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Atmospheric PM2.5 Concentration Prediction
Based on the GV-MCBI1LSTM Hybrid Model

Boyu Dong, Boqun Li, Xi Chen

Abstract—In the context of exacerbated atmospheric com-
pound pollution, accurate prediction of PM2.5 concentrations
is crucial for pollution prevention, control, and public health
management. To address the limitations of existing methods in
handling non-stationary signals and integrating spatiotemporal
characteristics, this study proposes a novel hybrid hourly
PM2.5 prediction model, namely GWO-VMD-MultiscaleConv-
BiLSTM (GV-MCBILSTM). Firstly, the Grey Wolf Optimizer
(GWO) algorithm is employed to dynamically optimize the
key parameters of Variational Mode Decomposition (VMD),
thereby enhancing the accuracy of the decomposition process.
Secondly, the original PM2.5 concentration time series is de-
composed into multiple Intrinsic Mode Functions (IMFs), which
effectively separate the aliased modal features, yielding clearer
and more interpretable signal components for subsequent mod-
eling. Finally, a Multi-scale Convolutional Bidirectional Long
Short-Term Memory Network (MCBiLSTM) is constructed,
integrating various influencing factors such as air pollutants
and meteorological variables, to capture the spatiotemporal
dependencies of PM2.5 concentrations. Experimental results
demonstrate that the proposed model outperforms existing
methods in PM2.5 prediction in Shenyang, achieving an RMSE
of 1.179 pg/m3, an MAE of 0.746 png/m3, and an R? value of
0.997, thus validating its effectiveness and accuracy.

Index Terms—PM2.5 prediction, GWO-VMD, BIiLSTM,
Multi-scale Convolution

I. INTRODUCTION

NDER the background of rapid global economic devel-
Uopment and accelerated industrialization, the increase
in environmental pollution sources such as vehicle exhaust
emissions and the combustion of chemical fuels has led to
the worsening of air pollution. In recent years, the frequent
occurrence of air pollution events and extreme weather has
posed a tremendous threat to the ecological environment and
public health [1]. Among these pollutants, PM2.5 (fine partic-
ulate matter with a diameter of less than or equal to 2.5 pm)
is regarded as a crucial indicator for assessing air quality.
Due to the extremely small size of PM2.5 particles, they can
remain suspended in the air for an extended period and carry
toxic and harmful substances, thus posing a significant threat
to human health [2—4]. Therefore, it is particularly essential
to propose a reliable and accurate early warning method for
predicting the changes in PM2.5 concentration, which can
help reduce exposure risks and provide a scientific basis for
environmental governance[5,6].
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In the domain of PM2.5 concentration prediction re-
search, scholars have proposed various prediction models,
mainly encompassing four categories: deterministic mech-
anism models, traditional statistical models, artificial intel-
ligence models, and hybrid models. Deterministic mecha-
nism models predict PM2.5 concentration by studying the
physical and chemical generation mechanisms of pollu-
tants and simulating their diffusion and transfer processes.
Common models such as WRF [7] and WRF-CMAQ [8]
are employed. Nevertheless, these models are complex and
require a substantial amount of detailed data, especially the
difficulty in obtaining ground emission data, which leads to
significant errors in simulation results. Traditional statistical
models like the grey model (GM) [9], multivariate linear
regression model (MLRM) [10] autoregressive integrated
moving average model (ARIMA) [11], generalized additive
model (GAM) [12], and land use regression (LUR) [13]
can make predictions using historical data, but they are
often suitable for linear relationships and have difficulty in
handling the nonlinearity and non-stationarity of PM2.5 se-
quences, resulting in low prediction accuracy. With the rapid
advancement of artificial intelligence, deep learning models
have been widely utilized in PM2.5 prediction due to their
excellent nonlinear modeling capabilities. Models such as
backpropagation neural network (BPNN) [14], support vector
regression (SVR) [15], and long short-term memory network
(LSTM) [16] can effectively capture long-term dependencies
in time series, but they are weak in extracting spatial features.
Especially when dealing with complex environmental data,
their performance is often unsatisfactory. To address this
issue, Ning Zhou proposed the CNN-LSTM model [17],
which combines traditional LSTM with convolutional neural
networks CNN to enhance the ability to capture spatial
features and has made certain progress. CNN-LSTM has to
some extent addressed the problem of local spatial depen-
dence, however,it still has difficulty in effectively capturing
remote spatial dependence and has limitations in complex
spatiotemporal data modeling. To further overcome these
deficiencies, this paper proposes a neural network model
based on the MultiscaleConv-BiLSTM (MCBILSTM). Com-
pared with traditional models, the MCBILSTM effectively
enhances the model’s ability to capture spatial features and
long-term spatial dependencies by constructing a multi-
branch network structure and integrating the BiLSTM unit.
This method, through the fusion of multi-scale convolution
and BiLSTM, enables the model to understand the dynamic
changes of spatio-temporal features at different scales.

