
 

 

Abstract— The consumption of agricultural products is 

fundamental to human survival. Enhancing agricultural 

productivity and sustainability necessitates the effective 

monitoring and nurturing of healthy crops. In this regard, one 

of the most important study areas is using sophisticated neural 

network models to identify plant diseases. Four well-known 

convolutional neural network (CNN) architectures—

InceptionV3, ResNet50V2, VGG16, and MobileNet—that use 

transfer learning for real-time disease identification in banana 

plants are thoroughly compared in this work. A total of 11 

disease variants were classified, and performance metrics were 

computed for each model. Stratified random sampling was 

employed to ensure balanced representation of classes during 

training and validation. Evaluation using Cross-Validation, 

ROC-AUC, and confusion matrices ensured robust and 

interpretable classification results. Among the models, 

ResNet50V2 obtained the maximum accuracy of 99.52% on in-

distribution test data, whereas MobileNet reached 90% 

accuracy on real-time datasets. The results were validated by 

an agricultural expert, confirming their practical reliability. 

This study provides useful information about the advantages 

and disadvantages of each architecture, along with practical 

suggestions for their implementation in actual agricultural 

environments to help farmers identify and treat diseases 

promptly. 

 
Index Terms— Agriculture, Banana plant, Convolutional 

neural network, Identification of plant diseases, Deep learning 

models 

I. INTRODUCTION 

griculture is essential to both economic stability and 

global food security, providing sustenance and 

livelihoods for billions of people. It has a crucial part in the 
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economic transformation of developing nations, boosting 

productivity, increasing income, and reducing poverty and 

hunger [1]. With a projected 9 billion people on the planet 

by 2050, food production will need to rise by 70%. Efficient 

and sustainable agricultural practices are essential to meet 

this demand and ensure food security [2]. 

 

Plant diseases threaten crop yields and quality, posing 

significant risks to food availability and economic stability. 

Timely and precise illness detection is desperately needed to 

prevent widespread crop damage and financial losses [3]. 

Traditional plant disease detection relies on visual 

inspections by experienced farmers or experts like 

professors, researchers, and officers working in the 

agricultural field. This approach, which entails looking for 

outward signs of discoloration, spots, or malformations in 

plants, has drawbacks such as a high need for professional 

experience, protracted diagnosis delays, and low 

productivity. [4].  In some cases, laboratory tests are used to 

confirm a specific pathogen [5].  

 

Plant disease detection has been transformed by 

technological developments, especially in the areas of 

computer vision and machine learning. Researchers derived 

feature information from segmented images to identify and 

distinguish abnormal conditions [6]. Automated systems can 

analyze images of plants to identify diseases accurately and 

quickly [7]. These technologies enable early detection and 

prompt intervention, reducing disease spread and 

minimizing economic losses. Image classification problems 

are a great fit for neural networks, particularly 

Convolutional Neural Networks (CNNs) [8]. They are able 

to accurately diagnose diseases by directly identifying visual 

patterns in pictures.  CNNs can correctly distinguish 

between different diseases after being trained on enormous 

amounts of photos of both healthy and unhealthy plants.  

Neural networks, especially Convolutional Neural Networks 

(CNNs), are great for detecting plant illnesses because of 

their remarkable performance in image classification tasks 

[9]. A study of various models and their implications for 

banana plant disease application is essential to obtain a 

robust model. 

 

II. LITERATURE SURVEY 

The rapid advancements in deep learning have 

significantly enhanced the capability of automated systems 

to detect plant diseases, a crucial aspect of ensuring food 

security and agricultural productivity. Recent studies have 

demonstrated the potential of neural network models in 
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accurately identifying various plant diseases from image 

data, thereby offering a promising tool for early intervention 

and management. 

The use of deep learning methods for plant disease 

detection has been investigated by numerous researchers. 

The results of the study [10] provide a thorough analysis of 

the use of convolutional neural networks (CNNs) to the 

identification of plant diseases from photos of leaves. The 

effectiveness of CNNs in achieving high accuracy rates, 

demonstrating their potential as a reliable method for 

disease detection in agricultural practices, is highlighted in 

the study. Similarly, [11] discusses the application of deep 

learning models, emphasizing their robustness in handling 

complex patterns and variations in plant disease symptoms. 

Comparative studies have also been used to evaluate the 

efficacy of various neural network topologies in the context 

of plant disease detection.   For instance, [12] assesses how 

well a number of deep learning models, including CNNs, 

ResNet, and Inception, can recognize diseases in images of 

plants.   According to their findings, some architectures, 

such as ResNet, perform better than others in terms of 

accuracy and computational efficiency, even if all models 

demonstrate optimistic outcomes. 

More complex plant disease detection systems have been 

developed as a result of developments in image processing 

and machine learning.  The combination of deep learning 

and image-based detection methods is discussed in [13], 

highlighting the significance of sizable datasets and 

excellent images for building reliable models.  The 

assessment sheds light on the difficulties and potential paths 

in this quickly developing subject. 

The application of deep learning for specific crops, such 

as bananas, has also garnered attention. The work in [14] 

focuses on detecting banana diseases using deep learning 

models, addressing unique challenges posed by the crop's 

morphology and disease manifestations. Their study 

highlights the adaptability of neural networks in tailoring 

solutions for specific agricultural contexts, thereby 

enhancing the precision and reliability of disease detection. 

The application of deep learning to the identification of 

plant diseases is a significant development in agricultural 

technology.  Comparative analyses of different neural 

network models highlight how crucial it is to choose the 

right design in order to get the best outcomes.  It is 

anticipated that further research and developments in image 

processing, data augmentation, and model training will 

improve the precision and effectiveness of these systems as 

the field develops, supporting sustainable farming methods. 

After a thorough analysis of the work conducted by 

various authors, it is noticed that disease identification for a 

whole banana plant has not yet been carried out. The 

identification of 11 variants of disease in banana plants is 

still a challenge. The primary objective of this research is to 

conduct a comparative analysis of various neural network 

models, evaluating their performance using a dataset 

comprising images of banana plants affected by 11 distinct 

diseases. The dataset includes a diverse range of banana 

diseases, such as Black Sigatoka, Panama, and others. Each 

disease presents unique symptoms and challenges, 

impacting banana production differently. Important 

measures like accuracy, precision, recall, F1-score, and 

computing efficiency will be used to evaluate the models. 

Additionally, the study will examine the training and 

validation standards of each model, employing cross-

validation techniques and model fitting analysis. 

This study aims to leverage the strengths of four 

prominent CNN architectures —InceptionV3, ResNet50V2, 

VGG16, and MobileNet to develop a robust system for 

detecting diseases in banana plants, a crop of significant 

economic value. The insights gleaned from this comparative 

study will not only highlight the strengths and limitations of 

each model but also provide practical recommendations for 

their deployment in real-world agricultural settings. By 

focusing on outcomes obtained from the evaluation of these 

models as well as the impacts of parameters, this research 

aims to offer actionable guidance for better incorporation of 

automation for plant disease detection, which will help in 

enhancing agricultural productivity and sustainability. 

 

A. Overview of Plant Disease Detection using CNN 

Convolutional neural network (CNN) architectures and 

their variants have been used by researchers to categorize 

and identify plant diseases [15]. This approach involves 

configuring a certain CNN architecture to suit the 

requirements or utilizing any of the existing popular 

architecture that has been proven to be reliable for such 

classification problems.  

