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Abstract—This paper aims to systematically analyze the risk
factors associated with metabolic syndrome (MetS) and to
develop a logistic regression model for risk assessment. A total
of 536 participants were enrolled and their demographic and
clinical data were collected, including age, gender, high uric
acid levels, uric acid overflow, and obesity status. Chi-squared
tests were used to identify significant associations between MetS
and various risk factors, such as age, gender, hyperuricemia,
and obesity status. A logistic regression model was constructed
to predict the probability of MetS occurrence, resulting in
three different equations for the total population, men and
women. The results showed that the model effectively captured
the relationships between the identified risk factors and the
likelihood of developing MetS. By providing a scientific basis
for targeted prevention strategies, this paper contributes to the
understanding of MetS and highlights the need for public health
interventions aimed at reducing its prevalence and associated
health burden.

Index Terms—metabolic syndrome, logistic regression, risk
factors, chi-squared test.

I. INTRODUCTION

HE metabolic syndrome (MetS) is a clinical syndrome

that encompasses a variety of metabolic abnormalities.
It was first proposed by Professor Reaven of Stanford Uni-
versity in 1988 and has since emerged as a major public
health concern due to its substantial impact on the global
population ([1], [2], [3]). Characterized by abdominal obe-
sity, atherogenic dyslipidaemia, elevated blood pressure, a
prothrombotic and proinflammatory state, insulin resistance,
and elevated glucose levels, MetS significantly increases the
risk of developing chronic diseases such as Type 2 diabetes
and cardiovascular disease ([4], [5]). The complex and multi-
faceted origins of MetS, which include genetic and acquired
factors, are not fully understood; however, sedentarism and
unbalanced dietary patterns have been suggested to play a
fundamental role in its development. Epidemiological data
indicate that the prevalence of MetS is not only persistently
high, but also shows an alarming upward trend worldwide. In
China, MetS has become a serious challenge for public health
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policy, with the prevalence among Chinese adults increasing
from 11.0% between 2010 and 2012 to 31.1% in 2023
([6]). This trend is not isolated to China, as global estimates
suggest that about 3% of children and 5% of adolescents
will have MetS in 2020, highlighting the urgent need for
prevention strategies ([7]).

Although the pathogenic mechanisms of metabolic syn-
drome are not fully understood, clinical observations have
shown that MetS is closely associated with several non-
communicable diseases, such as Type 2 diabetes, cardio-
vascular disease, and periodontal disease ([8], [9]). These
diseases have become major global health issues because of
their significant impact on public health and socioeconomic
burden. Therefore, early diagnosis and accurate assessment
of MetS are crucial to prevent the onset of related diseases.
Furthermore, the pathogenesis of MetS involves multiple
genetic and acquired entities ([10], [11]). This syndrome is
associated with a pro-inflammatory state, oxidative stress,
haemodynamic dysfunction and ischaemia - conditions that
often overlap in “dysmetabolic” patients ([2]). An increase
in reactive oxygen species overloads the antioxidant sys-
tems, leading to oxidative stress and subsequent cellular
dysfunction. Furthermore, oxidative stress and inflammation
are associated with cellular senescence and cardiovascular
disease, suggesting that cardiovascular disease should not
be considered solely as the result of classical MetS risk
factors ([2]). Lifestyle modification, especially dietary habits,
is the primary therapeutic strategy for the management of
MetS ([12]). Both the Mediterranean diet and the dietary
approaches to stop hypertension have been supported by
scientific evidence as beneficial dietary patterns for the
prevention and treatment of MetS ([12]). In addition, inter-
mittent fasting has been shown to improve cardiometabolic
risk factors and alter gut microbiota in patients with MetS,
providing mechanistic insights into the prevention of adverse
outcomes ([13]).

