψd

m = C+
cd

[
xc(µ

−
xy)

xd(µ
−
xy)

]
+D+

cd

[
uc(µ

−
uy)

ud(µ
−
uy)

]
+ I

[
uc(µ

−
uy)

ud(µ
−
uy)

]
+

[
T−
y

]
Ψd

M = C+
cd

[
xc(µ

+
xy)

xd(µ
+
xy)

]
+D+

cd

[
uc(µ

+
uy)

ud(µ
+
uy)

]
+ I

[
uc(µ+

uy)

ud(µ
+
uy)

]
+

[
T+
y

]
(30)

with

T+
x =


T+
ux

T+
ux

T+
xx

T+
xx

0

 , T−
x =


T−
ux

T−
ux

T−
xx

T−
xx

0

 , T+
y =


T+
uy

T+
uy

T+
xy

T+
xy

0

 , T−
y =


T−
uy

T−
uy

T−
xy

T−
xy

0

 ,

A+
cd =


0 0

0 0

w+cc
xx w+cd

xx

w+dc
xx w+dd

xx

I I

B+
cd =


w+cc

ux w+cd
ux

w+dc
ux w+dd

ux

0 0

0 0

0 0

 , I =


0

0

0

0

I



C+
cd =


w+cc

xy w+cd
xy

w+dc
xy w+dd

xy

0 0

0 0

0 0

D+
cd =


0 0

0 0

w+cc
uy w+cd

uy

w+dc
uy w+dd

uy

0 0



A−
cd =


w−cc

ux w−cd
ux

w−cc
xx w−cd

xx

w−dc
ux w−dd

ux

w−dc
xx w−dd

xx

I I

 andC−
cd =


w−cc

xy w−cd
xy

w−cc
uy w−cd

uy

w−dc
xy w−dd

xy

w−dc
uy w−dd

uy

I I

■

The proof of Theorem 2 is given in Appendix B.
Remark 1: Systems (13) and (28) describe the obtained

model for the counting and dating methods. These models
help search the limit bounds of system state x and system
output y. They guarantee that these limit bounds are finite
and that the system trajectory is non-decreasing. At each
moment, the state vector belong to the interval between the
computed upper and the lower bounds. ■

V. DESIGN OF A STATE AND INPUT ESTIMATOR

A. Objective

This part aims to conceive, following the counting and
dating methods, a new estimator able to estimate the limit
bounds of the system state and the input. This estimator is
composed of two inequalities. The first inequality estimates

the limit bounds of the state, whereas the second one
estimates the limit bounds of the input. This observer extends
the one developed in [15]–[19] to TIHPNs. This observer is
elaborated following the counting and dating methods. For
estimation, it is supposed that the system output is known.

B. Counting approach
Inequalities (1) to (8) can be rewritten in the following

forms, with τ = t+ T .

(
w−cc

ux x̂c(τ
−
l,ux) + w−cd

ux x̂d(τ
−
l,ux)

)
− (mux) ≤ w+cc

ux ûc(t)

+w+cd
ux ûd(t) ≤

(
w−cc

ux x̂c(τ
+
l,ux) + w−cd

ux x̂d(τ
+
l,ux)

)
− (mux) (31)(

w−dc
ux x̂c(τ

−
l,ux) + w−dd

ux x̂d(τ
−
l,ux)

)
− (mux) ≤ w+dc

ux ûc(t)

+w+dd
ux ûd(t) ≤

(
w−dc

ux x̂c(τ
+
l,ux) + w−dd

ux x̂d(τ
+
l,ux)

)
− (mux) (32)(

w−cc
xx x̂c(τ

−
l,xx) + w−cd

xx x̂d(τ
−
l,xx)

)
− (mxx) ≤ w+cc

xx x̂c(t)

+w+cd
xx x̂d(t) ≤

(
w−cc

xx x̂c(τ
+
l,ux) + w−cd

xx x̂d(τ
+
l,xx)

)
− (mxx) (33)(

w−dc
xx x̂c(τ

−
l,xx) + w−dd

xx x̂d(τ
−
l,xx)

)
− (mxx) ≤ w+dc

xx x̂c(t)

+w+dd
xx x̂d(t) ≤

(
w−dc

xx x̂c(τ
+
l,xx) + w−dd

xx x̂d(τ
+
l,xx)

)
− (mxx) (34)(

w−cc
xy ŷc(τ

−
l,xy) + w−cd

xy ŷd(τ
−
l,xy)

)
− (mxy) ≤ w+cc

xy x̂c(t)

+w+cd
xy x̂d(t) ≤

(
w−cc

xy ŷc(τ
+
l,xy) + w−cd

xy ŷd(τ
+
l,xy)

)
− (mxy) (35)(

w−dc
xy ŷc(τ

−
l,xy) + w−dd

xy ŷd(τ
−
l,xy)

)
− (mxy) ≤ w+dc

xy x̂c(t)

+w+dd
xy x̂d(t) ≤

(
w−dc

xy ŷc(τ
+
l,xy) + w−dd

xy ŷd(τ
+
l,xy)

)
− (mxy) (36)(

w−cc
uy ŷc(τ

−
l,uy) + w−cd

uy ŷd(τ
−
l,uy)

)
− (muy) ≤ w+cc

uy ûc(t)

