

Abstract— The consumption of agricultural products is

fundamental to human survival. Enhancing agricultural

productivity and sustainability necessitates the effective

monitoring and nurturing of healthy crops. In this regard, one

of the most important study areas is using sophisticated neural

network models to identify plant diseases. Four well-known

convolutional neural network (CNN) architectures—

InceptionV3, ResNet50V2, VGG16, and MobileNet—that use

transfer learning for real-time disease identification in banana

plants are thoroughly compared in this work. A total of 11

disease variants were classified, and performance metrics were

computed for each model. Stratified random sampling was

employed to ensure balanced representation of classes during

training and validation. Evaluation using Cross-Validation,

ROC-AUC, and confusion matrices ensured robust and

interpretable classification results. Among the models,

ResNet50V2 obtained the maximum accuracy of 99.52% on in-

distribution test data, whereas MobileNet reached 90%

accuracy on real-time datasets. The results were validated by

an agricultural expert, confirming their practical reliability.

This study provides useful information about the advantages

and disadvantages of each architecture, along with practical

suggestions for their implementation in actual agricultural

environments to help farmers identify and treat diseases

promptly.

Index Terms— Agriculture, Banana plant, Convolutional

neural network, Identification of plant diseases, Deep learning

models

I. INTRODUCTION

griculture is essential to both economic stability and

global food security, providing sustenance and

livelihoods for billions of people. It has a crucial part in the

Manuscript received Jan 23, 2025; revised May 26, 2025.
Rushit R. Rivankar is an undergraduate student at the School of

Computer Engineering, Manipal Institute of Technology, Manipal

Academy of Higher Education, Manipal, India. (e-mail:
rushit.rivankar@learner.manipal.edu).

Smitha N. Pai is a Professor at the School of Computer Engineering,

Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal, India (Corresponding author e-mail: smitha.pai@manipal.edu).

Abhishek Rhisheekesan is the CEO of aiRender Technology Pvt Ltd.,

Bangalore, India, (e-mail: abhishek.airender@gmail.com).
Deekshitha is the Head of 3-D Graphics Dev Team, aiRender

Technology Pvt Ltd., Bangalore, India (e-mail:

deekshitha.airender@gmail.com).
Lohith Prakash is a Technical Lead of the Full-Stack Software Dev

Team, aiRender Technology Pvt Ltd., Bangalore, India (e-mail:
lohith.airender@gmail.com).

Sunil V. G is an Assistant Professor of the Agricultural Extension

Communication Centre, Kerala Agricultural University, Mannuthy, Kerala,
India (e-mail: sunil.vg@kau.in).

Abel Philip Joseph is an undergraduate student of the Department of

Computer Science and Engineering, Indian Institute of Information
Technology, Kottayam, Kerala, India (e-mail: abel.airender@gmail.com).

economic transformation of developing nations, boosting

productivity, increasing income, and reducing poverty and

hunger [1]. With a projected 9 billion people on the planet

by 2050, food production will need to rise by 70%. Efficient

and sustainable agricultural practices are essential to meet

this demand and ensure food security [2].

Plant diseases threaten crop yields and quality, posing

significant risks to food availability and economic stability.

Timely and precise illness detection is desperately needed to

prevent widespread crop damage and financial losses [3].

Traditional plant disease detection relies on visual

inspections by experienced farmers or experts like

professors, researchers, and officers working in the

agricultural field. This approach, which entails looking for

outward signs of discoloration, spots, or malformations in

plants, has drawbacks such as a high need for professional

experience, protracted diagnosis delays, and low

productivity. [4]. In some cases, laboratory tests are used to

confirm a specific pathogen [5].

Plant disease detection has been transformed by

technological developments, especially in the areas of

computer vision and machine learning. Researchers derived

feature information from segmented images to identify and

distinguish abnormal conditions [6]. Automated systems can

analyze images of plants to identify diseases accurately and

quickly [7]. These technologies enable early detection and

prompt intervention, reducing disease spread and

minimizing economic losses. Image classification problems

are a great fit for neural networks, particularly

Convolutional Neural Networks (CNNs) [8]. They are able

to accurately diagnose diseases by directly identifying visual

patterns in pictures. CNNs can correctly distinguish

between different diseases after being trained on enormous

amounts of photos of both healthy and unhealthy plants.

Neural networks, especially Convolutional Neural Networks

(CNNs), are great for detecting plant illnesses because of

their remarkable performance in image classification tasks

[9]. A study of various models and their implications for

banana plant disease application is essential to obtain a

robust model.

II. LITERATURE SURVEY

The rapid advancements in deep learning have

significantly enhanced the capability of automated systems

to detect plant diseases, a crucial aspect of ensuring food

security and agricultural productivity. Recent studies have

demonstrated the potential of neural network models in

Real-Time Disease Identification of Banana

Plants Using Neural Network Models

Rushit R. Rivankar, Smitha N. Pai, Abhishek Rhisheekesan, Deekshitha, Lohith Prakash, Sunil V G,

Abel Philip Joseph

A

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

mailto:rushit.rivankar@learner.manipal.edu
mailto:smitha.pai@manipal.edu
mailto:abhishek.airender@gmail.com
mailto:deekshitha.airender@gmail.com
mailto:lohith.airender@gmail.com
mailto:sunil.vg@kau.in
mailto:abel.airender@gmail.com

accurately identifying various plant diseases from image

data, thereby offering a promising tool for early intervention

and management.

The use of deep learning methods for plant disease

detection has been investigated by numerous researchers.

The results of the study [10] provide a thorough analysis of

the use of convolutional neural networks (CNNs) to the

identification of plant diseases from photos of leaves. The

effectiveness of CNNs in achieving high accuracy rates,

demonstrating their potential as a reliable method for

disease detection in agricultural practices, is highlighted in

the study. Similarly, [11] discusses the application of deep

learning models, emphasizing their robustness in handling

complex patterns and variations in plant disease symptoms.

Comparative studies have also been used to evaluate the

efficacy of various neural network topologies in the context

of plant disease detection. For instance, [12] assesses how

well a number of deep learning models, including CNNs,

ResNet, and Inception, can recognize diseases in images of

plants. According to their findings, some architectures,

such as ResNet, perform better than others in terms of

accuracy and computational efficiency, even if all models

demonstrate optimistic outcomes.

More complex plant disease detection systems have been

developed as a result of developments in image processing

and machine learning. The combination of deep learning

and image-based detection methods is discussed in [13],

highlighting the significance of sizable datasets and

excellent images for building reliable models. The

assessment sheds light on the difficulties and potential paths

in this quickly developing subject.

The application of deep learning for specific crops, such

as bananas, has also garnered attention. The work in [14]

focuses on detecting banana diseases using deep learning

models, addressing unique challenges posed by the crop's

morphology and disease manifestations. Their study

highlights the adaptability of neural networks in tailoring

solutions for specific agricultural contexts, thereby

enhancing the precision and reliability of disease detection.

The application of deep learning to the identification of

plant diseases is a significant development in agricultural

technology. Comparative analyses of different neural

network models highlight how crucial it is to choose the

right design in order to get the best outcomes. It is

anticipated that further research and developments in image

processing, data augmentation, and model training will

improve the precision and effectiveness of these systems as

the field develops, supporting sustainable farming methods.

After a thorough analysis of the work conducted by

various authors, it is noticed that disease identification for a

whole banana plant has not yet been carried out. The

identification of 11 variants of disease in banana plants is

still a challenge. The primary objective of this research is to

conduct a comparative analysis of various neural network

models, evaluating their performance using a dataset

comprising images of banana plants affected by 11 distinct

diseases. The dataset includes a diverse range of banana

diseases, such as Black Sigatoka, Panama, and others. Each

disease presents unique symptoms and challenges,

impacting banana production differently. Important

measures like accuracy, precision, recall, F1-score, and

computing efficiency will be used to evaluate the models.

Additionally, the study will examine the training and

validation standards of each model, employing cross-

validation techniques and model fitting analysis.

This study aims to leverage the strengths of four

prominent CNN architectures —InceptionV3, ResNet50V2,

VGG16, and MobileNet to develop a robust system for

detecting diseases in banana plants, a crop of significant

economic value. The insights gleaned from this comparative

study will not only highlight the strengths and limitations of

each model but also provide practical recommendations for

their deployment in real-world agricultural settings. By

focusing on outcomes obtained from the evaluation of these

models as well as the impacts of parameters, this research

aims to offer actionable guidance for better incorporation of

automation for plant disease detection, which will help in

enhancing agricultural productivity and sustainability.