Given the complexity of the MetS, accurate assessment
of individual risk and disease progression remains a major
challenge. Traditional diagnostic criteria may not capture the
intricate interplay between metabolic factors, so predictive
models are needed that can provide a more comprehensive
risk assessment. Various computational and statistical ap-
proaches, including traditional statistical models and machine
learning techniques, have been used to analyze the impact
of these factors. For example, Markov models simulate dis-
ease progression over time [14]; clustering methods identify
metabolic subgroups for personalized risk assessment [15],
[16]; Bayesian networks uncover probabilistic dependencies
between risk factors [17], [18]; Bayesian logistic regression
has shown practical value in classifying disease-related risk,
as in recent studies predicting COVID-19 mortality using
comorbidity data [19]; and machine learning models such as
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random forest have demonstrated strong predictive capabili-
ties [20], [21], [22], [23], [24].

Despite these advances, challenges remain, particularly
the need for interpretable models that can be effectively
integrated into clinical decision making. As deep learning
techniques often lack transparency, there is growing interest
in hybrid models that balance predictive power with inter-
pretability.

In this study, we propose a mathematical modeling frame-
work to systematically analyze the risk factors of MetS,
providing a scientific basis for its prevention and manage-
ment. By improving early detection and risk assessment,
this approach aims to enhance clinical decision making
and optimize intervention strategy development, ultimately
contributing to more effective MetS management.

II. DATA ACQUISITION

A total of 536 participants were included in this study. The
data set includes demographic and clinical variables relevant
to the assessment of MetS, such as age, gender, presence
of hyperuricemia, uric acid levels, and overweight status.
The baseline distribution of these variables is summarized
in Table I. All data were collected during routine health
examinations and were approved by the relevant ethical
review board.

As shown in Table I, the majority of participants were un-
der 60 years of age (96.08%), with a slightly higher propor-
tion of males than females. The prevalence of hyperuricemia
was 48.88%, with a significantly higher incidence in men.
Uric acid excess (defined as a level above 180 umol/L) was
observed in 8.02% of the population. Overweight individuals
accounted for 36.00% of the sample.

III. ANALYSIS OF INFLUENCING FACTORS
A. Chi-squared test procedure

To identify variables significantly associated with MetS,
we performed a chi-squared test to examine the relationships
between MetS and several categorical variables, including
gender, age, hyperuricemia, and lifestyle factors such as
smoking and alcohol consumption. For clarity and repro-
ducibility, the detailed procedure of the chi-squared test is
presented below.

1. Hypothesis formulation: Null hypothesis (Hy): The
investigated variables (e.g. gender, age group and lifestyle
habits) are independent of the presence of MetS. Alternative
hypothesis (/;): The investigated variables are not indepen-
dent of the presence of MetS.

2. Data preparation and contingency table construction:
Collect relevant data and construct a contingency table,
listing the observed frequencies of all possible combinations
of MetS presence and each influencing factor.

3. Calculate expected frequencies: For each cell in the
contingency table, calculate the expected frequencies assum-
ing the null hypothesis is true. The formula for calculating
expected frequencies is:

E, = (h; x ZJ)’
n
where E;; is the expected frequency for cell (¢, j), h; is the
total frequency of the i-th row, [; is the total frequency of
the j-th column, and n is the total sample size.

4. Calculate the chi-squared statistic: Using the observed
and expected frequencies, calculate the chi-squared statistic
to quantify the differences between them. The formula for
the chi-squared statistic is

X2 — ZZ ( JEij ])
1=1 j=1
where 7 is the number of rows in the contingency table, c is
the number of columns, O;; is the observed frequency, and
E;; is the expected frequency.

5. Find the P-value and make a decision: Use the calcu-
lated chi-squared statistic and its corresponding degrees of
freedom to determine the P-value. Then, compare the P-value
with a predetermined significance level (e.g., 0.05). If the P-
value is less than the significance level, we reject the null
hypothesis in favor of the alternative hypothesis, indicating
that there is a significant difference between the observed
data and the null hypothesis. This means that there may be a
strong association between MetS and the factors under study.
The smaller the P-value, the greater the deviation between
the observed and expected frequencies, indicating a stronger
association.