However, due to the complexity and non-stationarity of the
PM2.5 time series, prediction errors are still inevitable. To
address this, researchers have introduced signal processing
techniques to reduce the interference of nonlinearity and non-
stationarity on prediction results [18]. For example, Huang
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combined Empirical Mode Decomposition (EMD) with the
Gated Recurrent Neural Network (GRNN), achieving certain
success. However, EMD has issues of mode aliasing and
an insufficiently rigorous mathematical foundation. To over-
come this limitation, this paper selects the VMD method,
which has a more rigorous mathematical theoretical basis.
VMD decomposes the signal into modes with clear fre-
quency band limitations by minimizing frequency deviation,
effectively avoiding the mode aliasing problems that may
occur in EMD and Ensemble Empirical Mode Decomposi-
tion (EEMD), and does not rely on noise addition, thereby
achieving more accurate and stable signal decomposition
[19,20]. Although VMD performs well in decomposition, its
performance still depends on the selection of decomposition
layers and penalty factors, which usually require manual ad-
justment. To solve this problem, Liu proposed using Particle
Swarm Optimization (PSO) to automatically optimize VMD
parameters, thereby improving decomposition accuracy [21].
However, PSO is prone to getting stuck in local optima
and cannot guarantee the acquisition of the global optimum.
To overcome this limitation, this study adopts the GWO
algorithm to optimize the key parameters of VMD. GWO
effectively balances local and global search through adaptive
convergence factors and information feedback mechanisms,
significantly enhancing the parameter optimization effect
[22].

II. METHOD

A. Variational modal decomposition

Oy Ké(t) + ;t) *uk(t)] o dwnt

VMD algorithm employs a completely non-recursive mode
decomposition method, effectively avoiding the problem of
mode mixing [23]. The core idea of VMD is to construct
and solve the following variational problem:

(1) Construct the variational problem

2
K
s.t. Z up = f

k=1
6]
where wuy(t) constitutes the subsequence resulting from
VMD decomposition, wy(t) is the frequency, 6(t) is the Dirac

delta function, and f is the signal to be decomposed.

(2) By introducing a quadratic penalty factor o and
Lagrange multiplier A\ into the Lagrange value function,
the constrained variational problem is transformed into an
unconstrained variational problem.
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(3) By using the alternating direction method of multipliers
in combination with the Fourier equidistant transformation
and other methods, the individual components and their
central frequencies are continuously updated. Eventually,
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the optimal solution to the original constrained variational
problem is obtained. Update all u; and wy when k& > 0.
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The updated A with double improvements, where v is the
update rate.
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(4) When the iterative constraint of the following formula
is satisfied, stop updating the functional to obtain the solution
of the constrained variational problem. In the formula, ¢ is
the discrimination accuracy parameter.
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The overall execution process of the VMD algorithm is:
Step 1. Initialize u¥, w¥, \¥, n =0, k = 1.
Step 2. According to the VMD algorithm formulas (3)
and (4), update ;' *" and &} until the decomposition
times reach k, then stop the inner loop and update the
Lagrange multiplier A"*! according to formula (5).
Step 3. Continue the loop until the iteration constraint
formula (6) is satisfied; otherwise, proceed to Step 2
and continue the iteration.