A. Overview of Plant Disease Detection using CNN

Convolutional neural network (CNN) architectures and

their variants have been used by researchers to categorize

and identify plant diseases [15]. This approach involves

configuring a certain CNN architecture to suit the

requirements or utilizing any of the existing popular

architecture that has been proven to be reliable for such

classification problems.

The process involves training the Neural Network model

with a large dataset containing sample images of diseased

and non-diseased plants, wherein each image is labeled

appropriately with the disease names. The model reads these

images and adopts the respective features of each disease

throughout multiple iterations. The model can be tuned for

improvising its efficiency or performance by adjusting

various hyperparameters like Learning Rate, Batch Size,

etc., which control the model’s adaptability towards learning

the features of the input images during training.

After the model has been trained in accordance with the

specifications, it is tested using input images of both

diseased and non-diseased plants. The model reads these

images to determine its features and predicts the score

(probability) for each disease class; the class with the

highest score is chosen to be the predicted disease for the

sample image. Metrics like Accuracy, Precision, Recall, and

F1-score are used to evaluate the model's performance by

comparing the test predictions with the actual illness

diagnoses. Figure 1 shows the steps followed to train and

test samples.

In this study, we are comparing the performance of four

state-of-the-art convolutional neural network architectures:

MobileNet, ResNet50V2, InceptionV3, and VGG16. Each

model is pre-trained on the ImageNet dataset and modified

for our particular classification task by substituting custom

fully connected layers for the top layers. The models are

trained and evaluated over multiple epochs to ensure proper

performance analysis. Additionally, the impact of varying

relevant hyperparameters is explored, such as the learning

rate, batch size, and the number of units in the fully

connected layers on the model performance.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

During the training phase, the accuracy and loss of the

training and validation sets were monitored. As a result, the

optimal model and hyperparameter configurations could be

identified. The outcomes are examined to identify each

architecture's advantages and disadvantages in relation to

our particular goal, offering valuable information about the

best ways to use transfer learning in picture categorization.

Fig. 1. Flow Diagram of the general process of training and evaluation of a

CNN Model for Plant Disease Detection.

B. Model Architectures

ResNet50V2

ResNet50V2 introduces modified residual connections,

allowing the network to learn residual functions more

efficiently by using pre-activation blocks. With this

modification, vanishing gradient problems can be further

mitigated by training very deep networks with better

gradient flow. ResNet50V2's residual connections facilitate

the training of extremely deep networks, leading to

enhanced performance on complex tasks. However, the

additional complexity introduced by these connections,

along with the pre-activation structure, can increase the

number of parameters, requiring careful consideration of

computational resources. [16,17,18]

VGG16

VGG16 is characterized by its simplicity, featuring 16

layers with small 3x3 convolutional filters. It follows a

straightforward design with multiple convolutional and

pooling layers, culminating in three fully connected layers

for classification. The uniform architecture simplifies

implementation and promotes feature reuse, making it

effective for various image classification tasks. VGG16

tends to be computationally intensive and requires a larger

number of parameters compared to some other architectures

[17,19].

InceptionV3

InceptionV3 introduces the concept of inception modules.

These modules utilize multiple filter sizes concurrently,

allowing the network to capture features at different scales.

The inception modules help in efficient information

extraction, reducing the risk of losing important details

during feature extraction. Although InceptionV3 excels in

feature extraction, it may have higher computational

requirements due to parallel processing in the inception

modules [22].

MobileNet

MobileNet is specifically designed for mobile and edge

devices, emphasizing lightweight structures. It uses

Depthwise separable convolution divides the convolution

process into two stages: pointwise convolution, which

aggregates the results, and depth-wise convolution, which

applies a filter to each input channel independently. This

factorization is perfect for embedded and mobile devices

since it minimizes computation and model size [23].

MobileNet is ideal for contexts with limited resources

because it strikes a compromise between model size and

accuracy.

C. Banana Dataset Description

The images utilized for this comparative analysis are of

diseased banana plants. A total of 11 different diseases are

incorporated in this dataset, with a total of 1887 images,

wherein about 100-200 images of each disease variety are

considered. This dataset was created by compiling images

from available open sources [25][27][28]. The dataset

consists of pre-augmented images as per the availability in

the respective source. The disease varieties considered are:

Black Sigatoka

Black Sigatoka, also known as black leaf streak, is caused

by the fungus Mycosphaerella fijiensis. It produces streaks

and spots on leaves that darken and spread, reducing

photosynthesis. Severe infections can lead to significant

yield losses and premature ripening of fruit [30]. Fig. 6

shows an example of a banana leaf infected with Black

Sigatoka disease.

Yellow Sigatoka

This fungal disease, also known as Sigatoka leaf spot,

caused by Pseudocercospora musicola, produces yellowish

streaks and spots on banana leaves. Like black Sigatoka but

generally less aggressive, it can still lead to reduced

photosynthetic activity and yield if not managed properly

[31]. Fig. 7 shows an example of banana leaf affected by

Yellow Sigatoka Disease.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 2. Architecture Diagram of ResNet50V2 [20]

Fig. 3. Architecture Diagram of VGG16 [21]

Fig. 4. Architecture Diagram of InceptionV3 [22]

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 5. Architecture Diagram of MobileNet [24]

Cordana

Cordana leaf spot, caused by the fungi Cordana musae

and C. johnstonii, results in oval to diamond-shaped pale

brown leaf spots, measuring up to 10 cm, appearing on the

upper surface of the leaves, often bordered by a yellow

edge. These spots frequently merge, damaging larger

sections of the leaf, which eventually turn brown and dry

out. On the underside, spores form in abundance, leading to

greyish-brown, hairy lesions [32]. Fig. 8 shows the banana

leaves infected with Cordana disease.

Pestalotiopsis

Pestalotiopsis is a fungal disease that causes leaf spots,

fruit rot, and crown rot. The pathogen can survive in plant

debris and soil, leading to recurring infections if not

managed. Infected tissues exhibit dark, necrotic spots with

concentric rings [33]. Fig. 9 shows banana leaves infected

with Pestalotiopsis disease.

Boron Deficiency

Symptoms of deficiency include reduced leaf size, leaf

curling, deformation of the leaf blade, white stripes

appearing across the veins on young leaves, thickened

secondary veins, and inhibited root and flower development

[34]. Fig. 10 shows an image of Boron deficiency in the

banana leaves.

Potassium Deficiency

The deficiency symptoms include yellowing or orange

discoloration of older leaves, leaf margin scorching, a

reduction in overall leaf area, and curving of the midribs. It

can also cause leaves to become congested, delay flower

initiation, and ultimately reduce both yield and quality [34].

Fig. 11 shows potassium deficiency in banana leaves.

Panama Disease

The soil-borne fungus Fusarium oxysporum f.sp. cubense

is the cause of Panama disease, also known as Fusarium

wilt. It infects the roots and vascular system, causing wilting

and yellowing of leaves. It's one of the most destructive

banana diseases, particularly for the Cavendish variety. [35].

Fig. 12 shows Panama disease on the stem of the banana

plant.

Bacterial Soft Rot

This disease is caused by bacteria such as the Erwinia

species. It leads to the softening and rotting of plant tissues,

primarily affecting the rhizome and pseudostem. Infected

areas emit a foul odor and turn mushy, causing the plant to

collapse [36]. Fig. 13 shows a banana stem affected by Soft

Rot disease.

Pseudostem Weevil

Pseudostem weevil (Odoiporus longicollis) larvae burrow

into the pseudostem of banana plants, causing internal

damage that weakens the plant and leads to collapse.

Symptoms include boreholes and oozing sap from the

pseudostem [37]. Fig. 14 shows Pseudostem Weevil disease

in bananas.

Fruit Scarring Beetle

The fruit scarring beetle damages banana fruits by feeding

on the peel, leaving scars and blemishes. This affects the

marketability of fruit. The beetles also lay eggs in the scars,

leading to further damage as larvae feed [38]. Fig. 15 shows

bananas infested by the Fruit Scarring Beetle.

Aphids

Aphids are tiny insects that feed on sap and can seriously

damage banana trees. By feeding on the sap of the plant,

they weaken it, causing growth retardation, yellowing of the

leaves, and possibly the spread of viral illnesses. They

secrete honeydew, which fosters sooty mold growth on

leaves [39]. Fig. 16 shows banana stems infested by Aphids.