The steps described above were applied to each candidate
variable in the data set. The results of the chi-squared tests
are presented and interpreted in the following section.

B. Chi-squared test results and interpretation

The results of the chi-squared test for each variable
are shown in Table II. These results indicate statistically
significant associations between age, gender, hyperuricemia,
uric acid overflow, and overweight status with the occurrence
of MetS, suggesting that these variables are important risk
indicators.

In particular, gender (x> = 52.73,p < 0.001), age
group (x? = 44.82,p < 0.001) and hyperuricemia (y? =
41.60,p < 0.001) have both high chi-squared statistics
and highly significant P-values, indicating that they are the
most influential in discriminating between individuals with
and without MetS. Overweight status also shows a strong
association (x?> = 35.19,p < 0.001), further emphasizing
the importance of weight management in the prevention of
MetS. Uric acid excess, although statistically significant (p =
0.0108), has a more modest chi-squared value (x2 = 6.46),
suggesting a relatively weaker effect.

In comparison, hypertension (x? = 3.42,p ~ 0.06) and
kidney health (x?> = 2.78,p =~ 0.06) are not statistically
significant at the conventional 0.05 level. Although their P-
values are close to the threshold, the small chi-squared values
indicate a weaker association, which may warrant further
investigation to clarify their potential role in the development
of the MetS.

Overall, these results provide both statistical and quantita-
tive evidence to support the prioritisation of certain variables
— particularly gender, age and hyperuricemia — in subsequent
modelling and targeted prevention strategies.

IV. METS RISK ASSESSMENT MODEL

Having identified the significant influencing factors, we
proceed to define the dependent and independent variables
for model construction. In this section, we perform a forward
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TABLE 1
BASIC INFORMATION ABOUT THE SUBJECTS

Variable Total Male Female
Ace Under 60 515 (96.08%) 310 (57.84%) 205 (38.25%)
& Over 60 21 (3.92%) 9 (1.68%) 12 (2.24%)
Has hyperuricemia Yes 262 (48.88%) 202 (37.69%) 60 (11.19%)
P No 274 (51.12%) 117 (21.83%) 157 (29.29%)
Uric acid excess Below 180 241 (91.98%) 183 (69.85%) 58 (22.14%)
Above 180 21 (8.02%) 19 (7.25%) 2 (0.76%)
Overweight Yes 193 (36.00%) 150 (27.99%) 43 (8.02%)
& No 343 (64.00%) 169 (31.53%) 174 (32.46%)
TABLE II . . . . . .
RESULTS OF CHI-SQUARED TEST. distribution. To simplify the calculation, the natural logarithm
of the likelihood function is taken, resulting in the log-
Variable x?2 Statistic ~ P-value likelihood function.
Age 3 8450 <0.001 .For a single observation, the log-likelihood function is
Gender 60.1366 <0001 given by
Hyperuricemia 49.1454 <0.001
Uric acid excess 13.0989 0.0108 In(P(y;| X;; Bo 51 55 = In(p;)+(1—vy;) In(1—p;).
Overweight 555715 <0.001 (Pl Xi; Bo, B, -+, 85)) = wiln(ps) +(1=y:) In(1=p3)
Hypertension 3.5471 0.0596 - . ST o
Kidney health 35483 0.0596 where y; is the observed outcome for the i-th individual (y; =

stepwise logistic regression analysis on a dataset of 536
subjects, using age, elevated uric acid levels, uric acid excess,
gender, and obesity as predictor variables. Given the strong
association between gender and MetS, we not only develop
a general risk assessment model, but also construct gender-
specific models for male and female participants to improve
predictive performance.