+w+cd
uy ûd(t) ≤

(
w−cc

uy ŷc(τ
+
l,uy) + w−cd

uy ŷd(τ
+
l,uy)

)
− (muy) (37)(

w−dc
uy ŷc(τ

−
l,uy) + w−dd

uy ŷd(τ
−
l,uy)

)
− (muy) ≤ w+dc

uy ûc(t)

+w+dd
uy ûd(t) ≤

(
w−dc

uy ŷc(τ
+
l,uy) + w−dd

uy ŷd(τ
+
l,uy)

)
− (muy) (38)

The system must evolve in a non-decreasing way, so, the
following conditions are added:

(mxx) + (x̂c(τ
−
l,xx)) ≤ x̂c(t) ≤ (mxx) + (x̂c(τ

+
l,xx)), (39)

(mxx) + (x̂d(τ
−
l,xx)) ≤ x̂d(t) ≤ (mxx) + (x̂d(τ

+
l,xx)), (40)

(muy) + (ûc(τ
−
l,uy)) ≤ ûc(t) ≤ (muy) + (ûc(τ

+
l,uy)), (41)

(muy) + (ûd(τ
−
l,uy)) ≤ ûd(t) ≤ (muy) + (ûd(τ

+
l,uy)). (42)

Inequalities (31) to (42) can be gathered to design state
observer (43).

Theorem 3: A state estimator able to estimate the state
of a TIHPN is given by equation (43) using the counting
method: 

Φ̂c
m ≤ A−

cd

[
x̂c(t)

x̂d(t)

]
≤ Φ̂c

M

Ψ̂c
m ≤ B−

cd

[
ûc(t)

ûd(t)

]
≤ Ψ̂c

M

(43)

with 
Φ̂c

m = A+
cd

[
x̂c(τ

−
l,xx)

x̂d(τ
−
l,xx)

]
− C+

cd

[
ŷc(τ

−
l,xy)

ŷd(τ
−
l,xy)

]
−

[
Mx

]

Φ̂c
M = A+

cd

[
x̂c(τ

+
l,xx)

x̂d(τ
+
l,xx)

]
+ C+

cd

[
ŷc(τ

+
l,xy)

ŷd(τ
+
l,xy)

]
−

[
Mx

] (44)

and
Ψ̂c

m = I
[
ûc(τ

−
l,uy)

ûd(τ
−
l,uy)

]
+ B+

cd

[
x̂c(τ

−
l,ux)

x̂d(τ
−
l,ux)

]
+D+

cd

[
ŷc(τ

−
l,uy)

ŷd(τ
−
l,uy)

]
−

[
My

]

Ψ̂c
M = I

[
ûc(τ

+
l,uy)

ûd(τ
+
l,uy)

]
+ B+

cd

[
x̂c(τ

+
l,ux)

x̂d(τ
+
l,ux)

]
+D+

cd

[
ŷc(τ

+
l,uy)

ŷd(τ
+
l,uy)

]
−

[
My

]
(45)
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with

A+
cd =


w−cc

xx w−cd
xx

w−dc
xx w−dd

xx

0 0

0 0

I I

 ,B+
cd =


w−cc

ux w−cd
ux

w−dc
ux w−dd

ux

0 0

0 0

0 0

 ,Mx =


mux

mux

mxx

mxx

0

 ,

C+
cd =


0 0

0 0

w−cc
xy w−cd

xy

w−dc
xy w−dd

xy

0 0

 ,D+
cd =


0 0

0 0

w−cc
uy w−cd

uy

w−dc
uy w−dd

uy

0 0

 ,My =


mxy

mxy

muy

muy

0

 ,

A−
cd =


w+cc

xx w+cd
xx

w+cc
xx w+cd

xx

w+dc
xy w+dd

xy

w+dc
xy w+dd

xy

I I

 ,B−
cd =


w+cc

ux w+cd
ux

w+dc
ux w+dd

ux

w+cc
uy w+cd

uy

w+dc
uy w+dd

uy

I I

 andI =


0

0

0

0

I

■

The proof of the Theorem is given in Appendix C.

C. Dating approach
Inequalities (16) to (23) can be rewritten in the following

form, with ϑ = k +m:(
w−cc

ux x̂c(ϑ
+
ux) + w−cd

ux x̂d(ϑ
+
ux)

)
− (T+

ux) ≤ w+cc
ux ûc(k) +

w+cd
ux ûd(k) ≤

(
w−cc

ux x̂c(ϑ
−
ux) + w−cd

ux x̂d(ϑ
−
ux)

)
− (T−

ux) (46)(
w−dc

ux x̂c(ϑ
+
ux) + w−dd

ux x̂d(ϑ
+
ux)

)
− (T+

ux) ≤ w+dc
ux ûc(k) +

w+dd
ux ûd(k) ≤

(
w−dc

ux x̂c(ϑ
−
ux) + w−dd

ux x̂d(ϑ
−
ux)

)
− (T−

ux) (47)(
w−cc

xx x̂c(ϑ
+
xx) + w−cd

xx x̂d(ϑ
+
xx)

)
− (T+

xx) ≤ w+cc
xx x̂c(k) +

w+cd
xx x̂d(k) ≤

(
w−cc

xx x̂c(ϑ
−
xx) + w−cd

xx x̂d(ϑ
−
xx)