TABLE I

DATASET DISTRIBUTION

S.No. Banana Disease Quantity

1. Black Sigatoka 200 Images

2. Yellow Sigatoka 200 Images

3. Cordana 162 Images

4. Pestalotiopsis 173 Images

5. Boron Deficiency 100 Images

6. Potassium Deficiency 200 Images

7. Panama 102 Images

8. Bacterial Soft Rot 200 Images

9. Pseudostem Weevil 200 Images

10. Fruit Scarring Beetle 150 Images

11. Aphids 200 Images

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 6. Banana Black Sigatoka Disease [25]

Fig. 7. Banana Yellow Sigatoka Disease [25]

Fig. 8. Banana Cordana Disease [27]

Fig. 9. Banana Pestalotiopsis Disease [27]

Fig. 10. Banana Boron Deficiency Disease [28][29]

Fig. 11. Banana Potassium Deficiency Disease [24]

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 12. Banana Panama Disease [24]

Fig. 13. Banana Bacterial Soft Rot Disease [24]

Fig. 14. Banana Pseudostem Weevil Disease [26]

Fig. 15. Banana Fruit Scarring Beetle Disease [24]

Fig. 16. Banana Aphids Disease [24][25]

III. METHODOLOGY

A. Prerequisites to Model Training

In preparing for banana disease detection, a robust and

well-curated dataset is crucial for effective model training.

Several key steps were taken to ensure the dataset's

consistency and usability. All images were renamed using a

standardized format (`banana_diseasename_index.jpg`),

embedding both the disease type and a unique identifier for

each image. This renaming convention not only helped in

labeling the dataset but also simplified the process of

generating corresponding labels. A CSV file was created

with two columns—filename and label—to map each image

to its associated disease, ensuring a clear structure for the

model's input. Additionally, all images were resized to

256x256 pixels, standardizing their dimensions and

preparing them for uniform processing in the neural

network.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

The training environment was established in Jupyter

Notebook (Python 3.11), using TensorFlow and Keras for

model development. These frameworks provide powerful

resources for creating, honing, and implementing deep

learning models, particularly for image classification

applications. Important libraries were also included, such as

`numpy` for numerical calculations and `pandas` for data

manipulation. Moreover, TensorFlow's image preprocessing

tools like `ImageDataGenerator` were employed to handle

real-time data augmentation, further enhancing the training

process by providing more variability in the data.

To streamline the training process, transfer learning

techniques were employed using pre-trained models such as

VGG16, ResNet50V2, InceptionV3, and MobileNet from

Keras applications. These models allowed the reuse of

learned features from large-scale datasets, speeding up the

training process and improving accuracy for banana disease

detection. The dataset, along with its labels, is loaded into

the Python environment, where the Pandas library is used to

ensure that each image’s full path is correctly mapped in the

DataFrame. This ensured seamless access to the images

during the model training phase.

B. Stratified Random Sampling

CNN models, such as MobileNet, InceptionV3,

ResNet50V2, and VGG16, have achieved remarkable

success in a variety of applications, ranging from image

classification to object detection. Despite their effectiveness,

these models often struggle with class imbalance in datasets,

which can lead to suboptimal performance.

Stratified random sampling is based on the concept of

dividing a population into distinct subgroups, or strata, and

then sampling from each subgroup proportionally. This

approach ensures that each subgroup is represented in the

sample according to its prevalence in the population.

Stratified random sampling is a statistical technique used to

ensure that different subgroups or strata within a population

are adequately represented in a sample. In machine learning,

stratified sampling is used to produce training and validation

datasets that preserve the original dataset's class distribution.

The current project implements a proportional stratified

random sampling approach wherein the size of the sample

from each stratum is proportional to the size of the stratum.

This can be mathematically expressed as ni = [Ni / N] × n,

where ni is the number of samples from stratum i, Ni be the

number of instances in the ith stratum, for i ∈ {1, 2, K}, N is

the total size of the population, n is the total sample size and

K be the number of strata (or classes).

This sampling technique was incorporated into the project

to address potential class imbalances and enhance the neural

network model's performance. The dataset, containing

image filenames and corresponding class labels, was first

loaded into a Pandas DataFrame. During the data splitting

phase, the `train_test_split` function from Scikit-learn was

used, with the `stratify` parameter set to the label column.

This ensured that the class distribution in both training and

validation sets matched the proportions in the original

dataset, preventing any skewed representation.

By maintaining the same class proportions in both the

training and validation datasets, the neural network receives

balanced input from all classes, leading to more accurate

and generalized learning. The class distribution in both sets

was verified post-split to confirm the effectiveness of the

stratified sampling process, ensuring that each class had

proportional representation like the overall dataset. The

differences in performance, with and without the use of

stratified random sampling, are shown in the results.

C. Implementation of Model Architectures and Additional

Data Augmentation

To leverage the powerful feature extraction capabilities of

all the different model architectures, a transfer learning

approach is introduced. Each model loaded is pre-trained on

the ImageNet dataset, excluding its top classification layer.

This provides a robust convolutional base capable of

extracting high-level features from input images.

The architecture was then augmented with custom fully

connected layers tailored to our specific classification task.

The process involved the following steps:

Global Average Pooling

The output of the convolutional base is fed into a Global

Average Pooling layer, which reduces the spatial

dimensions while retaining the salient features.

Fully Connected Layer:

Complex representations of the pooled features are

learned by adding a Dense layer with ReLU activation. The

units in the Dense Layer varied among 5 values.

Output Layer

Finally, a Dense layer with several units equal to the

number of classes in our dataset and a SoftMax activation

function was appended to produce a probability distribution

over class labels.

The weights of previously trained layers are frozen to

avoid overfitting and speed up the training process, which is

achieved by disabling the trainable attribute of each layer in

the base model. Consequently, only the weights of the newly

added fully connected layers are updated during the training

phase.

To enhance the diversity of the training dataset and

improve the generalization capability of the model, an

extensive data augmentation strategy using the

ImageDataGenerator class from Keras is employed. The

data augmentation parameters included:

1) Rescaling: Normalizing pixel values by scaling them to

the range [0, 1].

2) Shear Transformation: Applying shear transformations of

0.2.

3) Zoom Transformation: Applying zoom transformations of

0.2.

4) Horizontal Flipping: Randomly flipping images

horizontally.

These augmentations were applied to the training dataset

while ensuring that the validation set remained unaltered to

provide an unbiased evaluation of the models’ performance.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

D. Hyperparameter Tuning for Comparative Analysis

To analyze the performance of each model during the

training and validation phases on the Banana Disease

Detection Dataset, we performed hyperparameter tuning

across the four models and compared their performance

under various configurations. We focused on five key

hyperparameters: optimizer, learning rate, number of

epochs, optimizer, batch size, and the number of units in the

fully connected dense layer. Each of these hyperparameters

is tested with five distinct values, allowing thorough access

to the impact of different settings on the models' accuracy

and generalization ability. This approach helped in

identifying the optimal configuration for each model.

Optimizers adjust model parameters iteratively during

training to minimize a loss function, enabling neural

networks to learn from data. There are numerous optimizers

available for training machine learning models, each with

specific benefits and drawbacks. While some optimizers are

more general-purpose, others are more appropriate for

specific kinds of models or data [40]. In the current work,

five types of optimizers are utilized:

Stochastic Gradient Descent with Momentum

Stochastic Gradient Descent (SGD) uses a small,

randomly chosen portion of the data (a "mini batch") rather

than the complete dataset to update model parameters.

Adding a momentum term to SGD improves this and

enables the optimizer to stay on course even with a small

local gradient [40]. In this project, the momentum term has

been set to 0.9.

RMSProp

RMSProp is an optimization algorithm in which, instead

of accumulating the sum of squared gradients, it uses an

exponentially decaying average of these squares. This

approach helps prevent the learning rate from decaying too

quickly, leading to more stable updates and improved

convergence, particularly in non-stationary and noisy

settings. [40].

AdaDelta

AdaDelta is an optimization algorithm like RMSProp, but

it eliminates the need for a predefined learning rate. It is

more resilient and self-adjusting during training because it

dynamically adjusts the learning rate by determining the

update scale using an exponentially decaying average of the

gradients and the squared gradients. [40]. The learning rate

field was set to 1 while initializing this optimizer.

Adaptive Moment Estimation

The optimization approach known as Adaptive Moment

Estimation (Adam) combines ideas from SGD with

momentum and RMSProp. Similar to the RMSProp, it

computes the average of the gradients and squared gradients

with exponential decay. To speed up convergence and better

traverse the loss landscape, it also adds a momentum factor.

This makes Adam well-suited for handling sparse gradients

and noisy data [40].