B. Parameter optimization of variational mode decomposi-
tion using grey wolf optimization algorithm

The modal decomposition accuracy of the VMD algorithm
is predominantly governed by two crucial parameters: the
mode number K and the bandwidth constraint a. Selecting
the optimal parameters through manual configuration is chal-
lenging. Hence, in this paper, the GWO algorithm proposed
by Mirjalili et al. is employed to optimize the parameters K
and «. This algorithm strikes a balance between local search
optimization and global search exploration by emulating
the four-level social structure (a« > § > § > w) of the
grey wolf pack and the group hunting strategy [24]. The
principal processes of GWO encompass establishing the wolf
hierarchy, encircling the prey, hunting the prey, and attacking
the prey. Eventually, the position vector X, of the wolf is
regarded as the optimal solution of the objective function.
The main steps are as follows:

Step 1: Initialize the grey wolf population X; (@ =
1,2,...,n) and other parameters.

Step 2: Determine the adaptive function and calculate
the fitness value of each grey wolf individual.

Step 3: Identify «, 8, J. « is the grey wolf individual
with the highest fitness value, 5 is the one with the
second highest fitness value, and ¢ is the one with the
third highest fitness value. X, Xg, X; represent the
positions of «, 3, and 4.
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Fig. 1. Flowchart of GWO-VMD

Step 4: Update the position of the current grey wolf
individualX,, = X4+224Xs “where X, X5, and X;
are influenced by X, Xz, X;, and X, represents the
adjusted position.

Step 5: Calculate the fitness value of all grey wolf
individuals and update X,, Xg, and Xs.

Step 6: ¢ = ¢+ 1, repeat steps 4 to 6 until the maximum
number of iterations is reached.

Step 7: Return the optimal solution X, as the expected
result.

After obtaining the optimal parameters [K, «], VMD is
used to decompose the subsequences. The overall workflow
diagram of GWO-VMD is presented, as shown in Fig.1.

C. Multi-scale extraction module

One-dimensional convolutional networks have demon-
strated significant advantages in extracting temporal features
[25], and their performance is closely related to the scale
sensitivity of the receptive field [26]. Fixed-scale convolu-
tional kernels have inherent limitations when dealing with the
multimodal feature coupling problem in PM2.5 concentration
sequences, resulting in a mismatch of feature resolution and
insufficient feature separation across different time scales.

Initialize #, @/, A .n=0,k=1

v

Update u . al” ‘

Update 1 (&)
v
‘ OQutput K IMF 5
h 4
End

This study proposes a multi-scale convolutional architecture,
which builds a temporal feature pyramid through four sets
of heterogeneous convolutional kernels of 1 x 5, 1 x 7,
1 x9, and 1 x 11. Through multi-scale convolution, it
can effectively model temporal features at different levels
and capture subtle fluctuations and abrupt changes. The
mathematical expression is as follows :

Al(t) = kﬁ:ol‘A(t — k)wA(k) +bA
Ag(t) = 26: IA(t — k)wA(k) +bg
50 )
As(t) = kzoxA(t —Ek)wa(k) +ba
A4(t) = > Z’A(tf k)WA(k) +bA
k=0

Where A;(t) represents the output feature of the i-th
convolutional layer at time step ¢, x4(t — k) is the input
signal, w4 (k) is the convolution kernel weight, and b4 is
the bias term.
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Fig. 2. Structure diagram of the LSTM

D. Bidirectional long short-term memor

The Long Short-Term Memory (LSTM) network was
initially proposed by Hochreiter and Schmidhuber in 1997,
resolving the issues of gradient explosion and vanishing in
traditional Recurrent Neural Networks (RNN) through the
introduction of an internal gating mechanism [27,28].The
core structure of LSTM consists of three key gated units: the
Forget Gate, the Input Gate, and the Output Gate, as shown
in Fig.2. Among them, the Forget Gate is responsible for
screening the historical information that needs to be retained,
the Input Gate controls the update of new information, and
the Output Gate determines the output of the hidden state
at the current moment.The detailed process of LSTM neural
unit update is as follows:

(1) The output of the previous moment and the input of the
current moment are input into the forget gate, and the output
of the forget gate is obtained after calculation, as shown in
the following figure:

fir = sigmoid (Wy - [hy—1, 2] + by) ®)

Where the value range of f; is (0,1), W represents the
weights of the forget layer, and b represents the bias of the
forget layer. hy_; indicates the hidden state of the previous
time step, and x; represents the input information of the
current time step.