 

The process involves training the Neural Network model 

with a large dataset containing sample images of diseased 

and non-diseased plants, wherein each image is labeled 

appropriately with the disease names. The model reads these 

images and adopts the respective features of each disease 

throughout multiple iterations. The model can be tuned for 

improvising its efficiency or performance by adjusting 

various hyperparameters like Learning Rate, Batch Size, 

etc., which control the model’s adaptability towards learning 

the features of the input images during training.  

 

After the model has been trained in accordance with the 

specifications, it is tested using input images of both 

diseased and non-diseased plants. The model reads these 

images to determine its features and predicts the score 

(probability) for each disease class; the class with the 

highest score is chosen to be the predicted disease for the 

sample image. Metrics like Accuracy, Precision, Recall, and 

F1-score are used to evaluate the model's performance by 

comparing the test predictions with the actual illness 

diagnoses. Figure 1 shows the steps followed to train and 

test samples. 

 

In this study, we are comparing the performance of four 

state-of-the-art convolutional neural network architectures: 

MobileNet, ResNet50V2, InceptionV3, and VGG16. Each 

model is pre-trained on the ImageNet dataset and modified 

for our particular classification task by substituting custom 

fully connected layers for the top layers. The models are 

trained and evaluated over multiple epochs to ensure proper 

performance analysis. Additionally, the impact of varying 

relevant hyperparameters is explored, such as the learning 

rate, batch size, and the number of units in the fully 

connected layers on the model performance. 
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During the training phase, the accuracy and loss of the 

training and validation sets were monitored.   As a result, the 

optimal model and hyperparameter configurations could be 

identified.  The outcomes are examined to identify each 

architecture's advantages and disadvantages in relation to 

our particular goal, offering valuable information about the 

best ways to use transfer learning in picture categorization. 

 

 

Fig. 1. Flow Diagram of the general process of training and evaluation of a 

CNN Model for Plant Disease Detection. 

 

B. Model Architectures 

ResNet50V2 

ResNet50V2 introduces modified residual connections, 

allowing the network to learn residual functions more 

efficiently by using pre-activation blocks. With this 

modification, vanishing gradient problems can be further 

mitigated by training very deep networks with better 

gradient flow. ResNet50V2's residual connections facilitate 

the training of extremely deep networks, leading to 

enhanced performance on complex tasks. However, the 

additional complexity introduced by these connections, 

along with the pre-activation structure, can increase the 

number of parameters, requiring careful consideration of 

computational resources. [16,17,18] 

 

VGG16 

VGG16 is characterized by its simplicity, featuring 16 

layers with small 3x3 convolutional filters. It follows a 

straightforward design with multiple convolutional and 

pooling layers, culminating in three fully connected layers 

for classification. The uniform architecture simplifies 

implementation and promotes feature reuse, making it 

effective for various image classification tasks. VGG16 

tends to be computationally intensive and requires a larger 

number of parameters compared to some other architectures 

[17,19]. 

 

InceptionV3 

InceptionV3 introduces the concept of inception modules. 

These modules utilize multiple filter sizes concurrently, 

allowing the network to capture features at different scales. 

The inception modules help in efficient information 

extraction, reducing the risk of losing important details 

during feature extraction. Although InceptionV3 excels in 

feature extraction, it may have higher computational 

requirements due to parallel processing in the inception 

modules [22]. 

 

MobileNet 

MobileNet is specifically designed for mobile and edge 

devices, emphasizing lightweight structures. It uses 

Depthwise separable convolution divides the convolution 

process into two stages: pointwise convolution, which 

aggregates the results, and depth-wise convolution, which 

applies a filter to each input channel independently. This 

factorization is perfect for embedded and mobile devices 

since it minimizes computation and model size [23].  

MobileNet is ideal for contexts with limited resources 

because it strikes a compromise between model size and 

accuracy. 

C. Banana Dataset Description 

The images utilized for this comparative analysis are of 

diseased banana plants. A total of 11 different diseases are 

incorporated in this dataset, with a total of 1887 images, 

wherein about 100-200 images of each disease variety are 

considered. This dataset was created by compiling images 

from available open sources [25][27][28]. The dataset 

consists of pre-augmented images as per the availability in 

the respective source. The disease varieties considered are: 

 

Black Sigatoka 

Black Sigatoka, also known as black leaf streak, is caused 

by the fungus Mycosphaerella fijiensis. It produces streaks 

and spots on leaves that darken and spread, reducing 

photosynthesis. Severe infections can lead to significant 

yield losses and premature ripening of fruit [30]. Fig. 6 

shows an example of a banana leaf infected with Black 

Sigatoka disease. 

 

Yellow Sigatoka 

This fungal disease, also known as Sigatoka leaf spot, 

caused by Pseudocercospora musicola, produces yellowish 

streaks and spots on banana leaves. Like black Sigatoka but 

generally less aggressive, it can still lead to reduced 

photosynthetic activity and yield if not managed properly 

[31]. Fig. 7 shows an example of banana leaf affected by 

Yellow Sigatoka Disease. 
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Fig. 2. Architecture Diagram of ResNet50V2 [20] 

 

 

 

 

 

Fig. 3. Architecture Diagram of VGG16 [21] 

 

Fig. 4. Architecture Diagram of InceptionV3 [22]
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Fig. 5. Architecture Diagram of MobileNet [24] 
 

Cordana 

Cordana leaf spot, caused by the fungi Cordana musae 

and C. johnstonii, results in oval to diamond-shaped pale 

brown leaf spots, measuring up to 10 cm, appearing on the 

upper surface of the leaves, often bordered by a yellow 

edge. These spots frequently merge, damaging larger 

sections of the leaf, which eventually turn brown and dry 

out. On the underside, spores form in abundance, leading to 

greyish-brown, hairy lesions [32]. Fig. 8 shows the banana 

leaves infected with Cordana disease. 

 

Pestalotiopsis  

Pestalotiopsis is a fungal disease that causes leaf spots, 

fruit rot, and crown rot. The pathogen can survive in plant 

debris and soil, leading to recurring infections if not 

managed. Infected tissues exhibit dark, necrotic spots with 

concentric rings [33]. Fig. 9 shows banana leaves infected 

with Pestalotiopsis disease. 

 

Boron Deficiency 

Symptoms of deficiency include reduced leaf size, leaf 

curling, deformation of the leaf blade, white stripes 

appearing across the veins on young leaves, thickened 

secondary veins, and inhibited root and flower development 

[34]. Fig. 10 shows an image of Boron deficiency in the 

banana leaves. 

 

Potassium Deficiency 

The deficiency symptoms include yellowing or orange 

discoloration of older leaves, leaf margin scorching, a 

reduction in overall leaf area, and curving of the midribs. It 

can also cause leaves to become congested, delay flower 

initiation, and ultimately reduce both yield and quality [34]. 

Fig. 11 shows potassium deficiency in banana leaves.  
 

Panama Disease 

The soil-borne fungus Fusarium oxysporum f.sp. cubense 

is the cause of Panama disease, also known as Fusarium 

wilt. It infects the roots and vascular system, causing wilting 

and yellowing of leaves. It's one of the most destructive 

banana diseases, particularly for the Cavendish variety. [35]. 

Fig. 12 shows Panama disease on the stem of the banana 

plant. 
 

