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Abstract—To address the challenges of monitoring ore
crusher inlets in complex, open-air environments, this study
integrates image processing techniques with deep learning,
proposing an enhanced system based on an improved
U-Net algorithm. The system is designed to mitigate
issues like clogging, improving operational efficiency. Image
preprocessing reduces interference from variable lighting and
dust. Incorporating channel attention (SE) and multiscale
dilated convolution attention (MDCA) modules enhances
segmentation accuracy by capturing local details and global
context while filtering irrelevant features. Haar wavelet
downsampling preserves essential structural information during
feature compression. Empirical validation using real-world data
shows the system’s effectiveness in condition monitoring via
non-continuous video frames. Performance evaluation indicates
a mean Intersection over Union (mIoU) score of 92.6%,
demonstrating high precision and reliability. Field deployments
confirm the system’s practical value in preventing equipment
failures and optimizing mineral processing efficiency.

Index Terms—Industrial Image Inspection,crusher, semantic
segmentation,image enhancement.

I. INTRODUCTION

IRON ore, as one of the fundamental raw materials in
modern industry, undergoes processing procedures that

typically include mining, crushing, and grinding. Among
these operations, the crushing process plays a particularly
crucial role in breaking large ore blocks into appropriately
sized fragments. However, in practical operations, irregular
ore shapes often lead to frequent clogging incidents , causing
crusher malfunctions that disrupt production efficiency and
potentially damage equipment while increasing maintenance
costs. Therefore, effectively monitoring crusher status and
promptly addressing blockages has become critical for
improving iron ore processing efficiency.

Traditional manual observation methods for Crusher
inlet not only impose substantial labor costs through
multi-operator requirements, but also introduce
miscalculations caused by operator fatigue during extended
monitoring periods. The evolution of computer vision
technology has spurred development of conventional image
processing-based detection methodologies, with notable
progress achieved through watershed algorithms, threshold
segmentation techniques, and support vector machine
(SVM) based solutions . However, these conventional
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approaches demonstrate limited adaptability in complex
operational environments. Critical limitations emerge
when handling substantial variations in ore characteristics
between production batches particularly or when confronting
positional deviations of surveillance cameras that alter the
geometric perspective of crushing chamber openings. Such
scenarios necessitate cumbersome parameter recalibrations
and restrict the generalizability of these methods across
diverse industrial applications. Modern computer vision
techniques, especially semantic segmentation models,
leverage deep learning architectures to show stronger
robustness and adaptability in varying environments and
equipment positions.

Semantic segmentation technology has become the most
groundbreaking image parsing method in the field of
computer vision by realising accurate machine parsing
of image content through pixel-level semantic annotation.
Currently, three mainstream technology systems are formed
in this field: U-Net [1], PSP-Net [2] and DeepLabv3+ [3]
architecture [4]. Studies have shown that U-Net demonstrates
unique advantages in industrial scenarios by virtue of its
multi-level feature fusion mechanism: firstly, its symmetric
coding and decoding structure can effectively capture the
fine-grained texture features of the ore image; secondly,
the hopping connection design significantly improves the
transfer efficiency of the edge features; and ultimately, the
parameter sharing mechanism achieves a stable performance
in small-sample scenarios. Taking the research of Wang’s
team as an example, their innovative work includes:
constructing the first multi-task U-Net framework for ore
image segmentation and developing a new U-Net architecture
with boundary detection; to confirm the method’s significant
advantages in industrial quality inspection scenarios[5].

Nevertheless, practical segmentation tasks often
encounter challenges in defining boundaries between
targets and backgrounds, which basic U-Net struggles to
resolve effectively. Consequently, many researchers have
attempted to integrate U-Net with other networks for
dual-network detection and segmentation. For example,
Chicchon M et al. compared U-Net with DeepLab-V3
performance and proposed a method combining image
contour features with compound loss functions to achieve
high-precision underwater image segmentation [6]. Liu et al.
developed an improved Faster-SCNN and channel attention
mechanism-based U-Net network for ore images, balancing
segmentation accuracy with computational efficiency [7].