)
− (T−

xx) (48)(
w−dc

xx x̂c(ϑ
+
xx) + w−dd

xx x̂d(ϑ
+
xx)

)
− (T+

xx) ≤ w+dc
xx x̂c(k) +

w+dd
xx x̂d(k) ≤

(
w−dc

xx x̂c(ϑ
−
xx) + w−dd

xx x̂d(ϑ
−
xx)

)
− (T−

xx) (49)(
w−cc

xy ŷc(ϑ
+
xy) + w−cd

xy ŷd(ϑ
+
xy)

)
− (T+

xy) ≤ w+cc
xy x̂c(k) +

w+cd
xy x̂d(k) ≤

(
w−cc

xy ŷc(ϑ
−
xy) + w−cd

xy ŷd(ϑ
−
xy)

)
− (T−

xy) (50)(
w−dc

xy ŷc(ϑ
+
xy) + w−dd

xy ŷd(ϑ
+
xy)

)
− (T+

xy) ≤ w+dc
xy x̂c(k) +

w+dd
xy x̂d(k) ≤

(
w−dc

xy ŷc(ϑ
−
xy) + w−dd

xy ŷd(ϑ
−
xy)

)
− (T−

xy) (51)(
w−cc

uy ŷc(ϑ
+
uy) + w−cd

uy ŷd(ϑ
+
uy)

)
− (T+

uy) ≤ w+cc
uy ûc(k) +

w+cd
uy ûd(k) ≤

(
w−cc

uy ŷc(ϑ
−
uy) + w−cd

uy ŷd(ϑ
−
uy)

)
− (T−

uy) (52)(
w−dc

uy ŷc(ϑ
+
uy) + w−dd

uy ŷd(ϑ
+
uy)

)
− (T+

uy) ≤ w+dc
uy ûc(k) +

w+dd
uy ûd(k) ≤

(
w−dc

uy ŷc(ϑ
−
uy) + w−dd

uy ŷd(ϑ
−
uy)

)
− (T−

uy) (53)

The system must evolve in a non-decreasing way, so the
following conditions are added:

T−
xx + x̂c(ϑ

−
xx) ≤ x̂c(k) ≤ T+

xx + x̂c(ϑ
+
xx), (54)

T−
xx + x̂d(ϑ

−
xx) ≤ x̂d(k) ≤ T+

xx + x̂d(ϑ
+
xx), (55)

T−
uy + ûc(ϑ

−
uy) ≤ ûc(k) ≤ T+

uy + ûc(ϑ
+
uy), (56)

T−
uy + ûd(ϑ

−
uy) ≤ ûd(k) ≤ T+

uy + ûd(ϑ
+
uy). (57)

Inequalities (46) to (57) can be aggregated to design observer
(58):

Theorem 4: A state estimator able to estimate the state of
a TIHPN is given by equation (58) using the dating method:

Φ̂d
m ≤ A−

cd

[
x̂c(k)

x̂d(k)

]
≤ Φ̂d

M

Ψ̂d
m ≤ B−

cd

[
ûc(k)

ûd(k)

]
≤ Ψ̂d

M

(58)

with 
Φ̂d

m = A+
cd

[
x̂c(ϑ

+
xx)

x̂d(ϑ
+
xx)

]
− C+

cd

[
ŷc(ϑ

−
xy)

ŷd(ϑ
−
xy)

]
−

[
T+
xx

]
Φ̂d

M = A+
cd

[
x̂c(ϑ

+
xx)

x̂d(ϑ
+
xx)

]
+ C+

cd

[
ŷc(ϑ

−
xy)

ŷd(ϑ
−
xy)

]
−

[
T−
xx

] (59)

and
Ψ̂d

m = B+
cd

[
x̂c(ϑ

+
ux)

x̂d(ϑ
+
ux)

]
+D+

cd

[
ŷc(ϑ

+
uy)

ŷd(ϑ
+
uy)

]
+ I

[
ûc(ϑ

+
uy)

ûd(ϑ
+
uy)

]
−

[
T+
u

]
Ψ̂d

M = B+
cd

[
x̂c(ϑ

−
ux)

x̂d(ϑ
−
ux)

]
+D+

cd

[
ŷc(ϑ

−
uy)

ŷd(ϑ
−
uy)

]
+ I

[
ûc(ϑ

−
uy)

ûd(ϑ
−
uy)

]
−

[
T−
u

]
(60)

with

T+
x =


T+
ux

T+
ux

T+
xx

T+
xx

0

 , T−
x =


T−
ux

T−
ux

T−
xx

T−
xx

0

 , T+
u =


T+
ux

T+
ux

T+
uy

T+
uy

0

 , T−
u =


T−
ux

T−
ux

T−
uy

T−
uy

0

 ,

A+
cd =


w−cc

xx w−cd
xx

w−dc
xx w−dd

xx

0 0

0 0

I I

 ,B+
cd =


w−cc

ux w−cd
ux

w−dc
ux w−dd

ux

0 0

0 0

0 0

 , I =


0

0

0

0

I

 ,

C+
cd =


0 0

0 0

w−cc
xy w−cd

xy

w−dc
xy w−dd

xy

0 0

 ,D+
cd =


0 0

0 0

w−cc
uy w−cd

uy

w−dc
uy w−dd

uy

0 0



A−
cd =


w+cc

xx w+cd
xx

w+cc
xx w+cd

xx

w+dc
xy w+dd

xy

w+dc
xy w+dd

xy

I I

 andB−
cd =


w+cc

ux w+cd
ux

w+dc
ux w+dd

ux

w+cc
uy w+cd

uy

w+dc
uy w+dd

uy

I I

■

The proof of Theorem 4 is given in Appendix D.
Remark 2: Observers (43) and (58) estimate of the limit

bounds of the system state and input, which can be useful
for fault estimation, detection and localization. Moreover,
they guarantee that the limit bounds of the estimation of
x and u are finite and that the system trajectory estimation
is non-decreasing. At each moment, state vector estimation
belongs to the interval between the upper and the lower
bounds. ■