Bacterial Soft Rot 

This disease is caused by bacteria such as the Erwinia  

species. It leads to the softening and rotting of plant tissues,  

 

primarily affecting the rhizome and pseudostem. Infected 

areas emit a foul odor and turn mushy, causing the plant to 

collapse [36]. Fig. 13 shows a banana stem affected by Soft 

Rot disease. 

 

Pseudostem Weevil 

Pseudostem weevil (Odoiporus longicollis) larvae burrow 

into the pseudostem of banana plants, causing internal 

damage that weakens the plant and leads to collapse. 

Symptoms include boreholes and oozing sap from the 

pseudostem [37]. Fig. 14 shows Pseudostem Weevil disease 

in bananas.  

 

Fruit Scarring Beetle 

The fruit scarring beetle damages banana fruits by feeding 

on the peel, leaving scars and blemishes. This affects the 

marketability of fruit. The beetles also lay eggs in the scars, 

leading to further damage as larvae feed [38]. Fig. 15 shows 

bananas infested by the Fruit Scarring Beetle. 

 

Aphids 

Aphids are tiny insects that feed on sap and can seriously 

damage banana trees.  By feeding on the sap of the plant, 

they weaken it, causing growth retardation, yellowing of the 

leaves, and possibly the spread of viral illnesses. They 

secrete honeydew, which fosters sooty mold growth on 

leaves [39]. Fig. 16 shows banana stems infested by Aphids. 

 
TABLE I 

DATASET DISTRIBUTION 

S.No. Banana Disease Quantity 

1.  Black Sigatoka 200 Images 

2.  Yellow Sigatoka 200 Images 

3.  Cordana 162 Images 

4.  Pestalotiopsis 173 Images 

5.  Boron Deficiency 100 Images 

6.  Potassium Deficiency 200 Images 

7.  Panama 102 Images 

8.  Bacterial Soft Rot 200 Images 

9.  Pseudostem Weevil 200 Images 

10.  Fruit Scarring Beetle  150 Images 

11.  Aphids 200 Images 
   

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

 
______________________________________________________________________________________ 



 

 

Fig. 6. Banana Black Sigatoka Disease [25] 

 

 
      

Fig. 7. Banana Yellow Sigatoka Disease [25] 
 

 

 
 

Fig. 8. Banana Cordana Disease [27] 

 
 

Fig. 9. Banana Pestalotiopsis Disease [27] 

 
 

 
 

Fig. 10. Banana Boron Deficiency Disease [28][29] 

 
 

 
 

Fig. 11. Banana Potassium Deficiency Disease [24] 
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Fig. 12. Banana Panama Disease [24] 
 

 

 
 

Fig. 13. Banana Bacterial Soft Rot Disease [24] 

 

 
 

Fig. 14. Banana Pseudostem Weevil Disease [26] 

 

 
 

Fig. 15. Banana Fruit Scarring Beetle Disease [24] 
 

 

 
 

Fig. 16. Banana Aphids Disease [24][25] 
 

III. METHODOLOGY 

A. Prerequisites to Model Training 

In preparing for banana disease detection, a robust and 

well-curated dataset is crucial for effective model training. 

Several key steps were taken to ensure the dataset's 

consistency and usability. All images were renamed using a 

standardized format (`banana_diseasename_index.jpg`), 

embedding both the disease type and a unique identifier for 

each image. This renaming convention not only helped in 

labeling the dataset but also simplified the process of 

generating corresponding labels. A CSV file was created 

with two columns—filename and label—to map each image 

to its associated disease, ensuring a clear structure for the 

model's input. Additionally, all images were resized to 

256x256 pixels, standardizing their dimensions and 

preparing them for uniform processing in the neural 

network. 
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The training environment was established in Jupyter 

Notebook (Python 3.11), using TensorFlow and Keras for 

model development. These frameworks provide powerful 

resources for creating, honing, and implementing deep 

learning models, particularly for image classification 

applications.  Important libraries were also included, such as 

`numpy` for numerical calculations and `pandas` for data 

manipulation. Moreover, TensorFlow's image preprocessing 

tools like `ImageDataGenerator` were employed to handle 

real-time data augmentation, further enhancing the training 

process by providing more variability in the data. 

 

To streamline the training process, transfer learning 

techniques were employed using pre-trained models such as 

VGG16, ResNet50V2, InceptionV3, and MobileNet from 

Keras applications. These models allowed the reuse of 

learned features from large-scale datasets, speeding up the 

training process and improving accuracy for banana disease 

detection. The dataset, along with its labels, is loaded into 

the Python environment, where the Pandas library is used to 

ensure that each image’s full path is correctly mapped in the 

DataFrame. This ensured seamless access to the images 

during the model training phase. 

 

B. Stratified Random Sampling 

CNN models, such as MobileNet, InceptionV3, 

ResNet50V2, and VGG16, have achieved remarkable 

success in a variety of applications, ranging from image 

classification to object detection. Despite their effectiveness, 

these models often struggle with class imbalance in datasets, 

which can lead to suboptimal performance. 

 

Stratified random sampling is based on the concept of 

dividing a population into distinct subgroups, or strata, and 

then sampling from each subgroup proportionally. This 

approach ensures that each subgroup is represented in the 

sample according to its prevalence in the population. 

Stratified random sampling is a statistical technique used to 

ensure that different subgroups or strata within a population 

are adequately represented in a sample. In machine learning, 

stratified sampling is used to produce training and validation 

datasets that preserve the original dataset's class distribution. 

 

The current project implements a proportional stratified 

random sampling approach wherein the size of the sample 

from each stratum is proportional to the size of the stratum. 

This can be mathematically expressed as ni = [Ni / N] × n, 

where ni is the number of samples from stratum i, Ni be the 

number of instances in the ith stratum, for i ∈ {1, 2, K}, N is 

the total size of the population, n is the total sample size and 

K be the number of strata (or classes). 

 

This sampling technique was incorporated into the project 

to address potential class imbalances and enhance the neural 

network model's performance. The dataset, containing 

image filenames and corresponding class labels, was first 

loaded into a Pandas DataFrame. During the data splitting 

phase, the `train_test_split` function from Scikit-learn was 

used, with the `stratify` parameter set to the label column. 

This ensured that the class distribution in both training and 

validation sets matched the proportions in the original 

dataset, preventing any skewed representation. 

By maintaining the same class proportions in both the 

training and validation datasets, the neural network receives 

balanced input from all classes, leading to more accurate 

and generalized learning. The class distribution in both sets 

was verified post-split to confirm the effectiveness of the 

stratified sampling process, ensuring that each class had 

proportional representation like the overall dataset. The 

differences in performance, with and without the use of 

stratified random sampling, are shown in the results. 

 

C. Implementation of Model Architectures and Additional 

Data Augmentation 

To leverage the powerful feature extraction capabilities of 

all the different model architectures, a transfer learning 

approach is introduced. Each model loaded is pre-trained on 

the ImageNet dataset, excluding its top classification layer. 

This provides a robust convolutional base capable of 

extracting high-level features from input images. 

 

The architecture was then augmented with custom fully 

connected layers tailored to our specific classification task. 

The process involved the following steps: 

 

Global Average Pooling 

The output of the convolutional base is fed into a Global 

Average Pooling layer, which reduces the spatial 

dimensions while retaining the salient features. 