However, such detection strategies typically require
coordination between multiple algorithms with varying
processing speeds, necessitating synchronization of inference
times during implementation and resulting in operational
complexity. Additionally, model considerations must account
for detection speed, stability, and robustness. Chen et al.
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significantly reduced model size and improved detection
speed by replacing U-Net encoder with MobileNetV3 [8].
Addressing image variations caused by UAV flight altitude
fluctuations, L Jianing et al. designed an optimization scheme
incorporating EfficientNetV2 [9], coordinate attention
mechanisms [10], and CB-Focal Loss functions to enhance
model robustness and generalization capability [11].

Although these studies have achieved varying degrees of
success in terms of model simplification and performance
enhancement, there are still complex challenges in real
crusher operating environments: blurring of boundaries
between the equipment and the background, varying sizes
of ore particles with motion blur, and unpredictable lighting
conditions. These factors pose additional difficulties for
image recognition and may limit the applicability of existing
solutions in specific scenarios. Therefore, how to effectively
address these challenges and further improve the accuracy
and reliability of image segmentation techniques remains an
issue that deserves in-depth discussion.

II. RELATED WORK

A. Crusher Working Process

The actual ore crushing operation takes place in an open
air environment. As shown in Figure 1, large haulage vehicles
first transport the mined ore to the crusher. Only after the
crusher has completed its current task does the next haulage
vehicle unload the ore into the crusher. Inside the crusher,
the ore is crushed into smaller particles and transported via
a conveyor belt to the subsequent processing equipment.
During this process, the focus of monitoring is centred
on the crusher’s inlet, where the system needs to assess
its operational status, detect the presence of a complete
blockage, and trigger an alarm in time to notify the relevant
personnel to clear the material.

In order to ensure the efficiency and safety of the whole
operation process, there are several key points that need to
be noted and optimised:

1. Transportation and Unloading Coordination: Since the
crusher can only process a certain amount of ore at a
time, the arrival time and unloading sequence of transport
vehicles need to be accurately controlled to avoid production
interruptions or build-up problems due to too early or too late
unloading.

2. Crusher Condition Monitoring: In addition to basic
clogging detection, there is a need for real-time monitoring of
the crusher’s operating conditions including, but not limited
to, motor loads, temperature changes, and vibration. This
data can help predict potential failures, take maintenance
measures in advance, and reduce unplanned downtime.

3. Intelligent Early Warning System: It is critical to
establish an intelligent early warning system based on
image recognition and sensor data. The system should
not only be able to identify whether the feed opening is
clogged or not, but also be able to analyse the degree of
clogging and provide appropriate solution suggestions, such
as automatically adjusting the feed rate in case of minor
clogging, and immediately stopping the feed and alarming
in case of serious clogging.

4. Environmental Adaptability: Considering the
complexity and variability of the open-air operating

environment, including the impact of weather conditions
(e.g., rain, snow, wind, sand, etc.) on the operation, the
system design needs to give full consideration to its
environmental adaptability to ensure that it can still be
operated stably under a variety of harsh conditions.

5. Automation and Efficiency Enhancement: The
introduction of automation technology can significantly
improve production efficiency. For example, the use of
automated control systems to optimize the ore conveying
speed, according to the actual load of the crusher to
dynamically adjust the feed rate, thus maximizing the
utilization rate of the equipment while reducing energy
consumption.

Through the implementation of the above measures, not
only can improve the safety and efficiency of ore crushing
operations, but also effectively extend the service life of the
equipment and reduce operating costs. This is an important
economic value and social benefits for mining enterprises.

B. Detection Challenges

During unloading, clogging may occur due to the collision
of large ore particles with the inlet. These blockages
fall into two categories: temporary blockages resolved by
subsequent ore flow under gravity, and persistent blockages
requiring mechanical intervention, as illustrated in Figure
2. Since mechanical clearance is time-consuming and halts
operations, accurate detection of persistent blockages is
critical for issuing valid alerts.