VI. APPLICATION TO PRODUCTION SYSTEM

A. System description

Let consider the production system modeled by a TIHPN
[19], where two pallets, A and B, transport parts. The cycle
of palette A consists of operation A1, which lasts between
3 and 4 time units, followed by operation A2, which takes
place on a shared machine with palette B and lasts between
2 and 9 units. In the same way, palette B performs operation
B1, taking 3 to 5 time units, and then carries out operation
B2 on the shared machine. Priority is given to operation B2

over A2, which means that A2 is interrupted as soon as B1 is
completed, without losing any processing time for A2 [19].
The time interval corresponding to A2 is [a = 2, b = 9], with
values a = 2 and b - a = 7 recorded in positions P8 and
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P9. Once machine M is not used for B2, T9 is pulled at a
speed of 1, and once the 2-time units pass (with possible
interruptions), T3 is pulled, which allows operation A2 to be
completed. At the end of operation A2, T4 or T5 is drawn. It
is possible to draw T4 at any time after the minimum duration
of A2. If the maximum remaining time for A2 reaches zero,
then T5 is taken immediately.

Figure 1 [19] shows the TIHPN that models the system,
where timed arcs and transitions represent the evolution of
operations on the two pallets.

Fig. 1. The production system modeled by TIHPN

The following inequalities describe the system behavior:

T1(t) + 3 ≤ T2(t) ≤ T1(t) + 4 (61a)
T9(t) + 1 ≤ T3(t) ≤ T9(t) + 2 (61b)

T3(t) + 2 ≤ T4(t) + T5(t) ≤ T3(t) + 7 (61c)
T11(t) + 0 ≤ T5(t) ≤ T11(t) + 4 (61d)
T7(t) + 1 ≤ T6(t) ≤ T7(t) + 2 (61e)

T8(t) + 1.2 ≤ T7(t) + T9(t) ≤ T8(t) + 2.4 (61f)
T6(t) + 3 ≤ T7(t) ≤ T6(t) + 5 (61g)
T9(t) + 1 ≤ T7(t) ≤ T9(t) + 2 (61h)
T7(t) + 1 ≤ T8(t) ≤ T7(t) + 2 (61i)
T3(t) + 2 ≤ T10(t) ≤ T3(t) + 7 (61j)

T2(t) + 2.5 ≤ T10(t) ≤ T2(t) + 9.2 (61k)
T9(t) + 1 ≤ T10(t) ≤ T9(t) + 2 (61l)

T1(t) + 3.1 ≤ T11(t) ≤ T1(t) + 4.2 (61m)

The system matrices are:

w−
ux = w+

xy = w+
uy = w−

uy = 0 (62)

w+
ux =



1

1

1

0

0

0

1

0

0

0

0



w+
xx =



1 1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1


(63)

w−
xy =



0

0

0

1

0

0

1

0

0

0

0



w−
xx =



1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 1 0

0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1 0 1 0

0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1


(64)

The simulation results are presented in Table I. It is supposed
that input T1(k) is known. Table I gives the limit bounds for
each state and output, which are obtained based on equation
(28), where matrices w+

ux, w
−
ux, w

+
xx, w

−
xx, w

+
xy, w

−
xy, w

+
uy

and w−
uy are given in (62), (63) and (64).

B. State estimation

The following inequalities describe the behavior of the
state estimator:

T2(k)− 4 ≤ T1(k) ≤ T2(k)− 3 (65a)
T10(k)− 9 ≤ T2(k) ≤ T10(k)− 2 (65b)
T10(k)− 7 ≤ T3(k) ≤ T10(k)− 2 (65c)

T3(k)− 7 ≤ T4(k) + T5(k) ≤ T3(k)− 2 (65d)
T7(k)− 5 ≤ T6(k) ≤ T7(k)− 3 (65e)
T8(k)− 2 ≤ T7(k) ≤ T8(k)− 1 (65f)

T7(k) + T9(k)− 2 ≤ T8(k) ≤ T7(k) + T9(k)− 1 (65g)
T10(k) + T3(k)− 2 ≤ T9(k) ≤ T10(k) + T3(k)− 1 (65h)

T2(k)− 9.2 ≤ T10(k) ≤ T2(k)− 2 (65i)
T5(k)− 4 ≤ T11(k) ≤ T5(k)− 0 (65j)

Table II gives the estimation result of the system state and
input. Symbol (est) means that it is an estimated variable.
For estimation, it is supposed that only system output T10(k)
is known. The results provided in Table II are obtained using
the estimator proposed in equation (58).

Table II gives a possible estimation of the state vector
at each date k. The estimation is based on the interval of
T10(k).