A. Construction of the logistic regression model

The logistic regression model is a statistical approach to
binary classification problems that estimates the probability
of an event occurring. It has been widely used in fields such
as finance, health and social sciences. In this study, we use
logistic regression ([25], [26]) to predict the probability of
developing MetS.

Let Y be the dependent variable, which takes the value
0 (indicating no disease) or 1 (indicating the presence of
disease), and let X = (X7, X2, X3, X4, X5) be the vector
of independent variables. The logistic regression model can
then be expressed as:

1
14+e
Where P(Y = 1|X) is the probability that the dependent

variable Y is 1 given the independent variables X, and q is
the value of the linear predictor, which can be written as:

q=Bo+ B1 X1+ BoXo + B3 X3 + B4 Xy + B5X5.

P(Y = 1|X) =

The parameters (g, 81, - , B5 are estimated from the data.
In logistic regression, the likelihood function quantifies the
probability of the observed data given specific parameter
values and is used to estimate the parameters.

B. Construction of the likelihood function

Because logistic regression deals with binary outcomes,
the likelihood function is typically based on the Bernoulli

1 for presence, y; = 0 for absence of disease), and p; is the
predicted probability.
For the whole sample, the overall log-likelihood function
is
In(L(P)) = [y n(p:) + (1 — yi) In(1 = p;)],

i=1

where m is the number of observations.

C. Parameter estimation

The goal of parameter estimation is to find the values that
maximize the log-likelihood function and thereby achieve
the best model fit. In this study, we utilized MATLAB’s
built-in function ‘fitglm’ to perform the estimation efficiently.
Based on the estimation results, we derived three different
logistic regression models for the total population, males and
females, as presented below:

For the general population:

L(P;) =—3.0112 + 2.3607X; + 0.3886 X5 + 2.1060X3
+ 1.0594X4 + 0.9437X5.

For men:

L(P) = — 1.4043 + 1.2353 X, + 0.2512.X, + 2.2134.X5
1 0.8272X.

For women:

L(P3;) = —4.0647 + 4.3730X; + 0.6835X3 + 1.7881X3
+ 1.3378X5.

In these equations, X; indicates age, X5 indicates high
uric acid levels, X3 indicates uric acid excess, X, indicates
gender and X5 indicates obesity status.

These models provide a probabilistic framework for es-
timating the likelihood of MetS based on key risk factors,
thereby facilitating individualized risk assessment and in-
forming targeted intervention strategies.
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TABLE III
PERFORMANCE OF LOGISTIC REGRESSION AT DIFFERENT
THRESHOLDS.

Metric Threshold ~ Overall Male Female
0.4 0.7332  0.6489  0.8341

Accuracy 0.5 0.7258  0.6426  0.8525
0.6 0.7090  0.6270  0.8571

0.4 0.8190 0.7311 0.8814

Precision 0.5 0.7629  0.6464  0.8726
0.6 0.7221  0.6025  0.8660

04 0.7607  0.5210  0.9293

Recall rate 0.5 0.8433  0.7006  0.9674
0.6 0.9031 0.8443  0.9837

V. PERFORMANCE EVALUATION
A. Results of the logistic regression models

To evaluate the classification performance of the logistic
regression models, we introduced different thresholds (0.4,
0.5 and 0.6) to convert predicted probabilities into binary
outcomes. Table III shows the accuracy, precision and recall
rate at different thresholds for the total population and for
male and female subgroups.

As shown in Table III, overall accuracy shows a slight
decrease as the threshold increases from 0.4 to 0.6. A similar
trend is observed for precision, suggesting that a higher
threshold may lead to more false positives and a reduced
ability to correctly identify true cases. Despite this, recall
shows a significant increase when the threshold is raised to
0.6, suggesting that the model becomes more effective at
capturing true positives and reducing false negatives.

These results highlight the trade-off between precision
and recall rate, and emphasize the importance of choosing
an appropriate classification threshold. In clinical practice,
minimizing false negatives is particularly important as missed
diagnoses can have serious health consequences.