This study focuses on real-time monitoring of the crusher’s
inlet status, including determining whether material flow
can continue or if blockage alerts must be triggered. While
conventional approaches detect ore particles (e.g., Luo et al.
[12] applied Mask R-CNN for ore detection and blockage
identification in hopper feed ports), such methods face
limitations in this scenario:

Ore Detection Challenges:Significant variations in ore
particle sizes, coupled with overlapping and dynamic motion
(e.g., tumbling), complicate accurate detection. Transient
positional changes may cause ore particles to be misclassified
as background.Ore detection alone cannot reliably determine
feed port status, especially during ambiguous blockage
scenarios.

Alternative Approach: Feed Port Detection.Direct
detection of the feed port region presents feasibility but
introduces new challenges:

(1) Target-Background Similarity: Ore textures and colors
may closely resemble the feed port structure, blurring
boundaries when particles align with the port.

(2) Lighting Variability and Nighttime Constraints:
Outdoor operations under 24/7 working conditions
face extreme illumination changes (e.g., overexposure,
underexposure), which degrade feature visibility and
exacerbate target-background confusion.

(3) Dataset Limitations: Real-world scenarios cannot
encompass all edge cases, leading to unreliable model
predictions for unobserved conditions.

(4) Detection Speed Requirements: The inlet’s state
exhibits rapid cyclical changes during continuous ore flow.
Slow detection systems risk misinterpreting normal dynamic
variations as blockages, causing unnecessary shutdowns or
overlooking genuine risks.
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Fig. 1: Crushing Process Flowchart

These factors collectively complicate accurate detection,
often resulting in false target-background distinctions.To
address these challenges, we propose a multi-scale dilated
attention mechanism-enhanced U-Net algorithm for direct
feed port detection. Key innovations include:

Data Augmentation: Mitigates lighting variability and
dataset limitations through enhanced training diversity.
Multi-Scale Dilated Attention [13]: Captures broader
contextual features to resolve target-background ambiguity,
supplemented by channel attention for feature guidance.
Wavelet-based Downsampling: Mitigates texture and
boundary feature loss caused by downsampling through
wavelet transform, which preserves multi-scale frequency
components.

This approach aims to achieve real-time, robust detection
under complex industrial conditions.

III. IMPROVED MODULE

In crusher inlet status detection, two critical factors
dominate performance: image preprocessing and model
architecture. For dataset optimization, we employ
conventional image enhancement techniques to mitigate
overexposure and underexposure effects. For algorithmic
design, we adopt U-Net as the baseline model and implement
targeted improvements.

A. Image Enhancement

Images captured under natural conditions often suffer
from quality degradation due to variable lighting, complex
backgrounds, and environmental interference. Common
issues include blurring, localized overexposure, and loss
of edge details [14]. As illustrated in Figure 3, structural

Fig. 2: Pictures of the crusher scene

obstructions near the crusher exacerbate lighting disparities
during afternoon operations. These artifacts not only degrade
visual clarity but also hinder feature extraction, making it
challenging for semantic segmentation models to learn target
characteristics accurately. Thus, effective preprocessing of
raw images is essential before model training to ensure
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high-quality data inputs.
By implementing a systematic image preprocessing

pipeline, we significantly enhance the quality of crusher
inlet images, laying a robust foundation for subsequent deep
learning model training. These preprocessing steps improve
both training efficiency and model generalization, enabling
stronger robustness in complex, real-world operational
scenarios.

Fig. 3: Original pictures as well as images with image
enhancements

B. Overall Network Architecture

Current image segmentation networks primarily fall into
two categories: CNN-based architectures and self-attention
mechanism-based networks (e.g., Transformers). Hybrid
approaches combining CNN and Transformer layers exist
but require intricate architectural tuning. While Transformers
often achieve higher accuracy, their computational demands
are prohibitive for real-time industrial applications. In
contrast, CNN-based models strike a favorable balance
between performance and efficiency, making them more
deployable on edge devices and preferable for engineering
applications.

Our proposed architecture builds upon the classic
CNN-based segmentation model U-Net, leveraging its proven
effectiveness while addressing domain-specific challenges
through targeted modifications.

C. U-Net Adaptation and Proposed Improvements

The original U-Net architecture, designed for medical
image segmentation, features a simple encoder-decoder
structure with skip connections. The encoder comprises
convolutional layers and downsampling operations (initially
using max pooling), while the decoder employs upsampling

to restore image resolution. A key innovation of U-Net lies
in its skip connections between encoder and decoder layers,
which mitigate information loss caused by downsampling.