Figure 2 highlights the contrast between the simulation
and the estimation results for each transition (T1 to T11).
Simulated intervals are represented by dark-color, whereas
estimated intervals are represented by light-color. This
differentiation allows emphasizing the accuracy of the
estimates in comparison to the simulated values. The points
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TABLE I
SYSTEM SIMULATION

Dates 1 2 3 4 5 6 7 8 9 10
T1(k) [1,3] [2,4] [3,5] [4,6] [6,8] [8,10] [9,12] [11,13] [11,15] [13,17]
T2(k) [4,7] [5,8] [6,9] [7,10] [9,12] [11,14] [12,16] [14,17] [14,19] [16,21]
T3(k) [0,14] [0,15] [1,16] [2,17] [4,19] [6,21] [7,23] [9,24] [9,26] [11,28]
T4(k) [2,21] [2,22] [3,23] [4,24] [6,26] [8,28] [9,30] [11,31] [11,33] [13,35]
T5(k) [4,11] [5,12] [6,13] [7,14] [9,16] [11,18] [12,20] [14,21] [14,23] [16,25]
T6(k) [6,19] [7,20] [8,21] [9,22] [11,24] [13,26] [14,28] [16,29] [18,31] [18,33]
T7(k) [5,17] [6,18] [7,19] [8,20] [10,22] [12,24] [13,26] [15,27] [17,29] [17,31]
T8(k) [6,19] [7,20] [8,21] [9,22] [11,24] [13,26] [14,28] [16,29] [18,31] [18,33]
T9(k) [4.5,15.2] [5.5,16.2] [6.5,17.2] [7.5,18.2] [9.5,20.2] [11.5,22.2] [12.5,24.2] [14.5,25.2] [16.5,27.2] [16.5,29.2]
T11(k) [4.1,7.2] [5.1,8.2] [6.1,9.2] [7.1,10.2] [9.1,12.2] [11.1,14.2] [12.1,16.2] [14.1,17.2] [14.1,19.2] [16.1,21.2]
T10(k) [6.5,16.2] [7.5,17.2] [8.5,18.2] [9.5,19.2] [11.5,21.2] [13.5,23.2] [14.5,25.2] [16.5,26.2] [16.5,28.2] [18.5,30.2]

TABLE II
STATE ESTIMATION

Dates 1 2 3 4 5 6 7 8 9 10
T1est(k) [0,11] [0,12] [0,13] [0,14] [0,16] [0,18] [1,20] [3,21] [3,23] [5,25]
T2(k) [0,14] [0,15] [0,16] [0,17] [2,19] [4,21] [5,23] [7,24] [7,26] [9,28]
T3(k) [0,14] [0,15] [1,16] [2,17] [4,19] [6,21] [7,23] [7,24] [7,26] [9,28]
T4(k) [0,12] [0,13] [0,14] [0,15] [0,17] [0,19] [0,21] [2,22] [2,24] [4,26]
T5(k) [0,12] [0,13] [0,14] [0,15] [0,17] [0,19] [0,21] [2,22] [2,24] [4,26]
T6(k) [0,11] [0,12] [0,13] [0,14] [2,16] [4,18] [5,20] [7,21] [7,23] [9,25]
T7(k) [2,14] [3,15] [4,16] [5,17] [7,19] [9,21] [10,23] [12,24] [12,26] [14,28]
T8(k) [4,25] [6,30] [8,32] [10,34] [14,38] [18,42] [20,46] [24,48] [24,52] [28,56]
T9(k) [4.5,15.2] [5.5,16.2] [6.5,17.2] [7.5,18.2] [9.5,20.2] [11.5,22.2] [12.5,24.2] [14.5,25.2] [14.5,27.2] [16.5,29.2]
T11(k) [0,6.2] [0,7.2] [0,8.2] [0,9.2] [0,10.2] [0,12.2] [0,14.2] [0,16.2] [0,17.2] [2,19.2]
T10(k) [6.5,16.2] [7.5,17.2] [8.5,18.2] [9.5,19.2] [11.5,21.2] [13.5,23.2] [14.5,25.2] [16.5,26.2] [16.5,28.2] [18.5,30.2]

of overlap or the differences between intervals indicate an
alignment or a divergence, hence understanding the time
margins for each transition.

C. Discussion of results

The results presented in Tables I and II, as well as in Figure
2, allow us to evaluate the performance of the production
system modeled by TIHPN in terms of simulation and state
estimation. The comparative study between the time bounds
obtained by simulation and those obtained by estimation
shows strong consistency between the two approaches.

On the one hand, simulation, carried out on the assumption
that the input T1(k) is known, provides precise time intervals
for each transition. On the other hand, estimation, based
solely on the output T10(k), produces time bounds very
close to those obtained by simulation. This closeness of the
intervals confirms the reliability of the estimate, despite the
limited access to information.

For the T3 transition, for example, the estimated intervals
are globally included in those provided by simulation, with
reduced margins of error. Similarly, critical transitions such
as T5, T7 or T11, which are strongly influenced by the
dynamics of machine sharing between pallets A and B, are
correctly estimated. This demonstrates the accuracy of the
estimation algorithm even in complex configurations with
priorities and interruptions.