Nesterov-Accelerated Adam

Nesterov-accelerated Adaptive Moment Estimation

(Nadam) is an optimization algorithm that merges the

benefits of Adam and Nesterov momentum [41]. It

incorporates the adaptive learning rate adjustments from

Adam with the look-ahead gradient updates from Nesterov

momentum, improving both convergence speed and

stability.

The size of weight updates during each optimization

process iteration is determined by the learning rate. The

step size taken in the direction of the negative gradient

during backpropagation is determined by this scalar. In

order to modify the weights, backpropagation entails

moving the error between the expected and actual outputs

backward through the network. While a high learning rate

may cause the model to overshoot and maybe miss the ideal

solution, a low learning rate may lead to slow convergence

and an increased danger of becoming caught in local

minima. For effective training and improved model

performance, the learning rate must be properly adjusted.

[42]. In our project, we have utilized these 5 values of

learning rate: 0.001, 0.0025, 0.005, 0.0075, and 0.01

A hyperparameter called the number of epochs

determines how many times the learning algorithm will run

through the whole training dataset. The internal parameters

of the model are updated using each sample in the training

set in each epoch. The model may underfit if it hasn't

learned enough from the data, or overfit if it has learnt the

training data too well and performs poorly on new, unknown

data. The number of epochs chosen can have an impact on

training. Keeping an eye on training metrics like accuracy

and loss might assist figure out how many epochs are right

to balance learning and generalization [43]. For training the

models, we considered the following five values for the

number of epochs based on standard practices and

requirements for training to effectively evaluate

performance and determine the optimal training duration.:

10, 20, 30, 40, and 50.

A hyperparameter called the batch size determines how

many samples must be processed before the internal

parameters of the model are modified. It affects training

speed and stability; larger batches offer more precise

gradient estimates but use more memory, while smaller

batches provide more frequent updates [43]. To investigate

a variety of possibilities and evaluate their effects on

training dynamics and model performance, five batch

sizes—4, 8, 16, 32, and 64—are employed.

A fully linked layer's output space size is determined by a

hyperparameter called the number of units in that layer [44].

More units enable the model to be more expressive and

maybe perform better, which impacts the model's ability to

learn complicated representations. However, increasing the

number of units can also raise the risk of overfitting if not

properly regularized. To evaluate its impact on model

performance, we tested the following five values for the

number of units in the fully connected layer: 256, 512, 1024,

2048 and 4096.

IV. RESULTS AND DISCUSSION

The training process is carried out using four models across

five different hyperparameter values. This helps in identifying

the most suitable hyperparameter settings and determines the

optimal number of epochs for each model, balancing

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

performance and computational efficiency. Details of key

metrics during each training session, including training

accuracy, loss, and time; validation accuracy, loss, and time;

testing accuracy, loss, and time; and precision, recall, and F1-

score, are being captured.

After evaluating the models, the results are presented in

Tables I, II, III, and IV. The optimal hyperparameter

configurations, along with their corresponding performance

metrics and the difference in performance made by Stratified

Random Sampling, are summarized in Table V.

Computational efficiency is determined by averaging the time

spent on training and testing for each session. To ensure the

robustness of the selected configurations, perform K-Fold

cross-validation with both 5 and 10 folds, further validating

their generalization capabilities. The results of these

validations, along with their performance metrics, are

included in Table V.

The differences in training and validation accuracy over

epochs for each model's top-performing configurations are

shown in Figs. 17, 18, 19, and 20. The differences in training

and validation loss throughout epochs are also displayed in

Figs. 21, 22, 23, and 24. The confusion matrices for each

model are displayed in Figs. 25, 26, 27, and 28. For every

model, we additionally examine the Receiver Operating

Characteristic (ROC) curve and its Area Under the Curve

(AUC) score. By graphing the true positive rate (TPR) versus

the false positive rate (FPR) across various thresholds, the

ROC curve illustrates a classifier's capacity to discriminate

between classes [47]. Figs. 29, 30, 31, and 32 present the

ROC-AUC curves for each model. In addition, Figs. 33, 34,

35, 36, and 37 plot the test accuracy versus each

hyperparameter used for fine-tuning the models. Figs. 38, 39,

40, 41, 42, 43, 44, and 45 depict the cross-validation

performances for 5 and 10 folds for each model.

To comprehensively assess the real-world performance of

the models on unseen data, a test dataset of 50 samples was

curated, including images from sources used during training,

additional samples sourced online, and images captured by

agricultural experts from Kerala Agricultural University.

None of these images had been used in training, ensuring a

valid evaluation, with each image meticulously verified by

experts to confirm the specific banana disease it represented.

The diversity of the test set, spanning multiple sources and

real-world conditions, enabled a robust assessment of the

models’ ability to generalize beyond training data. Along with

accuracy, the models are assessed using metrics related to

resource usage monitored during the testing process, which

include CPU, memory usage, and inference time. The

findings, which are compiled in Table VI, provide a thorough

understanding of the models' functionality. in both disease

classification accuracy and computational efficiency,

highlighting their practicality for diverse agricultural

environments.

A. Analysis of Model Performance Metrics

All the models demonstrated high values across the

performance metrics considered; however, distinct

differences emerged between them. Upon analyzing the

training results, ResNet50V2 achieved the highest accuracy

at 99.52%, closely followed by MobileNet, which reached

an impressive 99.47%, showing that it’s nearly on par with

ResNet50V2. InceptionV3 was also competitive, achieving

99.15% accuracy, while VGG16 trailed slightly with a still

strong 98.88% accuracy. The results from 5-Fold and 10-

Fold Cross Validation for all models matched the training

accuracy, indicating that each model performs well in

generalizing to various data subsets. The Precision, Recall,

and F1-score closely matched the training accuracies,

indicating balanced performance across all metrics. This

consistency suggests the models accurately classified

diseases while maintaining low false-positive and false-

negative rates, as reflected in their confusion matrices.

When tested on the inference dataset, the models showed

notable differences in performance. The best results were

obtained by MobileNet, which had 90.00% accuracy,

91.50% precision, 90.00% recall, and a 90.38% F1-score,

indicating its strong balance and suitability for real-time

disease detection with minimal errors. ResNet50V2

followed closely with an accuracy of 86.00%, precision of

86.48%, recall of 86.00%, and F1-score of 84.90%,

showcasing a slightly higher chance of missed detections.

InceptionV3 and VGG16 showed moderate results, with

InceptionV3 achieving 82.00% accuracy and maintaining a

reasonable balance across metrics, whereas VGG16

demonstrated 76.00% accuracy and higher precision but

lower recall, suggesting it may miss some true positives.

B. Analysis of Model Efficiency

Among the models tested, MobileNet stood out for its

significantly lower training and testing times compared to

VGG16, ResNet50V2, and InceptionV3, despite sharing

similar hyperparameters. During testing, MobileNet

exhibited the lowest CPU usage, averaging 45.56%, which

is advantageous for devices with limited processing power,

as it ensures smooth performance without overloading the

system. Additionally, MobileNet demonstrated the least

memory consumption, with an average of just 799.59 MB

during inference. This low memory footprint is particularly

beneficial for mobile devices with constrained memory,

enabling efficient real-time processing without straining

resources.

MobileNet's ability to complete inference on a batch of 50

samples in approximately 4.7 seconds made it the fastest

model in the test. Fast inference times are crucial for real-

time applications, such as disease detection in agricultural

settings, where quick results are essential for timely

decision-making. Overall, MobileNet's combination of

speed, low resource usage, and efficiency makes it an ideal

choice for real-time, resource-constrained environments.