However, segmentation tasks for crusher inlet images face
unique challenges: blurred target-background boundaries,
large-scale scene complexity, and dynamic lighting
conditions. To address these issues, we propose a multi-scale
attention-enhanced semantic segmentation model based on
U-Net. Proposed Network Architecture

As illustrated in Figure 4, our architecture retains the
encoder-decoder framework: Encoder: Utilizes ResNet50
[15] as the backbone for feature extraction from inlet images.

Decoder: Integrates two attention mechanisms—MDCA
(Multi-Scale Dilated Convolutional Attention) and SE
(Squeeze-and-Excitation) [16] to enhance channel-wise
feature understanding and guide global feature
extraction.Downsampling: Replaces conventional
convolution/pooling with Haar Wavelet Downsampling
(HWD) [17], preserving high-frequency details during
resolution reduction.

This improvement not only enhances the ability to
understand complex scenes, but also effectively copes
with the challenges due to changes in ambient light,
thus increasing the accuracy and reliability of crusher
inlet state monitoring. By combining advanced feature
extraction techniques and targeted attention mechanisms, this
model realizes effective monitoring of problems such as
crusher inlet blockage, demonstrating its practical value and
technological advancement.

D. MDCA Module

While traditional U-Net excels at local detail processing,
it struggles with large-scale target detection [18]. To resolve
this, we introduce the MDCA mechanism, which efficiently
encodes contextual information through multi-scale
dilated convolutions. Compared to spatial attention
mechanisms, MDCA better captures global dependencies
while maintaining computational efficiency, thereby
enhancing subsequent convolutional operations’ ability to
extract discriminative features.

In practice, MDCA is inserted into the upsampling stage
to refine feature integration through weighted outputs (Figure
5). The module comprises two components:

Multi-Branch Dilated Convolutions: Capture multi-scale
contextual information using identical kernel sizes with
varying dilation rates. Point-wise Convolution (1×1): Models
inter-channel relationships within features. The output of this
convolution serves as attention weights to recalibrate MDCA
input features.

This design enables adaptive focus on both local details
and global structures, significantly improving segmentation
accuracy under complex industrial conditions.

The MDCA mechanism can be formally expressed as:

At = Conv1x1(
3∑

i=0

Scalei(D − Conv(F ))) (1)

out = At⊗ F (2)

Let F denote the input feature map. At and Out represent
the attention map and output, respectively. The operator ”⊗”
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Fig. 4: U-Net model

Fig. 5: MDCA

denotes element-wise matrix multiplication. Here, D-Conv
refers to dilated convolution, and Scalei (where i ∈ 0, 1, 2,
3) corresponds to the i-th branch in the architecture, with
Scale0 acting as an identity connection.

Implementation Specifications Kernel Configuration: Each
branch employs a kernel size of 3 with dilation rates d = 3,
5, and 7.

Auxiliary Branch: A standard 5×5 convolutional branch
is integrated to mitigate checkerboard artifacts caused by
dilated convolutions, ensuring feature preservation. Receptive
Field Expansion

The effective kernel size R for a dilated convolution with

kernel size k and dilation rate d is calculated as:

R = k + (k − 1)× (d− 1) (3)

For dilation rates 3, 5, and 7, the equivalent kernel
sizes expand to 7×7, 11×11, and 15×15, respectively. This
mechanism achieves multi-scale feature extraction while
maintaining parameter efficiency.

E. Haar Wavelet Downsampling (HWD) Module
Outdoor images often suffer from insufficient illumination

and uneven lighting conditions, which complicate the
extraction of patterns and textures in low-light scenarios[19].
Additionally, the image compression caused by the
downsampling process in the encoder further increases the
difficulty of feature extraction. To address these challenges,
this paper introduces the Haar Wavelet Downsampling
(HWD) module. The Haar wavelet transform reduces image
resolution without information loss, and signals processed
by this transform can be fully reconstructed via inverse
transforms, making it widely applicable in image encoding.
The core principle involves decomposing images and signals
into high-frequency (e.g., edges, textures) and low-frequency
(e.g., global structures) components through derivative-based
calculations. Since high-frequency components typically
contain substantial noise interference, this decomposition
effectively reduces noise impact in complex images, thereby
improving segmentation accuracy[20].

