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Attention Mechanism and Novel Inspection Heads
for Steel Surface Defect Detection
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Abstract—In modern industrial production, steel is one of the
most widely used basic materials, with its quality being directly
related to the performance and safety of many industries. A
method for detecting steel surface defects based on an improved
You Only Look Once 11 (YOLO11) approach is proposed to
address issues of low detection accuracy, slow detection speed,
and inadequate feature extraction found in traditional methods.
Firstly, to enhance the stability of model training and improve
feature extraction, we substitute the self-attention module of the
Inverted Residual Mobile Block (iRMB) with Cascaded Group
Attention (CGA). Secondly, the Large Kernel Attention Design
(LSKA) mechanism is introduced to optimize the backbone
network and enhance its capability to capture multi-scale
features. Finally, the L-Head inspection head is designed to
enhance bounding box localization accuracy and improve small
defect detection accuracy by implementing the concept of
Distribution Focal Loss (DFL) regression. Experimental results
on the NEU-DET defective dataset indicate that the improved
model achieves an accuracy of 77.1%, a mAP50 of 78.2%, and
an FPS of 312.5. In comparison to other models, the improved
model strikes a good balance between detection accuracy, com-
putational efficiency, and inference speed, successfully meeting
real-time speed requirements.

Index Terms—steel surface defect detection, YOLO11, atten-
tion mechanism, inspection head.

I. INTRODUCTION

ETECTING defects on steel surfaces is essential for

ensuring the quality of steel. Traditional inspection
methods have significant limitations, while the YOLO al-
gorithm, based on deep learning, offers new opportunities
in this area. Defects on steel surfaces affect not only the
visual quality of the material but can also lead to serious
issues during subsequent processing and use. These defects
can reduce structural strength, cause fatigue cracks to expand,
and ultimately threaten the reliability of the entire engineer-
ing structure. Therefore, efficient and accurate detection of
defects on steel surfaces is crucial for ensuring steel quality,
enhancing production efficiency, and maintaining safety in
industrial production.

Traditional methods for detecting surface defects in steel,
including manual visual inspection, eddy current detection,
and ultrasonic testing, have been effective. However, they
possess significant limitations. Manual visual inspection is
prone to subjective factors, which can lead to low efficiency
and the risk of overlooking issues. Eddy current and ultra-
sonic detection technologies require highly skilled inspectors,
and the equipment can be quite expensive. Additionally,
these methods may not be effective when detecting complex
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shapes or small defects. With the rapid advancement of
computer technology and artificial intelligence algorithms,
deep learning-based target detection technology offers new
solutions for detecting defects on steel surfaces. Among the
algorithms, the YOLO algorithm has emerged as a research
hotspot in this field due to its fast detection speed and high
accuracy.