 

Fully Connected Layer:  

Complex representations of the pooled features are 

learned by adding a Dense layer with ReLU activation. The 

units in the Dense Layer varied among 5 values.  

 

Output Layer 

Finally, a Dense layer with several units equal to the 

number of classes in our dataset and a SoftMax activation 

function was appended to produce a probability distribution 

over class labels.  

 

The weights of previously trained layers are frozen to 

avoid overfitting and speed up the training process, which is 

achieved by disabling the trainable attribute of each layer in 

the base model. Consequently, only the weights of the newly 

added fully connected layers are updated during the training 

phase. 

 

To enhance the diversity of the training dataset and 

improve the generalization capability of the model, an 

extensive data augmentation strategy using the 

ImageDataGenerator class from Keras is employed. The 

data augmentation parameters included: 

1) Rescaling: Normalizing pixel values by scaling them to 

the range [0, 1]. 

2) Shear Transformation: Applying shear transformations of 

0.2. 

3) Zoom Transformation: Applying zoom transformations of 

0.2. 

4) Horizontal Flipping: Randomly flipping images 

horizontally. 

 

These augmentations were applied to the training dataset 

while ensuring that the validation set remained unaltered to 

provide an unbiased evaluation of the models’ performance. 
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D. Hyperparameter Tuning for Comparative Analysis 

To analyze the performance of each model during the 

training and validation phases on the Banana Disease 

Detection Dataset, we performed hyperparameter tuning 

across the four models and compared their performance 

under various configurations. We focused on five key 

hyperparameters: optimizer, learning rate, number of 

epochs, optimizer, batch size, and the number of units in the 

fully connected dense layer. Each of these hyperparameters 

is tested with five distinct values, allowing thorough access 

to the impact of different settings on the models' accuracy 

and generalization ability. This approach helped in 

identifying the optimal configuration for each model. 

 

Optimizers adjust model parameters iteratively during 

training to minimize a loss function, enabling neural 

networks to learn from data. There are numerous optimizers 

available for training machine learning models, each with 

specific benefits and drawbacks. While some optimizers are 

more general-purpose, others are more appropriate for 

specific kinds of models or data [40]. In the current work, 

five types of optimizers are utilized: 

 

Stochastic Gradient Descent with Momentum 

Stochastic Gradient Descent (SGD) uses a small, 

randomly chosen portion of the data (a "mini batch") rather 

than the complete dataset to update model parameters.  

Adding a momentum term to SGD improves this and 

enables the optimizer to stay on course even with a small 

local gradient [40]. In this project, the momentum term has 

been set to 0.9. 

 

RMSProp 

RMSProp is an optimization algorithm in which, instead 

of accumulating the sum of squared gradients, it uses an 

exponentially decaying average of these squares. This 

approach helps prevent the learning rate from decaying too 

quickly, leading to more stable updates and improved 

convergence, particularly in non-stationary and noisy 

settings. [40]. 

 

AdaDelta 

AdaDelta is an optimization algorithm like RMSProp, but 

it eliminates the need for a predefined learning rate. It is 

more resilient and self-adjusting during training because it 

dynamically adjusts the learning rate by determining the 

update scale using an exponentially decaying average of the 

gradients and the squared gradients. [40]. The learning rate 

field was set to 1 while initializing this optimizer.  

 

Adaptive Moment Estimation 

The optimization approach known as Adaptive Moment 

Estimation (Adam) combines ideas from SGD with 

momentum and RMSProp. Similar to the RMSProp, it 

computes the average of the gradients and squared gradients 

with exponential decay. To speed up convergence and better 

traverse the loss landscape, it also adds a momentum factor. 

This makes Adam well-suited for handling sparse gradients 

and noisy data [40]. 

 

Nesterov-Accelerated Adam  

Nesterov-accelerated Adaptive Moment Estimation 

(Nadam) is an optimization algorithm that merges the 

benefits of Adam and Nesterov momentum [41]. It 

incorporates the adaptive learning rate adjustments from 

Adam with the look-ahead gradient updates from Nesterov 

momentum, improving both convergence speed and 

stability. 

 

The size of weight updates during each optimization 

process iteration is determined by the learning rate.  The 

step size taken in the direction of the negative gradient 

during backpropagation is determined by this scalar.  In 

order to modify the weights, backpropagation entails 

moving the error between the expected and actual outputs 

backward through the network.  While a high learning rate 

may cause the model to overshoot and maybe miss the ideal 

solution, a low learning rate may lead to slow convergence 

and an increased danger of becoming caught in local 

minima.  For effective training and improved model 

performance, the learning rate must be properly adjusted. 

[42]. In our project, we have utilized these 5 values of 

learning rate: 0.001, 0.0025, 0.005, 0.0075, and 0.01 

 

A hyperparameter called the number of epochs 

determines how many times the learning algorithm will run 

through the whole training dataset.  The internal parameters 

of the model are updated using each sample in the training 

set in each epoch.  The model may underfit if it hasn't 

learned enough from the data, or overfit if it has learnt the 

training data too well and performs poorly on new, unknown 

data. The number of epochs chosen can have an impact on 

training.  Keeping an eye on training metrics like accuracy 

and loss might assist figure out how many epochs are right 

to balance learning and generalization [43]. For training the 

models, we considered the following five values for the 

number of epochs based on standard practices and 

requirements for training to effectively evaluate 

performance and determine the optimal training duration.: 

10, 20, 30, 40, and 50.  

 

A hyperparameter called the batch size determines how 

many samples must be processed before the internal 

parameters of the model are modified.  It affects training 

speed and stability; larger batches offer more precise 

gradient estimates but use more memory, while smaller 

batches provide more frequent updates [43].  To investigate 

a variety of possibilities and evaluate their effects on 

training dynamics and model performance, five batch 

sizes—4, 8, 16, 32, and 64—are employed. 

 

A fully linked layer's output space size is determined by a 

hyperparameter called the number of units in that layer [44].  

More units enable the model to be more expressive and 

maybe perform better, which impacts the model's ability to 

learn complicated representations. However, increasing the 

number of units can also raise the risk of overfitting if not 

properly regularized. To evaluate its impact on model 

performance, we tested the following five values for the 

number of units in the fully connected layer: 256, 512, 1024, 

2048 and 4096. 

 

IV. RESULTS AND DISCUSSION 

The training process is carried out using four models across 

five different hyperparameter values. This helps in identifying 

the most suitable hyperparameter settings and determines the 

optimal number of epochs for each model, balancing 
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performance and computational efficiency. Details of key 

metrics during each training session, including training 

accuracy, loss, and time; validation accuracy, loss, and time; 

testing accuracy, loss, and time; and precision, recall, and F1-

score, are being captured. 

 

After evaluating the models, the results are presented in 

Tables I, II, III, and IV. The optimal hyperparameter 

configurations, along with their corresponding performance 

metrics and the difference in performance made by Stratified 

Random Sampling, are summarized in Table V. 

Computational efficiency is determined by averaging the time 

spent on training and testing for each session. To ensure the 

robustness of the selected configurations, perform K-Fold 

cross-validation with both 5 and 10 folds, further validating 

their generalization capabilities. The results of these 

validations, along with their performance metrics, are 

included in Table V. 