Therefore, increasing the threshold to 0.6 improves the
recall rate and increases the sensitivity of the model — an
important consideration when the goal is to detect as many
true cases as possible for timely medical intervention.

As noted in [4], MetS is strongly associated with car-
diovascular disease and Type 2 diabetes. In this context,
high recall rate is essential to ensure that at-risk individuals
are accurately identified and provided with timely care.
To further improve recall performance, we chose 0.6 as
the operating threshold in our subsequent analysis, which
balances diagnostic sensitivity with acceptable accuracy and
precision. The results in Table III clearly demonstrate this
trade-off and support our decision.

B. Comparison with other machine learning models

To further validate the effectiveness of the logistic regres-
sion model, we conducted a comparative evaluation with
several commonly used machine learning models, includ-
ing random forest (RF), support vector machine (SVM),
k-nearest neighbors (KNN), and logistic regression (LR).
For the LR models, we report performance across three
threshold settings (0.4, 0.5, and 0.6). Evaluation metrics
include precision, recall rate, and F1 score, as shown in Fig.
1. In addition, the receiver operating characteristic (ROC)
curves for the LR, RF, and SVM models are shown in Fig.
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Fig. 1. Precision, recall, and F1 score of LR compared to RF, SVM, and
KNN.
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Fig. 2. ROC curves of LR, RF, SVM, and KNN.

2, and their corresponding AUC values are 0.80 for LR, 0.78
for RF, and 0.70 for SVM. The 95% confidence intervals (CI)
for these AUCs are [0.7571, 0.8333] for LR, [0.7245, 0.8053]
for RF, and [0.6575, 0.7477] for SVM.

Our results demonstrate that while RF, SVM, and KNN
exhibit satisfactory performance on certain evaluation met-
rics, they do not consistently outperform LR. Notably, LR
achieves the highest F1 score, reflecting a superior balance
between precision and recall. In addition, LR achieves the
highest area under the ROC curve (AUC = 0.80), with a
relatively narrow 95% CI of [0.7571, 0.8333], suggesting
robust and reliable classification performance. Although RF
also performs well (AUC = 0.78, 95% CI: [0.7245, 0.8053]),
its confidence interval partially overlaps with that of LR, in-
dicating that the difference may not be statistically significant
at the 95% level. In contrast, SVM has a lower AUC (0.70)
with a non-overlapping CI of [0.6575, 0.7477], providing
statistical evidence that LR significantly outperforms SVM.
Taken together, these results highlight LR as the most stable
and interpretable model among those evaluated, offering a
favorable trade-off between predictive power and clinical
applicability for MetS risk assessment.

Volume 52, Issue 8, August 2025, Pages 2792-2796



TAENG International Journal of Computer Science

VI. CONCLUSION

In this paper, we have successfully established and vali-
dated a logistic regression model to assess the risk factors
associated with MetS. The results provide a comprehensive
overview of the relationships between several variables and
the prevalence of the syndrome. The results of our chi-
squared test and logistic regression analyses have revealed
significant statistical associations between MetS and several
factors, with particularly strong associations identified for
gender, age, and hyperuricemia. These findings underscore
the importance of these variables in the development of MetS
and suggest that targeted interventions focusing on these
factors could be effective in reducing the incidence of the
syndrome.

Our model, which incorporates these influential factors,
provides a valuable tool for early diagnosis and risk as-
sessment of MetS. By identifying individuals at higher risk,
timely medical intervention can be facilitated, potentially
preventing the progression of MetS and its associated compli-
cations, such as Type 2 diabetes and cardiovascular disease.

Further work could focus on refining the model and
exploring additional risk factors that may influence MetS.
Integrating genetic and lifestyle data into future models could
enhance predictive accuracy and enable a more personal-
ized approach to risk assessment. Furthermore, applying the
model in clinical settings could help healthcare professionals
make informed decisions about prevention strategies and
interventions.
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