C. Summary of Model Evaluation

MobileNet was the most effective model in terms of

computational performance and resource usage. Its

lightweight architecture, optimized for mobile deployment

[45], delivered the highest accuracy, precision, recall, and F1

score among the models tested. The model's minimal CPU

and memory usage, coupled with its fast inference time, make

it particularly well-suited for real-time disease detection on

mobile devices, where both speed and resource efficiency are

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 17. VGG16 Training and Validation Accuracy Plot

Fig. 18. InceptionV3 Training and Validation Accuracy Plot

Fig. 19. ResNet50V2 Training and Validation Accuracy Plot

Fig. 20. MobileNet Training and Validation Accuracy Plot

Fig. 21. VGG16 Training and Validation Loss Plot

Fig. 22. InceptionV3 Training and Validation Loss Plot

Fig. 23. ResNet50V2 Training and Validation Loss Plot

Fig. 24. MobileNet Training and Validation Loss Plot

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

TABLE II

PERFORMANCE OF VGG16

Training

Accuracy

Validation

Accuracy

Testing

Accuracy

Testing

Loss
Precision Recall

F1-

Score

No. of Epochs:

10

20

30

40

50

0.9397

0.9675

0.9728

0.9775

0.9808

0.9418

0.9577

0.9577

0.9709

0.9550

0.9629

0.9766

0.9856

0.9873

0.9856

0.1566

0.0829

0.0497

0.0432

0.0408

0.9644

0.9779

0.9864

0.9876

0.9864

0.9629

0.9766

0.9856

0.9872

0.9856

0.9630

0.9768

0.9857

0.9873

0.9857

Learning Rate:

0.001

0.0025

0.005

0.0075

0.01

0.9775

0.9695

0.9788

0.9795

0.9682

0.9709

0.9709

0.9762

0.9709

0.9630

0.9873

0.9809

0.9851

0.9830

0.9793

0.0432

0.0500

0.0455

0.0496

0.0648

0.9876

0.9813

0.9856

0.9839

0.9801

0.9872

0.9809

0.9851

0.9830

0.9793

0.9873

0.9809

0.9852

0.9831

0.9793

No. of units in

FC Layer:

256

512

1024

2048

4096

Batch Size:

0.9708

0.9775

0.9775

0.9848

0.9781

0.9524

0.9709

0.9656

0.9524

0.9577

0.9772

0.9873

0.9841

0.9815

0.9862

0.0720

0.0455

0.0550

0.0624

0.0477

0.9790

0.9876

0.9850

0.9831

0.9864

0.9772

0.9872

0.9841

0.9814

0.9862

0.9773

0.9873

0.9841

0.9817

0.9862

4

8

16

32

64

Optimizers:

Adam

Nadam

SGD

RMSProp

Adadelta

0.9755

0.9675

0.9775

0.9708

0.9649

0.9775

0.9642

0.8270

0.9655

0.9609

0.9683

0.9497

0.9709

0.9577

0.9497

0.9709

0.9550

0.8439

0.9392

0.9577

0.9888

0.9799

0.9873

0.9809

0.9777

0.9873

0.9851

0.8733

0.9693

0.9740

0.0388

0.0599

0.0455

0.0693

0.0916

0.0455

0.0449

0.5556

0.0884

0.0963

0.9889

0.9812

0.9876

0.9817

0.9782

0.9876

0.9855

0.8881

0.9725

0.9760

0.9888

0.9798

0.9872

0.9809

0.9777

0.9872

0.9851

0.8733

0.9692

0.9740

0.9888

0.9799

0.9873

0.9809

0.9777

0.9873

0.9852

0.8739

0.9689

0.9743

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

TABLE III

PERFORMANCE OF INCEPTIONV3

Training

Accuracy

Validation

Accuracy

Testing

Accuracy

Testing

Loss
Precision Recall

F1-

Score

No. of Epochs:

10

20

30

40

50

0.9470

0.9556

0.9596

0.9728

0.9781

0.9418

0.9497

0.9577

0.9683

0.9444

0.9756

0.9793

0.9852

0.9915

0.9867

0.0904

0.0595

0.0426

0.0281

0.0372

0.9768

0.9804

0.9857

0.9916

0.9867

0.9756

0.9793

0.9851

0.9915

0.9862

0.9757

0.9794

0.9851

0.9915

0.9862

Learning Rate:

0.001

0.0025

0.005

0.0075

0.01

0.9728

0.9476

0.8330

0.6428

0.4201

0.9683

0.9550

0.9497

0.9048

0.6640

0.9915

0.9852

0.9751

0.9300

0.6725

0.0281

0.0397

0.0753

0.2253

0.8429

0.9916

0.9858

0.9755

0.9351

0.6070

0.9915

0.9851

0.9750

0.9300

0.6724

0.9915

0.9852

0.9751

0.9299

0.6083

No. of units in

FC Layer:

256

512

1024

2048

4096

Batch Size:

4

8

16

32

64

Optimizers:

Adam

Nadam

SGD

RMSProp

Adadelta

0.9907

0.9728

0.9748

0.9622

0.9772

0.9556

0.9728

0.9728

0.9722

0.9907

0.9728

0.9636

0.9748

0.9649

0.9841

0.9683

0.9683

0.9524

0.9524

0.9735

0.9683

0.9524

0.9683

0.9524

0.9735

0.9683

0.9603

0.9630

0.9603

0.9709

0.9889

0.9915

0.9714

0.9772

0.9803

0.9889

0.9894

0.9915

0.9772

0.9803

0.9915

0.9868

0.9862

0.9883

0.9894

0.0252

0.0281

0.0683

0.0576

0.0538

0.0252

0.0683

0.0281

0.0576

0.0538

0.0281

0.0425

0.0417

0.0420

0.0293

0.9891

0.9916

0.9728

0.9781

0.9815

0.9891

0.9895

0.9916

0.9781

0.9815

0.9916

0.9875

0.9868

0.9887

0.9896

0.9888

0.9915

0.9713

0.9772

0.9803

0.9888

0.9894

0.9915

0.9772

0.9803

0.9915

0.9867

0.9862

0.9883

0.9894

0.9888

0.9915

0.9714

0.9772

0.9801

0.9888

0.9894

0.9915

0.9772

0.9801

0.9915

0.9868

0.9862

0.9883

0.9894

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

TABLE IV
PERFORMANCE OF RESNET50V2

Training

Accuracy

Validation

Accuracy

Testing

Accuracy

Testing

Loss
Precision Recall

F1-

Score

No. of Epochs:

10

20

30

40

50

0.9775

0.9775

0.9874

0.9874

0.9887

0.9524

0.9735

0.9656

0.9815

0.9841

0.9746

0.9873

0.9841

0.9942

0.9952

0.0619

0.0334

0.0460

0.0159

0.0189

0.9768

0.9875

0.9858

0.9942

0.9952

0.9745

0.9872

0.9841

0.9941

0.9952

0.9748

0.9872

0.9843

0.9941

0.9952

Learning Rate:

0.001

0.0025

0.005

0.0075

0.01

No. of units in

FC Layer:

256

512

1024

2048

4096

Batch Size:

4

8

16

32

64

Optimizers:

Adam

Nadam

SGD

RMSProp

Adadelta

0.9887

0.9828

0.9702

0.9344

0.9165

0.9887

0.9887

0.9881

0.9808

0.9861

0.9874

0.9755

0.9887

0.9861

0.9947

0.9887

0.9874

0.9914

0.9894

0.9934

0.9841

0.9788

0.9656

0.9524

0.9630

0.9788

0.9841

0.9841

0.9788

0.9815

0.9788

0.9815

0.9841

0.9735

0.9841

0.9841

0.9788

0.9762

0.9868

0.9815

0.9952

0.9889

0.9868

0.9815

0.9815

0.9931

0.9952

0.9936

0.9910

0.9915

0.9905

0.9905

0.9952

0.9915

0.9926

0.9952

0.9926

0.9931

0.9947

0.9936

0.0189

0.0276

0.0510

0.1000

0.0697

0.0188

0.0189

0.0190

0.0800

0.0776

0.0422

0.0307

0.0189

0.0233

0.0156

0.0189

0.0248

0.0215

0.0299

0.0201

0.9952

0.9897

0.9874

0.9826

0.9815

0.9932

0.9952

0.9936

0.9914

0.9917

0.9906

0.9906

0.9952

0.9920

0.9927

0.9952

0.9926

0.9932

0.9948

0.9937

0.9952

0.9888

0.9867

0.9814

0.9814

0.9931

0.9952

0.9936

0.9909

0.9915

0.9904

0.9904

0.9952

0.9915

0.9925

0.9952

0.9925

0.9931

0.9947

0.9936

0.9952

0.9888

0.9867

0.9815

0.9814

0.9931

0.9952

0.9936

0.9909

0.9915

0.9904

0.9903

0.9952

0.9915

0.9925

0.9952

0.9925

0.9931

0.9947

0.9936

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

TABLE V
PERFORMANCE OF MOBILENET

 Training

Accuracy

Validation

Accuracy

Testing

Accuracy
Testing Loss Precision Recall

F1-

Score

No. of Epochs:

10

20

30

40

50

0.9867

0.9742

0.9894

0.9937

0.9887

0.9656

0.9762

0.9894

0.9868

0.9815

0.9889

0.9873

0.9905

0.9947

0.9926

0.0319

0.0278

0.0295

0.0101

0.0184

0.9897

0.9877

0.9909

0.9948

0.9926

0.9888

0.9872

0.9904

0.9947

0.9925

0.9888

0.9872

0.9904

0.9947

0.9925

Learning Rate:

0.001

0.0025

0.005

0.0075

0.01

No. of units in

FC Layer:

256

512

1024

2048

4096

Batch Size:

4

8

16

32

64

Optimizers:

Adam

Nadam

SGD

RMSProp

Adadelta

0.9937

0.9689

0.9583

0.9185

0.8615

0.9867

0.9937

0.9861

0.9728

0.9828

0.9861

0.9874

0.9937

0.9881

0.9914

0.9937

0.9821

0.9887

0.9867

0.9934

0.9868

0.9683

0.9683

0.9656

0.9444

0.9683

0.9868

0.9841

0.9735

0.9709

0.9815

0.9735

0.9868

0.9815

0.9868

0.9868

0.9762

0.9735

0.9735

0.9841

0.9947

0.9883

0.9889

0.9830

0.9815

0.9915

0.9947

0.9936

0.9921

0.9883

0.9905

0.9894

0.9947

0.9905

0.9931

0.9947

0.9921

0.9894

0.9894

0.9878

0.0101

0.0271

0.0273

0.0477

0.0712

0.0175

0.0101

0.0209

0.0194

0.0598

0.0473

0.0267

0.0101

0.0203

0.0193

0.0101

0.0284

0.0281

0.0503

0.0412

0.9948

0.9891

0.9893

0.9837

0.9820

0.9917

0.9948

0.9936

0.9923

0.9885

0.9908

0.9894

0.9948

0.9910

0.9931

0.9948

0.9922

0.9899

0.9901

0.9887

0.9947

0.9883

0.9888

0.9830

0.9814

0.9915

0.9947

0.9936

0.9920

0.9883

0.9904

0.9894

0.9947

0.9904

0.9931

0.9947

0.9920

0.9894

0.9894

0.9878

0.9947

0.9884

0.9888

0.9831

0.9815

0.9915

0.9947

0.9936

0.9920

0.9882

0.9904

0.9893

0.9947

0.9905

0.9931

0.9947

0.9920

0.9894

0.9894

0.9877

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

TABLE VI
COMPARISON OF THE MODELS

 VGG16 InceptionV3 Resnet50V2 MobileNet

Best Hyperparameter configuration:

- Epochs:

- Optimizer:

- Learning Rate:

- Batch Size:

- No. of units in the FC layer:

40

Adam

0.001

4

512

40

Adam

0.001

16

512

50

Adam

0.001

16

512

40

Adam

0.001

16

512

Best performance corresponding to the best

Hyperparameter configuration without

Stratified Random Sampling:

- Accuracy

- Precision

- Recall

- F1-Score

0.8590

0.8591

0.8590

0.8590

0.8484

0.8484

0.8484

0.8484

0.8641

0.8643

0.8641

0.8641

0.8505

0.8506

0.8505

0.8505

Best performance corresponding to the best

Hyperparameter configuration with Stratified

Random Sampling:

- Accuracy

- Precision

- Recall

- F1-Score

Average time elapsed:

- Training Time

- Testing Time

5-Fold Cross-Validation Performance:

- Average Accuracy

- Average Precision

- Average Recall

- Average F1-Score

- Average Prediction Time

10-Fold Cross-Validation Performance:

- Average Accuracy

- Average Precision

- Average Recall

- Average F1-Score

- Average Prediction Time

0.9888

0.9889

0.9888

0.9888

5840.65 s

185.64 s

0.9889

0.9891

0.9888

0.9888

64.29 s

0.9888

0.9895

0.9888

0.9888

30.74 s

0.9915

0.9916

0.9915

0.9915

1935.46 s

41.56 s

0.9915

0.9918

0.9915

0.9915

48.39 s

0.9915

0.9922

0.9915

0.9915

22.96 s

0.9952

0.9952

0.9952

0.9952

2647.29 s

59.78 s

0.9952

0.9954

0.9952

0.9952

50.47 s

0.9952

0.9955

0.9952

0.9952

26.47 s

0.9947

0.9948

0.9947

0.9947

1309.79 s

22.81 s

0.9947

0.9948

0.9947

0.9947

32.01 s

0.9947

0.9949

0.9947

0.9947

15.91 s

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 25. VGG16 Confusion Matrix

Fig. 26. InceptionV3 Confusion Matrix

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 27. ResNet50V2 Confusion Matrix

Fig. 28. MobileNet Confusion Matrix

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 29. VGG16 ROC-AUC Plot

Fig. 30. InceptionV3 ROC-AUC Plot

Fig. 31. ResNet50V2 ROC-AUC Plot

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 32. MobileNet ROC-AUC Plot

Fig. 33. Comparison of Model Accuracy for different No. of Epochs

Fig. 34. Comparison of Model Accuracy for different Learning Rates

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 35. Comparison of Model Accuracy for different units in FC Layer

Fig. 36. Comparison of Model Accuracy for different Batch Sizes

Fig. 37. Comparison of Model Accuracy for different Optimizers

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 38. VGG16 5-Fold Cross Validation Plot

Fig. 39. InceptionV3 5-Fold Cross Validation Plot

Fig. 40. ResNet50V2 5-Fold Cross Validation Plot

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 41. MobileNet 5-Fold Cross Validation Plot

Fig. 42. VGG16 10-Fold Cross Validation Plot

Fig. 43. InceptionV3 10-Fold Cross Validation Plot

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

Fig. 44. ResNet50V2 10-Fold Cross Validation Plot

Fig. 45. MobileNet 10-Fold Cross Validation

critical. ResNet50V2 offered a solid balance of accuracy and

efficiency, though it lagged behind MobileNet in terms of

inference speed and memory consumption. While it was more

resource-efficient than VGG16 and InceptionV3, it still

proved heavier compared to the compact MobileNet.

InceptionV3 demonstrated improved efficiency over

VGG16, especially in accuracy and recall, but remained

resource-intensive, particularly in memory usage. Despite its

reasonable performance, it was less lightweight and efficient

than MobileNet, making it less suitable for environments with

strict resource constraints. VGG16 [46], while delivering

moderate accuracy, showed high resource consumption with

significant CPU and memory utilization during inference. Its

slower inference time further highlighted its limitations,

particularly for real-time, mobile-based applications where

fast results and low resource demands are essential.

V. CONCLUSION

The performance and efficiency evaluation of the four

deep learning models—MobileNet, ResNet50V2,

InceptionV3, and VGG16—has provided valuable insights

into their suitability for real-time disease detection in

resource-constrained environments. Among the models

tested, MobileNet emerged as the top performer, achieving

the highest balance of accuracy, precision, recall, and F1-

score, combined with exceptional efficiency in terms of

memory consumption, CPU usage, and inference speed.

With an accuracy of 90.00% on an unknown sample dataset

and a rapid inference time of approximately 4.7 seconds for

50 samples, MobileNet is particularly well-suited for

deployment on mobile devices and in agricultural settings,

where timely disease detection is critical.

In contrast, while ResNet50V2 offered competitive

accuracy, it lagged behind MobileNet in terms of resource

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

TABLE VII
PERFORMANCE OF MODELS FOR UNKNOWN DATA

efficiency and inference speed. Despite having respectable

accuracy and recall, InceptionV3 was less suitable for real-

time applications due to its increased resource usage and

lengthier inference durations. VGG16, despite its higher

precision, demonstrated slower inference times and

significant resource usage, highlighting its limitations in

mobile and resource-limited environments.

All things considered, MobileNet is the finest model for

real-time disease detection because of its high accuracy and

low resource usage, which makes it the ideal choice for

mobile deployment where speed and efficiency are crucial.

This capability enables the diagnosis of diseases in

agricultural areas in real time, particularly in rural locations

with low computational resources.

The ROC-AUC analysis further validates the

classification strength of all four models, each achieving an

AUC of 1.0, indicating perfect discrimination between

banana diseases across all thresholds on the current dataset.

However, such high performance may point to potential

overfitting or dataset biases, highlighting the importance of

testing under real-world conditions. Variations in lighting,

leaf texture, and unseen disease patterns could affect model

generalization. Tools like partial AUC (pAUC) are therefore

essential, focusing evaluation on meaningful False Positive

Rate (FPR) or True Positive Rate (TPR) ranges aligned with

real-life decision-making. While a high true positive rate

enables early and effective disease management, excessive

false positives can lead to unnecessary treatments and

increased costs.

Future development of disease detection systems can focus

on optimizing accessibility through a web-based platform,

enabling users to access the model on any internet-enabled

device without the need for installation or high-end hardware.