 

The differences in training and validation accuracy over 

epochs for each model's top-performing configurations are 

shown in Figs. 17, 18, 19, and 20.  The differences in training 

and validation loss throughout epochs are also displayed in 

Figs. 21, 22, 23, and 24.  The confusion matrices for each 

model are displayed in Figs. 25, 26, 27, and 28.  For every 

model, we additionally examine the Receiver Operating 

Characteristic (ROC) curve and its Area Under the Curve 

(AUC) score.  By graphing the true positive rate (TPR) versus 

the false positive rate (FPR) across various thresholds, the 

ROC curve illustrates a classifier's capacity to discriminate 

between classes [47]. Figs. 29, 30, 31, and 32 present the 

ROC-AUC curves for each model. In addition, Figs. 33, 34, 

35, 36, and 37 plot the test accuracy versus each 

hyperparameter used for fine-tuning the models. Figs. 38, 39, 

40, 41, 42, 43, 44, and 45 depict the cross-validation 

performances for 5 and 10 folds for each model. 

 

To comprehensively assess the real-world performance of 

the models on unseen data, a test dataset of 50 samples was 

curated, including images from sources used during training, 

additional samples sourced online, and images captured by 

agricultural experts from Kerala Agricultural University. 

None of these images had been used in training, ensuring a 

valid evaluation, with each image meticulously verified by 

experts to confirm the specific banana disease it represented. 

The diversity of the test set, spanning multiple sources and 

real-world conditions, enabled a robust assessment of the 

models’ ability to generalize beyond training data. Along with 

accuracy, the models are assessed using metrics related to 

resource usage monitored during the testing process, which 

include CPU, memory usage, and inference time. The 

findings, which are compiled in Table VI, provide a thorough 

understanding of the models' functionality. in both disease 

classification accuracy and computational efficiency, 

highlighting their practicality for diverse agricultural 

environments. 

 

A. Analysis of Model Performance Metrics 

All the models demonstrated high values across the 

performance metrics considered; however, distinct 

differences emerged between them. Upon analyzing the 

training results, ResNet50V2 achieved the highest accuracy 

at 99.52%, closely followed by MobileNet, which reached 

an impressive 99.47%, showing that it’s nearly on par with 

ResNet50V2. InceptionV3 was also competitive, achieving 

99.15% accuracy, while VGG16 trailed slightly with a still 

strong 98.88% accuracy. The results from 5-Fold and 10-

Fold Cross Validation for all models matched the training 

accuracy, indicating that each model performs well in 

generalizing to various data subsets. The Precision, Recall, 

and F1-score closely matched the training accuracies, 

indicating balanced performance across all metrics. This 

consistency suggests the models accurately classified 

diseases while maintaining low false-positive and false-

negative rates, as reflected in their confusion matrices. 

 

When tested on the inference dataset, the models showed 

notable differences in performance. The best results were 

obtained by MobileNet, which had 90.00% accuracy, 

91.50% precision, 90.00% recall, and a 90.38% F1-score, 

indicating its strong balance and suitability for real-time 

disease detection with minimal errors. ResNet50V2 

followed closely with an accuracy of 86.00%, precision of 

86.48%, recall of 86.00%, and F1-score of 84.90%, 

showcasing a slightly higher chance of missed detections. 

 

InceptionV3 and VGG16 showed moderate results, with 

InceptionV3 achieving 82.00% accuracy and maintaining a 

reasonable balance across metrics, whereas VGG16 

demonstrated 76.00% accuracy and higher precision but 

lower recall, suggesting it may miss some true positives. 

 

B. Analysis of Model Efficiency 

Among the models tested, MobileNet stood out for its 

significantly lower training and testing times compared to 

VGG16, ResNet50V2, and InceptionV3, despite sharing 

similar hyperparameters. During testing, MobileNet 

exhibited the lowest CPU usage, averaging 45.56%, which 

is advantageous for devices with limited processing power, 

as it ensures smooth performance without overloading the 

system. Additionally, MobileNet demonstrated the least 

memory consumption, with an average of just 799.59 MB 

during inference. This low memory footprint is particularly 

beneficial for mobile devices with constrained memory, 

enabling efficient real-time processing without straining 

resources. 

 

MobileNet's ability to complete inference on a batch of 50 

samples in approximately 4.7 seconds made it the fastest 

model in the test. Fast inference times are crucial for real-

time applications, such as disease detection in agricultural 

settings, where quick results are essential for timely 

decision-making. Overall, MobileNet's combination of 

speed, low resource usage, and efficiency makes it an ideal 

choice for real-time, resource-constrained environments.  

 

C. Summary of Model Evaluation 

MobileNet was the most effective model in terms of 

computational performance and resource usage. Its 

lightweight architecture, optimized for mobile deployment 

[45], delivered the highest accuracy, precision, recall, and F1 

score among the models tested. The model's minimal CPU 

and memory usage, coupled with its fast inference time, make 

it particularly well-suited for real-time disease detection on 

mobile devices, where both speed and resource efficiency are  
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Fig. 17. VGG16 Training and Validation Accuracy Plot 
 

 
Fig. 18. InceptionV3 Training and Validation Accuracy Plot 

 

 
Fig. 19. ResNet50V2 Training and Validation Accuracy Plot 

 

Fig. 20. MobileNet Training and Validation Accuracy Plot 

Fig. 21. VGG16 Training and Validation Loss Plot 

 

 
Fig. 22. InceptionV3 Training and Validation Loss Plot 

 

 
Fig. 23. ResNet50V2 Training and Validation Loss Plot 

 

 

Fig. 24. MobileNet Training and Validation Loss Plot 
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TABLE II 

PERFORMANCE OF VGG16  

 

 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

Testing 

Loss 
Precision Recall 

F1-

Score 

        

 

 

No. of Epochs: 

 

 

       

10 

20 

30 

40 

50 

 

 

0.9397 

0.9675 

0.9728 

0.9775 

0.9808 

0.9418 

0.9577 

0.9577 

0.9709 

0.9550 

0.9629 

0.9766 

0.9856 

0.9873 

0.9856 

0.1566 

0.0829 

0.0497 

0.0432 

0.0408 

0.9644 

0.9779 

0.9864 

0.9876 

0.9864 

0.9629 

0.9766 

0.9856 

0.9872 

0.9856 

0.9630 

0.9768 

0.9857 

0.9873 

0.9857 

 

 

Learning Rate: 

 

 

       

0.001 

0.0025 

0.005 

0.0075 

0.01 

 

 

0.9775 

0.9695 

0.9788 

0.9795 

0.9682 

0.9709 

0.9709 

0.9762 

0.9709 

0.9630 

0.9873 

0.9809 

0.9851 

0.9830 

0.9793 

0.0432 

0.0500 

0.0455 

0.0496 

0.0648 

0.9876 

0.9813 

0.9856 

0.9839 

0.9801 

0.9872 

0.9809 

0.9851 

0.9830 

0.9793 

0.9873 

0.9809 

0.9852 

0.9831 

0.9793 

 

No. of units in 

FC Layer: 

 

 

256 

512 

1024 

2048 

4096 

 

 

Batch Size: 

 

 

 

 

 

 

0.9708 

0.9775 

0.9775 

0.9848 

0.9781 

 

 

 

 

0.9524 

0.9709 

0.9656 

0.9524 

0.9577 

 

 

 

 

0.9772 

0.9873 

0.9841 

0.9815 

0.9862 

 

 

 

 