The HWD module consists of two components (as shown
in Figure 6): Feature Encoding:

The input image undergoes a discrete wavelet transform
(DWT). Two directional high-frequency feature maps and
one low-frequency feature map are selectively retained for
subsequent processing. Reconstruction and Downsampling:
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The four-channel features obtained from the Haar wavelet
transform are concatenated. The concatenated features
pass through a sequence of operations: convolutional
layers → batch normalization → activation functions →
downsampling, ultimately generating the final output.

A(i, j) =
1

2
(I(i, 2j) + I(i, 2j + 1))

H(i, j) =
1

2
(I(i, 2j)− I(i, 2j + 1))

V (i, j) =
1

2
(I(2i, j) + I(2i+ 1, j))

D(i, j) =
1

2
(I(2i, j)− I(2i+ 1, j))

(4)

This design ensures efficient resolution reduction while
preserving critical texture details and suppressing noise
interference, significantly enhancing segmentation robustness
in challenging environments.

F. Loss Function

For the segmentation of crusher inlet images under natural
conditions, this study adopts a combined loss function
integrating Cross-Entropy (CE) loss and Dice loss[21]. The
CE loss function guides the model to learn pixel-level class
probability distributions, improving per-pixel classification
accuracy, denoted as CE. The Dice loss addresses boundary
ambiguity issues, denoted as Dice[22]. The combination
of these two loss functions balances global and local
segmentation performance. Formulation:

LCE = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (5)

LDice = 1−
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

(6)

L = LCE + LDice (7)

Here, λ is a weighting parameter that balances the
contributions of the two losses[23]. This hybrid approach
enhances segmentation accuracy for both fine-grained details
and ambiguous boundaries, particularly under complex
lighting and texture conditions.

IV. EXPERIMENTS

In this section, we provide a comprehensive evaluation of
the performance of the improved U-Net in the crusher inlet
segmentation task.

First, we verify the effectiveness of the proposed
module through a series of ablation experiments. These
experiments aim to clarify the specific contributions of each
component to the overall performance. Additionally, we
conducted comparison experiments between the approach
proposed in this paper and several of the most mainstream
semantic segmentation algorithms currently available.
The experimental results demonstrate that our method
outperforms other algorithms in key performance metrics
such as MIoU (mean intersection over union) and mPA
(mean pixel accuracy), thereby highlighting its significant

advantages in terms of image segmentation accuracy and
real-time processing capability in complex environments[24].

To more intuitively demonstrate the performance of the
improved U-Net, we visualized its segmentation results and
compared them with those of existing models. This visual
analysis not only clearly highlights the advantages of the
improved model but also provides valuable references for
further optimization.

Through the evaluation and analysis of the above system,
we verified the efficiency and reliability of the improved
U-Net in practical applications, laying a solid foundation for
future research and practice.

A. Dataset and Implementation

The experimental dataset was constructed from
surveillance videos (resolution: 2560×1440) of operational
crushers at a Chinese iron ore mining site. Images were
extracted at 2-second intervals and manually annotated
after rigorous filtering to exclude scenarios with rain, snow,
or heavy dust. The final dataset comprised 300 images,
partitioned into training (70%), validation (20%), and test
(10%) sets. Temporal diversity was ensured by categorizing
data into seven timeframes (midnight, dawn, morning, noon,
afternoon, dusk, night), with 10 unblocked inlet images
selected per timeframe. Additionally, 160 operational
state images depicting partial blockages were included.
Professional annotators labeled three critical regions: Port
A (lower feed port), Port B (upper feed port), and beam cap
(structural support), generating pixel-accurate segmentation
masks.

The experiments were conducted on a Windows 11
system equipped with an NVIDIA RTX 4060 GPU (8GB
VRAM), 16GB RAM, and 30GB virtual memory. The
software stack utilized Python 3.8.0 and PyTorch 2.2.1.
Model training employed a hybrid Dice-Cross-Entropy loss
function to address class imbalance, optimized via Adam
(momentum=0.9) with an initial learning rate of 0.001 and
cosine annealing scheduling. Training spanned 80 epochs
with a batch size of 8, balancing computational efficiency
and convergence stability.