The small deviation between the upper and lower bounds
of the estimated intervals prooves also good convergence of
the estimator, limiting temporal uncertainty. This is essential
for the supervision of real-time production systems, where
decisions have to be taken quickly on the basis of partial
information.

The obtained results validate the ability of the TIHPN
model to provide efficient, reliable and accurate temporal
estimation of system behavior. This approach therefore

represents a robust solution for monitoring and controlling
hybrid discrete and continuous event systems.

For all transitions, the intersections between simulated and
estimated intervals are not empty, so we can conclude that
the state model and the observer give acceptable results with
high accuracy.

D. Fault detection and localization

An actual defect α(k) is introduced into the production
system. Estimating the transition under fault circumstances,
simulating the influence on the transition T9(k) and
computing the related estimated fault α̂(k) are the objectives
in this section. This defect is considered as an unknown input
α(k) that affects the transition T9(k) such that:

T inf
9 (k) = T3(k) + α(k), T sup

9 (k) = T3(k) + α(k) + 1

with:

α(k) =

{
5000 if k = 3, 6, 8

0 otherwise

1) Simulation with fault: Given the simulated values of
T3(k) and α(k):

T3(k) = [0, 14], [0, 15], [1, 16], [2, 17], [4, 19],

[6, 21], [7, 23], [9, 24], [9, 26], [11, 28]

α(k) = [0, 0, 5000, 0, 0, 5000, 0, 5000, 0, 0]

the bounds of T9(k) under fault are computed as follows:

T inf
9 (k) = T3(k) + α(k), T sup

9 (k) = T3(k) + α(k) + 1

The results of simulation of the bounds of T9(k) are given
in Table III
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Fig. 2. Comparison between simulated and estimated values
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TABLE III
SIMULATION OF T9(k) WITH INJECTED FAULT

k T3(k) α(k) T9(k) inf T9(k) sup
1 [0, 14] 0 [0, 14] [1, 15]
2 [0, 15] 0 [0, 15] [1, 16]
3 [1, 16] 5000 [5001, 5016] [5002, 5017]
4 [2, 17] 0 [2, 17] [3, 18]
5 [4, 19] 0 [4, 19] [5, 20]
6 [6, 21] 5000 [5006, 5021] [5007, 5022]
7 [7, 23] 0 [7, 23] [8, 24]
8 [9, 24] 5000 [5009, 5024] [5010, 5025]
9 [9, 26] 0 [9, 26] [10, 27]
10 [11, 28] 0 [11, 28] [12, 29]

2) Estimation with fault: Using the estimated intervals of
T3(k) and T9(k), the bounds of the estimated fault α̂(k) are
computed as follows:

α̂min(k) = max(0,min(T inf
9 (k))−max(T sup

3 (k))− 1)

α̂max(k) = max(0,max(T sup
9 (k))−min(T inf

3 (k)))

α̂min(k) and α̂max(k) are given in Table IV

TABLE IV
ESTIMATED VALUES OF α̂(k)

k T est
3 (k) T est

9 (k) α̂min(k) α̂max(k)
1 [0, 14] [4.5, 15.2] 0.0 15.2
2 [0, 15] [5.5, 16.2] 0.0 16.2
3 [1, 16] [5006.5, 5017.2] 4990.5 5016.2
4 [2, 17] [7.5, 18.2] 0.0 16.2
5 [4, 19] [9.5, 20.2] 0.0 16.2
6 [6, 21] [5008.5, 5022.2] 4986.5 5016.2
7 [7, 23] [12.5, 24.2] 0.0 24.2
8 [9, 24] [5014.5, 5025.2] 4990.5 5016.2
9 [9, 26] [16.5, 27.2] 0.0 18.2
10 [11, 28] [16.5, 29.2] 0.0 29.2

We note that moments k = 3, 6, 8 display a notably
high value of α̂(k), demonstrating the detection of a defect
introduced at these instants. For the other moments, the limits
remain close to zero, indicating the absence of a defect.

VII. CONCLUSION AND FUTURE WORK

In this study, we have presented a comprehensive method
for assessing the state, the inputs and the outputs of hybrid
systems modeled using TIHPNs. This assessing, is developed
following the counting and dating methods. Furthermore, we
have used a status indicator that not only assesses these limits
but also can play a crucial role in detecting and locating faults
within a system.

Unlike previous work that has focused on system
validation or diagnosis using classical PNs, our approach
has considered a hybrid system framework that combine
continuous and discrete-event behaviors, and taken into
account time intervals.

The concepts and approaches developed in this study
have created robust fault detection mechanisms, particularly
in systems where time constraints and hybrid behaviors
are essential. Future studies may focus on improving the
computational efficiency of estimators and expanding their
applications to more complex and larger-scale systems. Our
work can be continued by analyzing the effectiveness of
the estimation using linear programming techniques, which
allows for the integration of additional criteria into the
simulation and estimation processes. Ultimately, this study

contributes to the field by enhancing our ability to ensure
the safety and reliability of systems through better failure
management and state monitoring. It has a follow-up on the
states.

APPENDIX A
PROOF OF THEOREM 1.