0.0720 

0.0455 

0.0550 

0.0624 

0.0477 

 

 

 

 

0.9790 

0.9876 

0.9850 

0.9831 

0.9864 

 

 

 

 

0.9772 

0.9872 

0.9841 

0.9814 

0.9862 

 

 

 

 

0.9773 

0.9873 

0.9841 

0.9817 

0.9862 

4 

8 

16 

32 

64 

 

 

 

Optimizers: 

 

 

Adam 

Nadam 

SGD 

RMSProp 

Adadelta 

 

0.9755 

0.9675 

0.9775 

0.9708 

0.9649 

 

 

 

 

 

 

0.9775 

0.9642 

0.8270 

0.9655 

0.9609 

 

 

0.9683 

0.9497 

0.9709 

0.9577 

0.9497 

 

 

 

 

 

 

0.9709 

0.9550 

0.8439 

0.9392 

0.9577 

 

0.9888 

0.9799 

0.9873 

0.9809 

0.9777 

 

 

 

 

 

 

0.9873 

0.9851 

0.8733 

0.9693 

0.9740 

0.0388 

0.0599 

0.0455 

0.0693 

0.0916 

 

 

 

 

 

 

0.0455 

0.0449 

0.5556 

0.0884 

0.0963 

0.9889 

0.9812 

0.9876 

0.9817 

0.9782 

 

 

 

 

 

 

0.9876 

0.9855 

0.8881 

0.9725 

0.9760 

0.9888 

0.9798 

0.9872 

0.9809 

0.9777 

 

 

 

 

 

 

0.9872 

0.9851 

0.8733 

0.9692 

0.9740 

0.9888 

0.9799 

0.9873 

0.9809 

0.9777 

 

 

 

 

 

 

0.9873 

0.9852 

0.8739 

0.9689 

0.9743 
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TABLE III 

PERFORMANCE OF INCEPTIONV3 

 

 

Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

Testing 

Loss 
Precision Recall 

F1-

Score 

        

 

No. of Epochs: 

       

10 

20 

30 

40 

50 
 

0.9470 

0.9556 

0.9596 

0.9728 

0.9781 

0.9418 

0.9497 

0.9577 

0.9683 

0.9444 

0.9756 

0.9793 

0.9852 

0.9915 

0.9867 

0.0904 

0.0595 

0.0426 

0.0281 

0.0372 

0.9768 

0.9804 

0.9857 

0.9916 

0.9867 

0.9756 

0.9793 

0.9851 

0.9915 

0.9862 

0.9757 

0.9794 

0.9851 

0.9915 

0.9862 
 

 

Learning Rate: 

 
 

 

 

 

      

0.001 

0.0025 

0.005 

0.0075 

0.01 

 
 

0.9728 

0.9476 

0.8330 

0.6428 

0.4201 

0.9683 

0.9550 

0.9497 

0.9048 

0.6640 

0.9915 

0.9852 

0.9751 

0.9300 

0.6725 

0.0281 

0.0397 

0.0753 

0.2253 

0.8429 

0.9916 

0.9858 

0.9755 

0.9351 

0.6070 

0.9915 

0.9851 

0.9750 

0.9300 

0.6724 

0.9915 

0.9852 

0.9751 

0.9299 

0.6083 

No. of units in 

FC Layer: 

 

 

256 

512 

1024 

2048 

4096 

 

 

Batch Size: 

 

 

4 

8 

16 

32 

64 
 

 

Optimizers: 

 

 

Adam 

Nadam 

SGD 

RMSProp 

Adadelta 
 

 

 

 

 

0.9907 

0.9728 

0.9748 

0.9622 

0.9772 

 

 

 

 

 

0.9556 

0.9728 

0.9728 

0.9722 

0.9907 

 

 

 

 

 

0.9728 

0.9636 

0.9748 

0.9649 

0.9841 
 

 

 

 

 

0.9683 

0.9683 

0.9524 

0.9524 

0.9735 

 

 

 

 

 

0.9683 

0.9524 

0.9683 

0.9524 

0.9735 

 

 

 

 

 

0.9683 

0.9603 

0.9630 

0.9603 

0.9709 

 

 

 

 

0.9889 

0.9915 

0.9714 

0.9772 

0.9803 

 

 

 

 

 

0.9889 

0.9894 

0.9915 

0.9772 

0.9803 

 

 

 

 

 

0.9915 

0.9868 

0.9862 

0.9883 

0.9894 

 

 

 

 

0.0252 

0.0281 

0.0683 

0.0576 

0.0538 

 

 

 

 

 

0.0252 

0.0683 

0.0281 

0.0576 

0.0538 

 

 

 

 

 

0.0281 

0.0425 

0.0417 

0.0420 

0.0293 

 

 

 

 

0.9891 

0.9916 

0.9728 

0.9781 

0.9815 

 

 

 

 

 

0.9891 

0.9895 

0.9916 

0.9781 

0.9815 

 

 

 

 

 

0.9916 

0.9875 

0.9868 

0.9887 

0.9896 

 

 

 

 

0.9888 

0.9915 

0.9713 

0.9772 

0.9803 

 

 

 

 

 

0.9888 

0.9894 

0.9915 

0.9772 

0.9803 

 

 

 

 

 

0.9915 

0.9867 

0.9862 

0.9883 

0.9894 

 

 

 

 

0.9888 

0.9915 

0.9714 

0.9772 

0.9801 

 

 

 

 

 

0.9888 

0.9894 

0.9915 

0.9772 

0.9801 

 

 

 

 

 

0.9915 

0.9868 

0.9862 

0.9883 

0.9894 

 

 
        

 

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

 
______________________________________________________________________________________ 



 

TABLE IV 
PERFORMANCE OF RESNET50V2 

 

 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

Testing 

Loss 
Precision Recall 

F1-

Score 

 

 

 

       

No. of Epochs:        

10 

20 

30 

40 

50 

 
 

0.9775 

0.9775 

0.9874 

0.9874 

0.9887 

0.9524 

0.9735 

0.9656 

0.9815 

0.9841 

0.9746 

0.9873 

0.9841 

0.9942 

0.9952 

0.0619 

0.0334 

0.0460 

0.0159 

0.0189 

0.9768 

0.9875 

0.9858 

0.9942 

0.9952 

0.9745 

0.9872 

0.9841 

0.9941 

0.9952 

0.9748 

0.9872 

0.9843 

0.9941 

0.9952 

Learning Rate: 

 
 

 

 

 

      

0.001 

0.0025 

0.005 

0.0075 

0.01 

 

 

No. of units in 

FC Layer: 

 

 

256 

512 

1024 

2048 

4096 

 

 

 

Batch Size: 

 

 

4 

8 

16 

32 

64 

 

 

Optimizers: 

 

 

Adam 

Nadam 

SGD 

RMSProp 

Adadelta 

 

0.9887 

0.9828 

0.9702 

0.9344 

0.9165 

 

 

 

 

 

 

0.9887 

0.9887 

0.9881 

0.9808 

0.9861 

 

 

 

 

 

 

0.9874 

0.9755 

0.9887 

0.9861 

0.9947 

 

 

 

 

 

0.9887 

0.9874 

0.9914 

0.9894 

0.9934 

 

 

0.9841 

0.9788 

0.9656 

0.9524 

0.9630 

 

 

 

 

 

 