B. Evaluation Metrics

Three metrics were adopted:
Mean Pixel Accuracy (mPA): Computed as the average

ratio of correctly classified pixels to total pixels per image.
This metric evaluates the overall accuracy of pixel-wise
classification on a per-image basis and then averages these
accuracies across all images.

Mean Intersection over Union (mIoU): Quantifies the
overlap between predicted and ground-truth regions. For each
class, IoU is calculated as the intersection of predicted and
ground-truth regions divided by their union.

Pixel Accuracy (Acc): Similar to mPA but often used to
refer to the global accuracy across the entire dataset rather
than averaged per image. It gives the overall percentage of
correctly classified pixels in the entire dataset:

PA =
TP + TN

TP + TN + FP + FN
(8)

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2758-2768

 
______________________________________________________________________________________ 



Fig. 6: HWD

mPA =
1

n

N∑
i=1

PAi (9)

IoU =
TP

TP + FP + FN
(10)

mIoU =
1

n

N∑
i=1

IoUi (11)

These metrics provide a comprehensive evaluation of the
segmentation model’s performance, covering both per-image
and global accuracy, as well as the overlap quality between
predicted and ground-truth regions.

C. Ablation Study

The proposed network architecture modifies the backbone
structure while integrating attention mechanisms and Haar
wavelet downsampling. To evaluate the effectiveness of
each component, ablation experiments were conducted by
incrementally removing modules from the improved UNet
framework.

Table 1 presents the ablation results on the dataset, where
checkmarks (X) denote the inclusion of specific modules.
All experiments were conducted using data augmented

TABLE I
RESULTS OF ABLATION STUDY PERFORMED

Method Attention HWD mPA(%) Miou(%) Acc(%)

SE MDCA+SE

Base – – – 89.12 94.50 96.80
1 X – – 90.04 95.27 97.59
2 – X – 90.09 94.71 98.56
3 X – X 91.27 95.35 98.77
4 – X X 92.05 96.29 98.87

with identical image enhancement techniques. Here, ”SE”
and ”SE + MDCA” represent two attention mechanism
configurations.

Key observations include: 1. Attention Mechanisms: Both
SE and MDCA modules achieve modest improvements
in detection accuracy. Their primary contribution lies in
mitigating background-target misclassification errors. Due
to MDCA’s higher computational overhead, it is selectively
applied to critical regions.

2. Haar Wavelet Downsampling: This module marginally
improves performance (details omitted in original text),
suggesting that while its feature filtering aids detection,
its impact is less pronounced compared to attention
mechanisms.
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(a) U-Net (b) ours

Fig. 7: mIoU for different models. (a) .Original U-Net model in the test set of the current dataset for each category of IoU
situation. (b) . Our model in the test set of the current dataset for each category of IoU situation

Images U-Net DeepLab PSPNet Ours

Fig. 8: Instantiated test results
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Critically, the synergistic integration of all modules
achieves an optimal balance between performance and
efficiency. The proposed algorithm greatly improves the
segmentation accuracy, where mIoU (92.05%) and mPA
(96.29%) meet the strict practical criteria.

D. Comparison with Mainstream Models

To rigorously validate the superiority of the proposed
framework, comprehensive comparative experiments were
conducted against multiple state-of-the-art models. Each
model configuration underwent five independent trials
under identical experimental conditions, including the
same training dataset, hyperparameters, and hardware
environment. Performance metrics—mPA, mIoU, parameter
count (Params), and Acc.

For equitable comparison, all baseline models (original
UNet, DeepLab v3+, and PSPNet) adopted ResNet50 as their
backbone architecture.

TABLE II
COMPARISON OF DIFFERENT MODELS

Module mPA(%) Miou(%) Acc(%)

Unet 89.12 94.50 97.59
PSPNet 87.81 94.46 98.35
Deeplab 92.01 96.01 98.83
Ours 92.05 96.29 98.87

Table 2 summarises the results of comparing the improved
U-Net model with the three classical semantic segmentation
models. Figure 7 show that our model performs more
accurately in the crusher inlet segmentation task, significantly
outperforming the three classical models in terms of mean
pixel accuracy (mPA) and mean intersection and merger ratio
(mIoU). Despite the increase in the number of parameters,
we succeeded in minimising the performance impact of
the increase in the number of parameters by applying
quantisation and cropping techniques in all deployment
environments.