Proof: Inequalities (1), (2), (3), (4), (9), and (10) define the boundary constraints for system state x(t).


mux

mxx

mux

mxx

0

+


w+cc

ux w+cd
ux 0 0

w+dc
ux w+dd

ux 0 0

0 0 w+cc
xx w+cd

xx

0 0 w+dc
xx w+dd

xx

0 0 I I



uc(θ

+
l,ux)

ud(θ
+
l,ux)

xc(θ
+
l,xx)

xd(θ
+
l,xx)

 ≤


w−cc

ux w−cd
ux

w−dc
ux w−dd

ux

w−cc
xx w−cd

xx

w−dc
xx w−dd

xx

I I


(
xc(t)

xd(t)

)

≤


mux

mxx

mux

mxx

0

+


w+cc

ux w+cd
ux 0 0

w+dc
ux w+dd

ux 0 0

0 0 w+cc
xx w+cd

xx

0 0 w+dc
xx w+dd

xx

0 0 I I



uc(θ

−
l,ux)

ud(θ
−
l,ux)

xc(θ
−
l,xx)

xd(θ
−
l,xx

 (66)

Inequality (66) allows for the computation of the limit bounds of system state x(t).
Similarly, inequality (67) may be used to describe inequalities (5), (6), (7), (8), (11) and (12) that identify the upper and
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lower bounds of system output y(t).


mxy

muy

mxy

muy

0

+


w+cc

xy w+cd
xy 0 0 0 0

w+dc
xy w+dd

xy 0 0 0 0

0 0 w+cc
uy w+cd

uy 0 0

0 0 w+dc
uy w+dd

uy 0 0

0 0 0 0 I I





xc(θ
+
l,xy)

xd(θ
+
l,xy)

uc(θ
+
l,uy)

ud(θ
+
l,uy)

yc(θ
+
l,uy)

yd(θ
+
l,uy)


≤


w−cc

xy w−cd
xy

w−dc
xy w−dd

xy

w−cc
uy w−cd

uy

w−dc
uy w−dd

uy

I I


(
yc(t)

yd(t)

)

≤


mxy

muy

mxy

muy

0

+


w+cc

xy w+cd
xy 0 0 0 0

w+dc
xy w+dd

xy 0 0 0 0

0 0 w+cc
uy w+cd

uy 0 0

0 0 w+dc
uy w+dd

uy 0 0

0 0 0 0 I I





xc(θ
−
l,xy)

xd(θ
−
l,xy)

uc(θ
−
l,xy)

ud(θ
−
l,xy)

yc(θ
−
l,xy)

yd(θ
−
l,xy)


(67)

APPENDIX B
PROOF OF THEOREM 2.

Proof: The upper and lower limits of system state x(k) are given by inequality (16) to (19), which may be transformed
on matrix inequality (68):

T−
ux

T−
xx

T−
ux

T−
xx

0

+


w+cc

ux w+cd
ux 0 0

w+dc
ux w+dd

ux 0 0

0 0 w+cc
xx w+cd

xx

0 0 w+dc
xx w+dd

xx

0 0 I I



uc(µ

−
ux)

ud(µ
−
ux)

xc(µ
−
xx)

xd(µ
−
xx)

 ≤


w−cc

ux w−cd
ux

w−dc
ux w−dd

ux

w−cc
xx w−cd

xx

w−dc
xx w−dd

xx

I I


(
xc(k)

xd(k)

)

≤


T+
ux

T+
xx

T+
ux

T+
xx

0

+


w+cc

ux w+cd
ux 0 0

w+dc
ux w+dd

ux 0 0

0 0 w+cc
xx w+cd

xx

0 0 w+dc
xx w+dd

xx

0 0 I I



uc(µ

+
ux)

ud(µ
+
ux)

xc(µ
+
xx)

xd(µ
+
xx)

 (68)

Similarly, matrix inequality (69) may be subjected to inequalities (19) and (23), which provide the upper and lower limits
of the system output y(k):


T−
xy

T−
uy

T−
xy

T−
uy

0

+


w+cc

xy w+cd
xy 0 0 0 0

w+dc
xy w+dd

xy 0 0 0 0

0 0 w+cc
uy w+cd

uy 0 0

0 0 w+dc
uy w+dd

uy 0 0

0 0 0 0 I I





uc(µ
−
xy)

ud(µ
−
xy)

xc(µ
−
uy)

xd(µ
−
uy)

yc(µ
+
uy)

yd(µ
+
uy)


≤


w−cc

xy w−cd
xy

w−dc
xy w−dd

xy

w−cc
uy w−cd

uy

w−dc
uy w−dd

uy


(
yc(k)

yd(k)

)

≤


T+
xy

T+
uy

T+
xy

T+
uy

0

+


w+cc

xy w+cd
xy 0 0 0 0

w+dc
xy w+dd

xy 0 0 0 0

0 0 w+cc
uy w+cd

uy 0 0

0 0 w+dc
uy w+dd

uy 0 0

0 0 0 0 I I





uc(µ
+
xy)

ud(µ
+
xy)

xc(µ
+
uy)

xd(µ
+
uy)

yc(µ
+
uy)

yd(µ
+
uy)


(69)
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APPENDIX C
PROOF OF THEOREM 3.