(2) Feed the output of the previous moment and the input
of the current moment into the input gate, and calculate
to obtain the output of the input gate and the state of the
candidate cell, as shown below:

i¢ = sigmoid (U; - [he—1, Tt + b;) )

Cy = tanh(W, - [hs_1, 2] + be) (10)

Where it lies within the range of (0, 1), where W; denotes
the weight of the input gate, b; indicates the bias of the input
gate, W, represents the weight of the candidate input gate,
and b, represents the bias of the candidate input gate.

(3) Update the current cell state, calculated as follows:

Ci=fi - Cim1 414 - Cy (11)

where C; lies within the range (—1,1).

(4) Feed the output of the previous moment and the input
of the current moment into the output gate, and calculate to
obtain the output value, as follows:

oy = sigmoid (W, - [hy—1,x¢] + by) (12)

where o; lies within the range (0,1), W, represents the

weight of the output gate, and b, denotes the bias of the
output gate.

(5) The output of the output gate is calculated based on
the cell state to obtain the final LSTM output, as follows:

ht = O¢ * tanh(Ct) (13)

However, LSTM is capable of merely exploiting past infor-
mation. On the foundation of LSTM, BiLSTM incorporates
an additional backward LSTM layer, integrating the forward
and backward LSTMs to form a BiLSTM network, as illus-
trated in Fig.3. The forward LSTM is capable of extracting
the past data information of the input sequence, whereas the
backward LSTM can acquire the future data information of
the input sequence. The computations of the two LSTMs
ameliorate the learning of long-term dependencies, thereby
enhancing the accuracy of the model[29]. Consequently, for
the purpose of better capturing the changing trends of indoor
environmental variables over time, this paper will employ
BiLSTM as the underlying architecture of the deep neural
network.

Output layer

Backward
LST™M

Forward
LSTM

Input layer

Fig. 3. Structure diagram of the biLSTM

At time t, the output value of the BiILSTM hidden layer,
denoted as hy, is composed of the forward hidden state,

denoted as h°™* and the backward hidden state, denoted
as hlgackward.

hy = LSTM (hy_1, 71, Cy1) (14)

E = ESTM(htJrlal't»CH»l) (15)
%

he = [ht, hu] (16)

Wherer E: and h; respectively represent the forward and
backward hidden states, x; represents the input at time ¢, and
Ciy1 and Cy_; respectively represent the cell states of the
network at the previous and next moments.
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Fig. 4. Air Pollution Research Area of Shenyang City

III. RESULTS

In this chapter, the basic situation of the regional data
used and the evaluation indicators are first introduced, and
comparative experiments and decomposition effectiveness
verification of the proposed model are conducted. All exper-
iments are implemented in the PyTorch 2.2.1 environment,
and the hardware configuration of the computing platform is
Intel Core i7-12700 and NVIDIA GeForce RTX 3060.

A. Research area

Shenyang is situated in the middle of Liaoning Province,
China, with geographical coordinates approximately at
41.8°N latitude and 123.4°E longitude. It is a typical city
featuring a temperate continental monsoon climate, with
well-defined four seasons and remarkable climate varia-
tions, as depicted in Fig.4. As an important old industrial
base in China, certain areas of Shenyang have long been
concentrated with heavy industrial enterprises and outdated
industrial facilities. Its air quality is profoundly influenced by
multiple factors such as industrial emissions, traffic pollution,
and meteorological conditions. In recent years, along with
the rapid economic growth and the continuous accelera-
tion of the urbanization process, the issues of industrial
emissions and traffic pollution have become increasingly
prominent, resulting in a continuous increase in PM2.5
concentrations and posing a distinct threat to the health
of residents. Therefore, this research selects Shenyang as
the study area. All the data utilized are derived from the
China Air Quality Online Monitoring and Analysis Platform
(https://www.aqistudy.cn/historydata/), with a data time span
ranging from January 1, 2017 to January 1, 2024. The
data encompass concentrations of major pollutants such as
PM2.5, PM;o, SO3, NO,y, CO, and O3 , as well as cru-
cial meteorological parameters like relative humidity (RH),

T
125°0'0" E

temperature (TEMP), wind direction (WD), and wind speed
(WS), providing a solid data foundation for an in-depth
analysis of air quality variations and air pollution prevention
and control measures in the Shenyang region.