This would reduce hardware dependency and significantly

broaden the user base, particularly in rural and resource-

limited areas. Furthermore, more research into lightweight

 models and sophisticated optimization methods, like

knowledge distillation, pruning, and model quantization, can

further cut down on resource usage without sacrificing

accuracy. These methods would enhance the model's

suitability for deployment on mobile devices with limited

computational capabilities.

In parallel, incorporating adaptive learning techniques and

periodic model updates based on new data can help maintain

high detection accuracy over time. This approach could

address potential shifts in disease patterns or new

environmental conditions, ensuring that the model remains

relevant and effective. By focusing on these improvements,

the disease detection system can be made more efficient,

scalable, and accessible, offering a sustainable solution for

timely and accurate disease detection in agricultural settings

worldwide, empowering farmers and agriculturists to improve

crop health and yield.

REFERENCES

[1] International Food Policy Research Institute (IFPRI). "Agriculture:
Key to Economic Transformation, Food Security, and Nutrition."

IFPRI Blog, February 8, 2018,

https://www.ifpri.org/blog/agriculture-key-economic-transformation-
food-security-and-nutrition/.

[2] "Issues Paper: How to Feed the World in 2050." Food and Agriculture

Organization of the United Nations (FAO), October 12, 2009,
https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HL

EF2050_Global_Agriculture.pdf.

[3] Ristaino, Jean B., Pamela K. Anderson, Daniel P. Bebber, Kate A.
Brauman, Nik J. Cunniffe, Nina V. Fedoroff, Cambria Finegold et al.

"The persistent threat of emerging plant disease pandemics to global

food security." Proceedings of the National Academy of Sciences,
vol. 118, no. 23, p. e2022239118, 2021.

[4] Wang, Haiqing, Shuqi Shang, Dongwei Wang, Xiaoning He, Kai
Feng, and Hao Zhu. "Plant disease detection and classification

method based on the optimized lightweight YOLOv5 model."

Agriculture, vol. 12, no. 7, p. 931, 2022.
[5] American Phytopathological Society. "Plant Disease Diagnosis."

APSnet Education Center, Accessed June 16, 2024.

[6] Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
"Rich feature hierarchies for accurate object detection and semantic

segmentation." In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 580-587. 2014.

Metric

VGG16 InceptionV3 ResNet50V2 MobileNet

Accuracy

Precision

Recall

F1-Score

Time taken to predict

all 50 samples

Average CPU

Utilization

Average Memory

Utilization

0.7600

0.8146

0.7600

0.7679

8.8695 s

62.54 %

1013.57 MB

0.8200

0.8550

0.8200

0.8256

8.3103 s

52.28%

877.15 MB

0.8600

0.8648

0.8600

0.8490

8.3274 s

54.71%

882.13 MB

0.9000

0.9150

0.9000

0.9038

4.7034 s

45.56 %

799.59 MB

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

https://www.ifpri.org/blog/agriculture-key-economic-transformation-food-security-and-nutrition/
https://www.ifpri.org/blog/agriculture-key-economic-transformation-food-security-and-nutrition/
https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

[7] Bhatia, Gresha S., Pankaj Ahuja, Devendra Chaudhari, Sanket
Paratkar, and Akshaya Patil. "Plant disease detection using deep

learning." In Second International Conference on Computer Networks

and Communication Technologies: ICCNCT 2019, pp. 408-415.
Springer International Publishing, 2020.

[8] ClanX AI. "Convolutional Neural Networks (CNNs)." ClanX

Glossary, January 26, 2024, https://clanx.ai/glossary/convolutional-
neural-networks-cnns.

[9] Chowdhury, Muhammad EH, Tawsifur Rahman, Amith Khandakar,

Mohamed Arselene Ayari, Aftab Ullah Khan, Muhammad Salman
Khan, Nasser Al-Emadi, Mamun Bin Ibne Reaz, Mohammad Tariqul

Islam, and Sawal Hamid Md Ali. "Automatic and reliable leaf disease

detection using deep learning techniques." AgriEngineering, vol. 3,
no. 2, pp. 294-312, 2021.

[10] Ferentinos, Konstantinos P. "Deep learning models for plant disease

detection and diagnosis." Computers and electronics in agriculture,
vol. 145, pp. 311-318, 2018.

[11] Brahimi, Mohammed, Marko Arsenovic, Sohaib Laraba, Srdjan

Sladojevic, Kamel Boukhalfa, and Abdelouhab Moussaoui. "Deep
learning for plant diseases: detection and saliency map visualisation."

Human and machine learning: Visible, explainable, trustworthy and

transparent, pp. 93-117, 2018.
[12] A. Picon, P. Alvarez-Gila, A. Seitz, J. Ortiz-Barredo, and A.

Echazarra, "Deep Learning for Plant Disease Detection Using

Convolutional Neural Networks." AI, vol. 3, no. 2, pp. 231-248, 2020.
[13] Athiraja, A., and P. Vijayakumar. "Retracted article: Banana disease

diagnosis using computer vision and machine learning methods."
Journal of Ambient Intelligence and Humanized Computing, vol. 12,

no. 6, pp. 6537-6556, 2021.

[14] Sanga, Sophia, Victor Mero, Dina Machuve, and Davis Mwanganda.
"Mobile-based deep learning models for banana diseases detection."

arXiv preprint arXiv:2004.03718, 2020.

[15] Chowdhury, Muhammad EH, Tawsifur Rahman, Amith Khandakar,
Mohamed Arselene Ayari, Aftab Ullah Khan, Muhammad Salman

Khan, Nasser Al-Emadi, Mamun Bin Ibne Reaz, Mohammad Tariqul

Islam, and Sawal Hamid Md Ali. "Automatic and reliable leaf disease
detection using deep learning techniques." AgriEngineering, vol. 3,

no. 2, pp. 294-312, 2021.

[16] Ahamed, Md Khabir Uddin, Md Manowarul Islam, Md Ashraf Uddin,
Arnisha Akhter, Uzzal Kumar Acharjee, Bikash Kumar Paul, and

Mohammad Ali Moni. "DTLCx: an improved ResNet architecture to

classify normal and conventional pneumonia cases from COVID-19

instances with Grad-CAM-based superimposed visualization utilizing

chest X-ray images." Diagnostics, vol. 13, no. 3, p. 551, 2023.

[17] Mascarenhas, Sheldon, and Mukul Agarwal. "A comparison between
VGG16, VGG19 and ResNet50 architecture frameworks for Image

Classification." In 2021 International conference on disruptive

technologies for multi-disciplinary research and applications
(CENTCON), vol. 1, pp. 96-99. IEEE, 2021.

[18] Ali, Luqman, Fady Alnajjar, Hamad Al Jassmi, Munkhjargal Gocho,

Wasif Khan, and M. Adel Serhani. "Performance evaluation of deep
CNN-based crack detection and localization techniques for concrete

structures." Sensors, vol. 21, no. 5, p. 1688, 2021.

[19] Vaibhav Khandelwal. "The Architecture and Implementation of
VGG-16." Towards AI, August 17, 2022,

https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-

16-b050e5a5920b.
[20] Patel, Sitaram, and Nikhat Raza Khan. "A weighted-average-

ensembling based hybrid CNN model for improved COVID-19

detection.", 2023.
[21] Lekhuy Nguyen. "An Overview of VGG16 and NiN Models."

Medium, March 26, 2021, https://lekhuyen.medium.com/an-

overview-of-vgg16-and-nin-models-96e4bf398484.
[22] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,

and Zbigniew Wojna. "Rethinking the inception architecture for

computer vision." In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818-2826. 2016.

[23] Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
"Mobilenets: Efficient convolutional neural networks for mobile

vision applications." arXiv preprint arXiv:1704.04861, 2017.

[24] Deep Learning Bible. "2. Classification - Eng," Wikidocs.net, May
18, 2023, https://wikidocs.net/165429.

[25] Medhi, Epsita, and Nabamita Deb. "PSFD-Musa: A dataset of banana

plant, stem, fruit, leaf, and disease." Data in brief 43, p. 108427, 2022.
[26] Foottit, R. G., H. E. L. Maw, K. S. Pike, and R. H. Miller. "The

identity of Pentalonia nigronervosa Coquerel and P. caladii van der
Goot (Hemiptera: Aphididae) based on molecular and morphometric

analysis." Zootaxa 2358, no. 1, pp. 25-38, 2010.

[27] Arman, Shifat E., Md Abdullahil Baki Bhuiyan, Hasan Muhammad
Abdullah, Shariful Islam, Tahsin Tanha Chowdhury, and Md Arban

Hossain. "BananaLSD: A banana leaf images dataset for classification

of banana leaf diseases using machine learning." Data in Brief, vol.
50, p. 109608, 2023.