0.9788 

0.9841 

0.9841 

0.9788 

0.9815 

 

 

 

 

 

 

0.9788 

0.9815 

0.9841 

0.9735 

0.9841 

 

 

 

 

 

0.9841 

0.9788 

0.9762 

0.9868 

0.9815 

0.9952 

0.9889 

0.9868 

0.9815 

0.9815 

 

 

 

 

 

 

0.9931 

0.9952 

0.9936 

0.9910 

0.9915 

 

 

 

 

 

 

0.9905 

0.9905 

0.9952 

0.9915 

0.9926 

 

 

 

 

 

0.9952 

0.9926 

0.9931 

0.9947 

0.9936 

0.0189 

0.0276 

0.0510 

0.1000 

0.0697 

 

 

 

 

 

 

0.0188 

0.0189 

0.0190 

0.0800 

0.0776 

 

 

 

 

 

 

0.0422 

0.0307 

0.0189 

0.0233 

0.0156 

 

 

 

 

 

0.0189 

0.0248 

0.0215 

0.0299 

0.0201 

0.9952 

0.9897 

0.9874 

0.9826 

0.9815 

 

 

 

 

 

 

0.9932 

0.9952 

0.9936 

0.9914 

0.9917 

 

 

 

 

 

 

0.9906 

0.9906 

0.9952 

0.9920 

0.9927 

 

 

 

 

 

0.9952 

0.9926 

0.9932 

0.9948 

0.9937 

0.9952 

0.9888 

0.9867 

0.9814 

0.9814 

 

 

 

 

 

 

0.9931 

0.9952 

0.9936 

0.9909 

0.9915 

 

 

 

 

 

 

0.9904 

0.9904 

0.9952 

0.9915 

0.9925 

 

 

 

 

 

0.9952 

0.9925 

0.9931 

0.9947 

0.9936 

0.9952 

0.9888 

0.9867 

0.9815 

0.9814 

 

 

 

 

 

 

0.9931 

0.9952 

0.9936 

0.9909 

0.9915 

 

 

 

 

 

 

0.9904 

0.9903 

0.9952 

0.9915 

0.9925 

 

 

 

 

 

0.9952 

0.9925 

0.9931 

0.9947 

0.9936 
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TABLE V 
PERFORMANCE OF MOBILENET 

 

 Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 
Testing Loss Precision Recall 

F1-

Score 

 

 

 

       

No. of Epochs: 
 

 

 

 
 

      

10 

20 

30 

40 

50 

 

 

0.9867 

0.9742 

0.9894 

0.9937 

0.9887 

0.9656 

0.9762 

0.9894 

0.9868 

0.9815 

0.9889 

0.9873 

0.9905 

0.9947 

0.9926 

0.0319 

0.0278 

0.0295 

0.0101 

0.0184 

0.9897 

0.9877 

0.9909 

0.9948 

0.9926 

0.9888 

0.9872 

0.9904 

0.9947 

0.9925 

0.9888 

0.9872 

0.9904 

0.9947 

0.9925 

Learning Rate: 
 

 
 

 

 

      

0.001 

0.0025 

0.005 

0.0075 

0.01 

 

 

No. of units in 

FC Layer: 

 

 

256 

512 

1024 

2048 

4096 

 

 

Batch Size: 

 

 

4 

8 

16 

32 

64 

 

 

Optimizers: 

 

 

Adam 

Nadam 

SGD 

RMSProp 

Adadelta 
 

0.9937 

0.9689 

0.9583 

0.9185 

0.8615 

 

 

 

 

 

 

0.9867 

0.9937 

0.9861 

0.9728 

0.9828 

 

 

 

 

 

0.9861 

0.9874 

0.9937 

0.9881 

0.9914 

 

 

 

 

 

0.9937 

0.9821 

0.9887 

0.9867 

0.9934 

0.9868 

0.9683 

0.9683 

0.9656 

0.9444 

 

 

 

 

 

 

0.9683 

0.9868 

0.9841 

0.9735 

0.9709 

 

 

 

 

 

0.9815 

0.9735 

0.9868 

0.9815 

0.9868 

 

 

 

 

 

0.9868 

0.9762 

0.9735 

0.9735 

0.9841 

0.9947 

0.9883 

0.9889 

0.9830 

0.9815 

 

 

 

 

 

 

0.9915 

0.9947 

0.9936 

0.9921 

0.9883 

 

 

 

 

 

0.9905 

0.9894 

0.9947 

0.9905 

0.9931 

 

 

 

 

 

0.9947 

0.9921 

0.9894 

0.9894 

0.9878 

0.0101 

0.0271 

0.0273 

0.0477 

0.0712 

 

 

 

 

 

 

0.0175 

0.0101 

0.0209 

0.0194 

0.0598 

 

 

 

 

 

0.0473 

0.0267 

0.0101 

0.0203 

0.0193 

 

 

 

 

 

0.0101 

0.0284 

0.0281 

0.0503 

0.0412 

0.9948 

0.9891 

0.9893 

0.9837 

0.9820 

 

 

 

 

 

 

0.9917 

0.9948 

0.9936 

0.9923 

0.9885 

 

 

 

 

 

0.9908 

0.9894 

0.9948 

0.9910 

0.9931 

 

 

 

 

 

0.9948 

0.9922 

0.9899 

0.9901 

0.9887 

 

0.9947 

0.9883 

0.9888 

0.9830 

0.9814 

 

 

 

 

 

 

0.9915 

0.9947 

0.9936 

0.9920 

0.9883 

 

 

 

 

 

0.9904 

0.9894 

0.9947 

0.9904 

0.9931 

 

 

 

 

 

0.9947 

0.9920 

0.9894 

0.9894 

0.9878 

0.9947 

0.9884 

0.9888 

0.9831 

0.9815 

 

 

 

 

 

 

0.9915 

0.9947 

0.9936 

0.9920 

0.9882 

 

 

 

 

 

0.9904 

0.9893 

0.9947 

0.9905 

0.9931 

 

 

 

 

 

0.9947 

0.9920 

0.9894 

0.9894 

0.9877 
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TABLE VI 
COMPARISON OF THE MODELS 

 

 VGG16 InceptionV3 Resnet50V2 MobileNet 

     

     

Best Hyperparameter configuration: 

 

- Epochs: 

- Optimizer: 

- Learning Rate: 

- Batch Size: 

- No. of units in the FC layer: 

 

 

 

 

40 

Adam 

0.001 

4 

512 

 

 

40 

Adam 

0.001 

16 

512 

 

 

 

50 

Adam 

0.001 

16 

512 

 

 

40 

Adam 

0.001 

16 

512 

Best performance corresponding to the best 

Hyperparameter configuration without 

Stratified Random Sampling: 

 

- Accuracy 

- Precision 

- Recall 

- F1-Score 

 

 

 

 

 

0.8590 

0.8591 

0.8590 

0.8590 

 

 

 

 

0.8484 

0.8484 

0.8484 

0.8484 

 

 

 

 

0.8641 

0.8643 

0.8641 

0.8641 

 

 

 

 

0.8505 

0.8506 

0.8505 

0.8505 

     

Best performance corresponding to the best 

Hyperparameter configuration with Stratified 

Random Sampling: 

 

- Accuracy 

- Precision 

- Recall 

- F1-Score 

 

 

Average time elapsed: 

 

- Training Time 

- Testing Time 

 