B. Evaluation criteria

In order to evaluate the performance of the model more
accurately, four statistical metrics were employed to compare
the predicted sequence with the actual PM2.5 sequence,
namely root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and the
coefficient of determination R2.

N
1 ~
RMSE = | + > (i 7:)? a7
i=1
N
MAE = =" |y; - Gil (18)
=1
1 Yi _:l//\z‘
MAPE = — (19)
N ; Yi
N 2
R2—1 2i=1 (Wi — ¥i) (20)

Where ¢ is the sample serial number, n is the total number
of samples, y; is the measured data of sample 4, 7; is the
model-predicted data of sample ¢, and ¥ is the average of
the actual values of sample 1.
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1000

Fig. 5. VMD Decomposition Results of the Original PM2.5 Time Series

C. Evaluation of model performance

To capture the dynamic variations of time series data
more effectively, this research employed the sliding window
technique. The sliding window divides the time series data
into subsequences of fixed length, allowing the model to
gradually learn and predict the changing trends of PM2.5
concentrations. Specifically, we set the window length at 30
and the step size at 1, thereby ensuring that the model can
fully leverage the information of historical data for predic-
tion. The introduction of this approach further enhances the
model’s capacity for modeling time dependencies.

This study establishes a comprehensive validation system
with 8 sets of control experiments, ensuring a thorough
evaluation of the model architectures. The correspondence
between the model architectures and their respective numbers
is shown in Table 1.

To further enhance the efficacy of VMD, this paper in-
troduces the GWO algorithm for the dynamic optimization
of the key parameters of VMD. Based on the principle of
swarm intelligence optimization, by minimizing the objec-
tive function to reduce the degree of mode aliasing, GWO
conducts global optimization within the preset parameter
space (the decomposition layer number K € [3,10], the
penalty factor « € [1000,4000]). Fig.5 demonstrates that

1500 2000 2500 3000
TABLE I
MODEL NAME REFERENCE
Model ID Model Name
Ml LSTM
M2 BiLSTM
M3 CNN-BIiLSTM
M4 MultiScaleConv-BiLSTM
M5 VMD-GWO-LSTM
M6 VMD-GWO-BIiLSTM
M7 VMD-GWO-CNN-BIiLSTM
M8 VMD-GWO-MultiScaleConv-BiLSTM

the optimized VMD successfully realizes the intrinsic mode
decomposition of the PM2.5 time series signal, effectively
separating the mode components with different time scales.
To comprehensively assess the performance of each model,
we analyzed the performance of different models in PM2.5
concentration prediction by comparing the RMSE , MAE
, R and MAPE of the prediction results. The comparative
experiments in Table 2 validate the effectiveness of VMD in
improving the prediction accuracy. The experimental results
indicate that the models applying VMD decomposition out-
perform those without VMD in different prediction periods
(T+1, T+6, T+12). This might stem from the fact that VMD
constrains the variational model, suppressing the endpoint
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Fig. 6. Comparison of Prediction Results from Different Models within the 1-Hour Prediction Interval
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Fig. 7. Comparison of Prediction Results from Different Models within the 6-Hour Prediction Interval
80
——REAL Ml M2 M3 M4 —— M5 M6 —— M7 —— M|
Time/(h)
Fig. 8. Comparison of Prediction Results from Different Models within the 12-Hour Prediction Interval

effect and mode aliasing, thereby significantly enhanc-
ing the prediction accuracy of the model. This suggests
that VMD technology effectively strengthens the model’s
ability to capture signals and reduces the prediction errors,
thereby proving its significant role in PM2.5 concentration
prediction.Further analyses reveal that the M7 and the M8
models proposed in this study surpass M5 and M6 in
predicting PM2.5 levels. While M5 and M6 can capture the
dependencies within the time series, they have limitations
in addressing spatial correlations. In contrast, M7 possesses
the capability to extract spatial correlations and demonstrates
superiority in spatio-temporal data modeling. Nevertheless,