Proof: Inequalities (31), (32),(37), (38), (41) and (42) can be gathered in matrix inequality (??), which permits us to
estimate the system input by computing the limit bounds of u(k).


w−cc

ux w−cd
ux 0 0 0 0

w−dc
ux w−dd

ux 0 0 0 0

0 0 w−cc
uy w−cd

uy 0 0

0 0 w−dc
uy w−dd

uy 0 0

0 0 0 0 I I





x̂c(τ
−
l,ux)

x̂d(τ
−
l,ux)

ŷc(τ
−
l,uy)

ŷd(τ
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l,uy)

ûc(τ
−
l,uy)

ûd(τ
−
l,uy)
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−


mux

mux

muy

muy

0

 ≤


w+cc

ux w+cd
ux

w+dc
ux w+dd

ux

w+cc
uy w+cd

uy

w+dc
uy w+dd

uy

I I


(
ûc(t)

ûd(t)

)

≤


w−cc

ux w−cd
ux 0 0 0 0

w−dc
ux w−dd

ux 0 0 0 0

0 0 w−cc
uy w−cd

uy 0 0

0 0 w−dc
uy w−dd

uy 0 0

0 0 0 0 I I





x̂c(τ
+
l,ux)

x̂d(τ
+
l,ux)

ŷc(τ
+
l,uy)

ŷd(τ
+
l,uy)

ûc(τ
−
l,uy)

ûd(τ
−
l,uy)


−


mux

mux

muy

muy

0

 (70)

In the same way, (33), (34), (35), (36), (39) and (40) can be combined into matrix inequality (71), which allows for the
computation of the limit bounds of x(t).


w−cc

xx w−cd
xx 0 0

w−dc
xx w−dd

xx 0 0

0 0 w−cc
xy w−cd

xy

0 0 w−dc
xy w−dd

xy

I I 0 0



x̂c(τ

−
l,xx)

x̂d(τ
−
l,xx)

ŷc(τ
−
l,xy)

ŷd(τ
−
l,xy)

−


mxx

mxx

mxy

mxy

0

 ≤


w+cc

xx w+cd
xx

w+dc
xx w+dd

xx

w+cc
xy w+cd

xy

w+dc
xy w+dd

xy

I I


(
x̂c(t)

x̂d(t)

)

≤


w−cc

xx w−cd
xx 0 0

w−dc
xx w−dd

xx 0 0

0 0 w−cc
xy w−cd

xy

0 0 w−dc
xy w−dd

xy

I I 0 0



x̂c(τ

+
l,xx)

x̂d(τ
+
l,xx)

ŷc(τ
+
l,xy)

ŷd(τ
+
l,xy)

−


mxx

mxx

mxy

mxy

0

 (71)

APPENDIX D
PROOF OF THEOREM 4.

Proof: Inequalities (48), (49), (50), (51), (54) and (55) can be combined into matrix inequality (72), which allows
computing the limit bounds of x(k).


w−cc

xx w−cd
xx 0 0

w−dc
xx w−dd

xx 0 0

0 0 w−cc
xy w−cd

xy

0 0 w−dc
xy w−dd

xy

I I 0 0



x̂c(ϑ

+
l,xx)

x̂d(ϑ
+
l,xx)

ŷc(ϑ
+
l,xy)

ŷd(ϑ
+
l,xy)

−


T+
xx

T+
xx

T+
xy

T+
xy

0

 ≤


w+cc

xx w+cd
xx

w+dc
xx w+dd

xx

w+cc
xy w+cd

xy

w+dc
xy w+dd

xy

I I


(
x̂c(t)

x̂d(t)

)

≤


w−cc

xx w−cd
xx 0 0

w−dc
xx w−dd

xx 0 0

0 0 w−cc
xy w−cd

xy

0 0 w−dc
xy w−dd

xy

I I 0 0



x̂c(ϑ

−
l,xx)

x̂d(ϑ
−
l,xx)

ŷc(ϑ
−
l,xy)

ŷd(ϑ
−
l,xy)

−


T−
xx

T−
xx

T−
xy

T−
xy

0

 (72)

Similarly, inequalities (46), (47), (52), (53), (56) and (57) can be gathered in matrix inequality (73), which permits us to
estimate the system input by computing the limit bounds of u(t).
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
w−cc

ux w−cd
ux 0 0 0 0

w−dc
ux w−dd

ux 0 0 0 0

0 0 w−cc
uy w−cd

uy 0 0

0 0 w−dc
uy w−dd

uy 0 0

0 0 0 0 I I





x̂c(ϑ
+
l,ux)

x̂d(ϑ
+
l,ux)

ŷc(ϑ
+
l,uy)

ŷd(ϑ
+
l,uy)

hatuc(ϑ
+
l,uy)

ûd(ϑ
+
l,uy)


−


T+
ux

T+
ux

T+
uy

T+
uy

0

 ≤


w+cc

ux w+cd
ux

w+dc
ux w+dd

ux

w+cc
uy w+cd

uy

w+dc
uy w+dd

uy

I I


(
ûc(t)

ûd(t)

)

≤


w−cc

ux w−cd
ux 0 0 0 0

w−dc
ux w−dd

ux 0 0 0 0

0 0 w−cc
uy w−cd

uy 0 0

0 0 w−dc
uy w−dd

uy 0 0

I I 0 0 0 0





x̂c(ϑ
−
l,ux)

x̂d(ϑ
−
l,ux)

ŷc(ϑ
−
l,uy)

ŷd(ϑ
−
l,uy)

hatuc(ϑ
+
l,uy)

ûd(ϑ
+
l,uy)


−


T−
ux

T−
ux

T−
uy

T−
uy

0

 (73)
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