[28] Sunitha, P. "Images of nutrient deficient banana plant leaves."

Mendeley Data 1, 2022.
[29] "Deficiencies and Disorders-Banana-Boron," TNAU Agritech Portal,

January, 2022,

https://agritech.tnau.ac.in/horticulture/plant_nutri/banana_bor.html.
[30] Marin, Douglas H., Ronald A. Romero, Mauricio Guzmán, and

Turner B. Sutton. "Black Sigatoka: an increasing threat to banana

cultivation." Plant disease, vol. 87, no. 3, pp. 208-222, 2003.
[31] Anne V. “Sigatoka leaf spot.” ProMusa, July 15, 2020,

https://www.promusa.org/Sigatoka+leaf+spot.

[32] Queensland Government. “Tropical banana information kit.”, 1998,
http://era.daf.qld.gov.au/id/eprint/1656/6/5protrbn_part1.pdf.

[33] Maharachchikumbura, Sajeewa SN, Kevin D. Hyde, Johannes Z.

Groenewald, J. Xu, and Pedro W. Crous. "Pestalotiopsis revisited."
Studies in Mycology, vol. 79, no. 1, pp. 121-186, 2014.

[34] Satyagopal, K., S. N. Sushil, P. Jeyakumar, G. Shankar, O. P. Sharma,

S. K. Sain, D. R. Boina et al. "AESA based IPM package for banana."
Dept. Agricult. Cooperation, Ministry Agricult., Government India,

Nat. Inst. Plant Health Manage., Hyderabad, India, Tech. Rep, p. 46,

2014.
[35] Anne V. “Fusarium wilt of banana.” ProMusa, February 22, 2025,

https://www.promusa.org/Fusarium+wilt.
[36] Kenganal, M. A. L. L. I. K. A. R. J. U. N., Yusuf Ali Nimbaragi, and

G. S. Guruprasd. "Management of soft rot of banana caused by

Erwinia carotovora sub sp. Carotovora.", 2017.
[37] Padmanaban, B., and S. Sathiamoorthy. "The banana stem weevil

Odoiporus longicollis.", 1996.

[38] Sah, Shyam Babu, R. N. Gupta, Santosh Kumar, Tamoghna Saha, and
B. B. Singh. "Seasonal incidence of banana scarring beetle in organic

banana in Bihar." Annals of Plant Protection Sciences, vol. 30, no. 1,

pp. 54-60, 2022.
[39] Waterhouse, D. F., and K. R. Norris. "Pentalonia nigronervosa

Coquerel." Biological Control: Pacific Prospects, pp. 42-49, 1987.

[40] C. Jeeva. "Optimizers in Deep Learning." Scaler Topics, January 11,
2024, https://www.scaler.com/topics/deep-learning/optimizers-in-

deep-learning/.

[41] Dozat, Timothy. "Incorporating nesterov momentum into adam.",

2016.

[42] Gonsalves, Tad, and Jaychand Upadhyay. "Integrated deep learning

for self-driving robotic cars." In Artificial Intelligence for Future
Generation Robotics, pp. 93-118. Elsevier, 2021.

[43] J. Brownlee. "Difference Between a Batch and an Epoch in a Neural

Network." Machine Learning Mastery, August 15, 2022.
https://machinelearningmastery.com/difference-between-a-batch-and-

an-epoch/.

[44] "Dense Neural Networks: Understanding Their Structure and
Function." Data Scientist, March 5, 2024

https://datascientest.com/en/dense-neural-networks-understanding-

their-structure-and-function.
[45] Adedoja, Adedamola O., Pius A. Owolawi, Temitope Mapayi, and

Chunling Tu. "Intelligent mobile plant disease diagnostic system

using NASNet-mobile deep learning." IAENG International Journal
of Computer Science, vol. 49, no. 1, pp. 216-231, 2022.

[46] Yu, X. Q., X. R. Yao, and J. Gao. "Study on Plant Diseases and Insect

Pests Recognition Based on Deep Learning." IAENG International
Journal of Computer Science, vol. 52, no. 1, pp. 111-120, 2025.

[47] T. P. Alvin. "Demystifying the Receiver Operating Characteristic

(ROC) Curve." Towards AI, April 22, 2024,
https://pub.towardsai.net/demystifying-the-receiver-operating-

characteristic-roc-curve-0a509bb6f212.

Rushit R. Rivankar is a final student pursuing
B.Tech Honors in Computer and Communication

Engineering from the Manipal Institute of

Technology, Manipal, India, and will be receiving
his degree in 2025. His current research interests

include AI/ML, Deep Learning, Computer Vision,

and Data Science.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

https://clanx.ai/glossary/convolutional-neural-networks-cnns
https://clanx.ai/glossary/convolutional-neural-networks-cnns
https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b
https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b
https://lekhuyen.medium.com/an-overview-of-vgg16-and-nin-models-96e4bf398484
https://lekhuyen.medium.com/an-overview-of-vgg16-and-nin-models-96e4bf398484
https://wikidocs.net/165429
https://agritech.tnau.ac.in/horticulture/plant_nutri/banana_bor.html
https://www.promusa.org/Sigatoka+leaf+spot
http://era.daf.qld.gov.au/id/eprint/1656/6/5protrbn_part1.pdf
https://www.promusa.org/Fusarium+wilt
https://www.scaler.com/topics/deep-learning/optimizers-in-deep-learning/
https://www.scaler.com/topics/deep-learning/optimizers-in-deep-learning/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://datascientest.com/en/dense-neural-networks-understanding-their-structure-and-function
https://datascientest.com/en/dense-neural-networks-understanding-their-structure-and-function
https://pub.towardsai.net/demystifying-the-receiver-operating-characteristic-roc-curve-0a509bb6f212
https://pub.towardsai.net/demystifying-the-receiver-operating-characteristic-roc-curve-0a509bb6f212

Smitha N. Pai (Senior Member, IEEE) received
her bachelor’s degree from MCE, Hassan, and the

master’s and Ph.D. degrees from the Manipal

Institute of Technology (MIT), Manipal. She is
currently a Professor and the Associate Dean of

the School of Computer Engineering, MIT,

Manipal Academy of Higher Education. Her
current research interests include wireless sensor

networks, machine learning, and computer vision.

She has a good number of conferences and
journals to her credit in this area.

Abhishek Rhisheekesan received his BE degree

in Electronics from the Sardar Vallabhbhai
National Institute of Technology (SVNIT) and an

MS degree in Computer Science from Ira A.

Fulton Schools of Engineering, Arizona State
University. He was the Engineering Manager in

Graphics Architecture Labs at Intel, Bangalore.

Currently, he is the CEO and founder of aiRender
Technology and Healthstream. His research

interests include 3D graphics architecture, neural networks, plant disease

detection, video conferencing, holographics, and 3D compression.

Deekshitha received her bachelor's degree in

computer science from Poornaprajna College,
Udupi, and received an M.C.A. degree in Data

Science and Computer Application from Manipal

Institute of Technology, Manipal. She is currently
Head of the 3D Graphics Development Team at

aiRender Technology Pvt Ltd. Her current

research area includes game applications for 3D
rendering (by using game engines like Unity,

Blender, Unreal Engine 4.25), app development

using React and Redux, machine learning algorithms, artificial Intelligence,
and computer vision.

Lohith Prakash received his bachelor's degree in
computer applications from National Degree

College, Basavanagudi, and an M.C.A. degree in

web technology and computer applications from
PES University, Bangalore. He is currently the

Head of the Full Stack App Development Team at

aiRender Technology Pvt Ltd., and he is dedicated
to advancing real-time 3D video conferencing

solutions using Janus WebRTC. His current areas

of interest are machine learning algorithms,
artificial intelligence, and computer vision. His work combines technical

leadership with hands-on development, focusing on optimizing connection

stability, video quality, and spatial audio integration for an immersive
conferencing experience.

Sunil V. G completed his PhD in Agricultural

Extension from the Indian Agricultural Research
Institute, New Delhi. He now works at Kerala

Agricultural University as an Assistant Professor.

He is the creator of the mobile application named
"Farm Extension Manager" widely used in

agriculture. His area of interest includes knowledge

management and farmer innovation development.

Abel Philip Joseph is a pre-final-year student

pursuing a B.Tech in Computer Science and
Engineering from the Indian Institute of

Information Technology, Kottayam, India. He is
passionate about Deep Learning and Generative

AI, Large Language Models, and their easy

deployment over Cloud Services.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2809-2835

__