the proposed M8 model exhibits even more remarkable
performance in capturing spatio-temporal relationships, em-
phasizing the significance of spatial correlations in PM2.5
prediction. Specifically, the core performance indicators of
the M8 model constructed in this study are as follows: RMSE
= 1.179 pg/m3, MAE = 0.746 pug/m3, MAPE = 0.043, and
R? = 0.997, demonstrating significant advantages over the
M7 model. During the T+1 period, RMSE improved by
approximately 31.8% and MAE by approximately 30.5%; in
the T+6 period, RMSE improved by approximately 27.5%
and MAE by approximately 13.7%; in the T+12 period,
RMSE improved by approximately 22.0% and MAE
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TABLE II
THE PREDICTION PERFORMANCE INDICES OF DIFFERENT MODELS IN DIVERSE TIME INTERVALS

Model T+1 T+6 T+12
RMSE MAE MAPE Rz RMSE MAE MAPE Rz RMSE MAE MAPE R2
M1 4.603 2.833 0.153 0972 6594 4.054 0.211 0.931 9.021 5.534 0.281 0.872
M2 4.184  2.605 0.144 0972 5963 3.670 0.190 0.944 8.469 5.180 0.278  0.887
M3 3.968 2435 0.133 0975 5.584 3.444 0.181 0.950 8.072 4.886 0.237 0.897
M4 3.841 2214 0.115 0976 5441 3.259 0.165 0.953 7919 4994 0.293  0.901
M5 2.629 1.632 0.109 0989 2997 1.827 0.109 0.985 3.755  2.400 0.157 0977
M6 1.948 1.151 0.065 0.994 2.698 1.693 0.090 0.988 2902 1.713 0.098 0.986
M7 1.728 1.073 0.056  0.995 2.071 1.091 0.061 0.993 2.628 1.511 0.087 0.989
M8 1.179 0.746 0.043  0.997 1.502  0.942 0.053 0.996  2.050 1.389 0.080 0.993
H | 1Hour | | 6Hour 12H0ur|
10+ 61
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Fig. 9. Comparison of Model Metrics

by approximately 8.1%. These enhancements can mainly
be attributed to the advantages of the proposed model in
extracting spatio-temporal features, particularly the multi-
scale convolution that enables the collaborative capture of
cross-scale spatial features, thereby enhancing the prediction
accuracy.

To present the research findings more visually and intu-
itively, we conducted a visualization of the data. The black
curve represents the actual data, while the light blue, light
green, light purple, light red, blue, green, purple, and red

respectively correspond to the predicted values of the differ-
ent models employed in this paper. The data visualization
clearly indicates that, as depicted from Fig.6-8, within the
short-term prediction range, the prediction results of all mod-
els are relatively consistent with the actual data. However, the
proposed model demonstrates superior performance in terms
of prediction accuracy. Additionally, the proposed model
outperforms the others in peak prediction. As the prediction
range extends, the prediction accuracy of all models for peaks
and future trends gradually declines. By contrast, the model
proposed in this study exhibits superior performance in the
accuracy of the fit between the prediction results and the

actual data, as shown in Fig.9. To sum up, this model can
track the temporal evolution law of PM2.5 concentration
more accurately.

IV. CONCLUSION

In this paper, a GV-MCBiIiLSTM fusion model is proposed
and verified in the Shenyang region. The experimental results
indicate that the proposed model achieves outstanding out-
comes. Through the introduction of the VMD technique, a
frequency-domain feature decoupling framework with adap-
tive bandwidth constraints is constructed, effectively miti-
gating the issues of noise interference and mode aliasing.
Furthermore, the designed MCBILSTM network architecture
possesses distinctive advantages in capturing the spatio-
temporal evolution patterns of pollution events. The empir-
ical results demonstrate that this model exhibits excellent
accuracy and robustness in the task of predicting PM; s
concentration in the next hour, offering a novel technical
approach for complex environmental time series prediction.
Future studies will mainly explore multi-source data fusion
and adaptive optimization mechanisms to further enhance the
environmental generalization ability of the model.
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