In addition, it can be more clearly observed from the
visualised comparison graphs that the model proposed in
this paper shows more stable and consistent detection results,
further validating its superiority.

Figure 8 shows the visualised detection results of each
group of models under different lighting conditions and
crusher operating conditions. It is observed that all models
can obtain good detection results when the light is weak
but evenly distributed. However, when entering the afternoon
hours, with significant changes in the light, PSPNet and
DeepLabV3+ showed obvious voids in detecting the no-feed
state in the lower half of the crusher, and it was difficult
to accurately identify the boundary of the crusher inlet. In
contrast, the method proposed in this paper still performs
well in this situation without similar problems. In addition,
in the third set of images, the refractive effect of sunlight
at sunrise causes the crusher image to exhibit a bluish
hue, which makes it challenging for all models, including
the method in this paper, to achieve the desired detection
results. Nevertheless, the method in this paper shows
higher robustness and accuracy compared to other models,
especially in dealing with complex lighting conditions. This

Fig. 9: System Flowchart

comparison shows that the improved method proposed in
this paper has obvious advantages in dealing with variable
lighting conditions and object detection tasks in complex
environments.

V. SYSTEM OVERVIEW

A. System Architecture

The proposed system employs a camera for image
acquisition, utilizing the OpenCV library to decode video
streams, with a sampling rate of two frames per second for
semantic segmentation tasks. The workflow is structured as
follows:

1. Preprocessing: Raw images undergo preliminary
enhancement via traditional machine vision techniques
before being fed into the semantic segmentation model.

2. Baseline Calibration: A no-load reference image
(captured during system initialization) establishes the
baseline pixel count for subsequent state comparisons.

3. State Inference: Crusher discharge status is determined
by analyzing pixel quantity ratios relative to the no-load
baseline and monitoring temporal state transitions. Beam
cap detection identifies severe environmental interference,
triggering a hysteresis-based response mechanism to ensure
operational stability.

4. Human-Machine Interface (HMI): A LabVIEW-based
interface visualizes real-time crusher status, segmentation
results, and critical alerts, enabling rapid operator
intervention.

B. Human-Machine Interface

Figure 8 shows the HMI system integrates the following
functional modules:

1. Login interface: User authentication through
password-protected access.

2. Detection interface: Real-time pixel area profile of
port A/B (x-axis: time; y-axis: number of target pixels).
Dual-port status logic: Normal: Both ports are within
baseline thresholds. Warning: Single port deviation triggers
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Fig. 10: System

an alarm. Critical: Dual port anomaly triggers an emergency
alarm. All statuses are expressed in the form of indicator
lights, and when the light is on, it is in the corresponding
state. 3. Real-time monitoring:

3.Real-time display of monitoring and control. real-time
monitoring: real-time display of the monitoring site screen.

4. Configuration panel: Adjustable alarm thresholds and
hysteresis parameters.

5. Alarm Record: Time-stamped record of abnormal
operation.

6. start operation and system stop: control the detection
system to start normal operation, as well as the system stop.

VI. CONCLUSION

This study focuses on crusher inlet status detection
by improving the U-Net algorithm and evaluating its
performance on real-world data collected from open-pit
crushers. The proposed method targets fixed-location
scenarios where insufficient contrast between the
environment and the crusher occurs during certain
periods due to lighting conditions. By integrating image
enhancement with MDCA+SE attention mechanisms, the
issue of erroneous detection of the crusher inlet location is
effectively resolved. Haar wavelet downsampling is adopted
to retain more texture and edge features typically lost during
downsampling.

Experimental results demonstrate that the improved
model achieves satisfactory accuracy and speed in practical
crusher inlet status detection tasks, validating the method’s
applicability. However, the current study is limited to
specific operational sites, and the model lacks generalization
capability for diverse industrial environments.
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