 

5-Fold Cross-Validation Performance: 

 

- Average Accuracy 

- Average Precision 

- Average Recall 

- Average F1-Score 

- Average Prediction Time 

 

 

10-Fold Cross-Validation Performance: 

 

- Average Accuracy 

- Average Precision 

- Average Recall 

- Average F1-Score 

- Average Prediction Time 

 

 

 

 

 

0.9888 

0.9889 

0.9888 

0.9888 

 

 

 

 

5840.65 s 

185.64 s 

 

 

 

 

0.9889 

0.9891 

0.9888 

0.9888 

64.29 s 

 

 

 

 

0.9888 

0.9895 

0.9888 

0.9888 

30.74 s 

 

 

 

 

0.9915 

0.9916 

0.9915 

0.9915 

 

 

 

 

1935.46 s 

41.56 s 

 

 

 

 

0.9915 

0.9918 

0.9915 

0.9915 

48.39 s 

 

 

 

 

0.9915 

0.9922 

0.9915 

0.9915 

22.96 s 

 

 

 

 

0.9952 

0.9952 

0.9952 

0.9952 

 

 

 

 

2647.29 s 

59.78 s 

 

 

 

 

0.9952 

0.9954 

0.9952 

0.9952 

50.47 s 

 

 

 

 

0.9952 

0.9955 

0.9952 

0.9952 

26.47 s 

 

 

 

 

0.9947 

0.9948 

0.9947 

0.9947 

 

 

 

 

1309.79 s 

22.81 s 

 

 

 

 

0.9947 

0.9948 

0.9947 

0.9947 

32.01 s 

 

 

 

 

0.9947 

0.9949 

0.9947 

0.9947 

15.91 s 
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Fig. 25. VGG16 Confusion Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26. InceptionV3 Confusion Matrix 
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Fig. 27. ResNet50V2 Confusion Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                       

 

 

 

 

Fig. 28. MobileNet Confusion Matrix 
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Fig. 29. VGG16 ROC-AUC Plot

 

 

 

 

 

 

 

 

 

 

 

Fig. 30. InceptionV3 ROC-AUC Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. ResNet50V2 ROC-AUC Plot 
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Fig. 32. MobileNet ROC-AUC Plot

Fig. 33. Comparison of Model Accuracy for different No. of Epochs 

Fig. 34. Comparison of Model Accuracy for different Learning Rates
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Fig. 35. Comparison of Model Accuracy for different units in FC Layer 
 

 
Fig. 36. Comparison of Model Accuracy for different Batch Sizes 

 

Fig. 37. Comparison of Model Accuracy for different Optimizers 
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Fig. 38. VGG16 5-Fold Cross Validation Plot

  

Fig. 39. InceptionV3 5-Fold Cross Validation Plot 

 

Fig. 40. ResNet50V2 5-Fold Cross Validation Plot 
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Fig. 41. MobileNet 5-Fold Cross Validation Plot 

 

Fig. 42. VGG16 10-Fold Cross Validation Plot 

 

Fig. 43. InceptionV3 10-Fold Cross Validation Plot
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Fig. 44. ResNet50V2 10-Fold Cross Validation Plot 

 

Fig. 45. MobileNet 10-Fold Cross Validation

 

 

critical. ResNet50V2 offered a solid balance of accuracy and 

efficiency, though it lagged behind MobileNet in terms of 

inference speed and memory consumption. While it was more 

resource-efficient than VGG16 and InceptionV3, it still 

proved heavier compared to the compact MobileNet. 

 

InceptionV3 demonstrated improved efficiency over 

VGG16, especially in accuracy and recall, but remained 

resource-intensive, particularly in memory usage. Despite its 

reasonable performance, it was less lightweight and efficient 

than MobileNet, making it less suitable for environments with 

strict resource constraints. VGG16 [46], while delivering 

moderate accuracy, showed high resource consumption with 

significant CPU and memory utilization during inference. Its 

slower inference time further highlighted its limitations, 

particularly for real-time, mobile-based applications where 

fast results and low resource demands are essential. 

 

V. CONCLUSION 

The performance and efficiency evaluation of the four 

deep learning models—MobileNet, ResNet50V2, 

InceptionV3, and VGG16—has provided valuable insights 

into their suitability for real-time disease detection in 

resource-constrained environments. Among the models 

tested, MobileNet emerged as the top performer, achieving 

the highest balance of accuracy, precision, recall, and F1-

score, combined with exceptional efficiency in terms of 

memory consumption, CPU usage, and inference speed. 

With an accuracy of 90.00% on an unknown sample dataset 

and a rapid inference time of approximately 4.7 seconds for 

50 samples, MobileNet is particularly well-suited for 

deployment on mobile devices and in agricultural settings, 

where timely disease detection is critical. 

 

In contrast, while ResNet50V2 offered competitive 

accuracy, it lagged behind MobileNet in terms of resource  
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TABLE VII 
PERFORMANCE OF MODELS FOR UNKNOWN DATA

 

efficiency and inference speed. Despite having respectable 

accuracy and recall, InceptionV3 was less suitable for real-

time applications due to its increased resource usage and 

lengthier inference durations. VGG16, despite its higher 

precision, demonstrated slower inference times and 

significant resource usage, highlighting its limitations in 

mobile and resource-limited environments. 
 

All things considered, MobileNet is the finest model for 

real-time disease detection because of its high accuracy and 

low resource usage, which makes it the ideal choice for 

mobile deployment where speed and efficiency are crucial.   

This capability enables the diagnosis of diseases in 

agricultural areas in real time, particularly in rural locations 

with low computational resources. 

 

The ROC-AUC analysis further validates the 

classification strength of all four models, each achieving an 

AUC of 1.0, indicating perfect discrimination between 

banana diseases across all thresholds on the current dataset. 

However, such high performance may point to potential 

overfitting or dataset biases, highlighting the importance of 

testing under real-world conditions. Variations in lighting, 

leaf texture, and unseen disease patterns could affect model 

generalization. Tools like partial AUC (pAUC) are therefore 

essential, focusing evaluation on meaningful False Positive 

Rate (FPR) or True Positive Rate (TPR) ranges aligned with 

real-life decision-making. While a high true positive rate 

enables early and effective disease management, excessive 

false positives can lead to unnecessary treatments and 

increased costs.  

 

Future development of disease detection systems can focus 

on optimizing accessibility through a web-based platform, 

enabling users to access the model on any internet-enabled 

device without the need for installation or high-end hardware.  

This would reduce hardware dependency and significantly 

broaden the user base, particularly in rural and resource-

limited areas. Furthermore, more research into lightweight  

 

 

 models and sophisticated optimization methods, like 

knowledge distillation, pruning, and model quantization, can 

further cut down on resource usage without sacrificing 

accuracy. These methods would enhance the model's 

suitability for deployment on mobile devices with limited 

computational capabilities. 

 

In parallel, incorporating adaptive learning techniques and 

periodic model updates based on new data can help maintain 

high detection accuracy over time. This approach could 

address potential shifts in disease patterns or new 

environmental conditions, ensuring that the model remains 

relevant and effective. By focusing on these improvements, 

the disease detection system can be made more efficient, 

scalable, and accessible, offering a sustainable solution for 

timely and accurate disease detection in agricultural settings 

worldwide, empowering farmers and agriculturists to improve 

crop health and yield.  
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