However, most existing research focuses on applying the
YOLO algorithm in various fields, while there are relatively
few optimizations and improvements specifically for detect-
ing steel surface defects. In addition, the defects on steel
surfaces come in various forms and are influenced by light,
noise, and other factors, which impose greater demands on
the detection capabilities of the YOLO algorithm. Therefore,
exploring the application of the YOLO algorithm for de-
tecting steel surface defects has both theoretical value and
practical significance. Additionally, proposing an improve-
ment plan for addressing the existing issues is essential. For
example, Zhao et al. [1] proposed a YOLO model. It uses
Res2Net blocks to expand the receptive field and extract
multi-scale features, as different-sized defects can thus be
better detected. Additionally, a network is integrated, which
not only deepens the network but also reuses low-level fea-
tures to generate rich feature representations for identifying
small or subtle defects. Moreover, the model separates regres-
sion and classification tasks via decoupled heads, enabling
independent optimization and leading to a more accurate
detection of steel surface defects. Wang et al. [2] proposed
a network. In order to efficiently acquire the multi-scale
information associated with surface defects, the inspection
network features a specially designed multi-scale exploration
module that enhances detection performance. Additionally,
a spatial attention mechanism has been introduced to help
the network focus more on defect information. Ma et al. [3]
developed a model for detecting defects in steel. This model
employs a distinctive shunt feature network architecture and
a self-rectifying transmission allocation approach to boost its
performance. The network is specifically designed to handle
classification and localization tasks based on varying com-
putational needs. Additionally, it employs a self-correcting
criterion that incorporates adaptive sampling and dynamic
label assignment. This method makes the most of high-
quality samples. It aids in regulating the data distribution and
fine - tuning the training process. Lu et al. [4] proposed a
WSS-YOLO model, which is based on YOLOVS. This model
employs a dynamic non-monotonic focusing mechanism that
utilizes WIoU loss to concentrate on anchor frames of aver-
age quality, ultimately enhancing the overall performance of
the detector. Additionally, they designed a C2f-DSC module
that incorporates dynamic serpentine convolution, allowing
the model to adaptively adjust its sensory field. Xia et
al. [5] introduced an YOLOv5s model. A reparameterized
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large convolutional kernel C3 module was put forward with
the goal of expanding the model’s effective receptive field
and strengthening its feature extraction capabilities in the
face of complex texture interference. Moreover, a feature
fusion architecture incorporating a multi-path spatial pyramid
pooling module was constructed to accommodate the scale
changes of steel surface defects. Yuan et al. [6] proposed
for the detection of multi-category steel defects. This model
builds upon and improves the YOLOVS8n architecture. It
integrates the DCNV2 module to attain an adaptive receptive
field. Additionally, in the C2f module, a channel attention
mechanism is included. This mechanism emphasizes valu-
able features and, at the same time, reduces the quantity of
parameters. Li et al. [7] introduced a simulation teaching
approach that integrates deep learning. This approach spans
the entire spectrum, including data pre-treatment, model
training, validation assessment, and innovative refinement.
The objective is to bolster students’ grasp of Al technol-
ogy and elevate their proficiency in applying it to real-life
situations. Li et al. [8] put forward an efficient and highly
precise algorithm named DEW-YOLO for detecting surface
defects in strip steel. This algorithm capitalizes on the merits
of deformable convolutional networks (DCNs). It makes an
innovation to the C2F module in YOLOVS by introducing the
C2f_DCN module. This newly-introduced module is capable
of flexibly sampling features, thereby enhancing the model’s
capacity to learn and represent the characteristics of defects
with different sizes and shapes. Li et al. [9] developed
a dataset containing six types of surface defects in cold-
rolled steel strips specifically for defect detection. In order
to prevent overfitting, they augmented this dataset. Moreover,
they optimized the YOLO network to convert it into a fully
convolutional network. The improved network is composed
of 27 convolutional layers, providing a complete end-to-end
approach for detecting surface defects in steel strips.

The YOLO algorithm, a well-known deep learning model
for target detection, revolutionizes the traditional detection
process by integrating classification and localization into an
end-to-end, real-time target detection system. In the context
of steel surface defect detection, images of steel surfaces
are often significantly affected by lighting, contrast, and
other factors. As a result, conventional normalization meth-
ods struggle to respond effectively and fail to meet actual
detection needs. To address this issue, this paper introduces
an innovative steel surface defect detection method based on
an improved version of YOLO. For the backbone network,
this paper replaces the self-attentive module of iRMB in [10]
with the CGA module from [11], and provides a significant
enhancement to the C3K2 module. It effectively improves the
stability of the model during the training process, enabling
it to learn and extract features more robustly. To improve
the model’s ability to extract multi-scale features, this paper
skillfully introduces the LSKA attention mechanism into
the optimized Spatial Pyramid Pooling-Fast (SPPF) module.
This enhancement allows the model to more effectively
capture steel surface defect features across different scales,
significantly increasing the accuracy and comprehensiveness
of the detection process. This paper addresses the issue of
low detection accuracy in existing models by elaborately
designing the L-Head inspection head. This detection head
integrates a regression design concept based on the DFL,

which enhances its ability to accurately position bounding
boxes. It excels particularly in detecting small defects on
the surface of steel, significantly improving the detection
accuracy for these minor issues. This advancement provides
strong support for the precise control of steel surface quality.

In summary, the main contributions of this study are
summarized below:

(1) There are significant differences in lighting conditions,
contrast, and other factors in the images. To address this, we
replaced the self-attention module of the iRMB with CGA,
which enhances the model’s stability during training. This
change allows the model to learn and extract features more
effectively.

(2) To improve the model’s ability to extract features at
multiple scales, we introduce the LSKA attention mechanism
into SPPF. LSKA addresses the limitations of SPPF in
capturing multi-scale information for complex defects. It
accurately adjusts the feature weights for defects of various
sizes, allowing the model to effectively retain key details.
This is especially beneficial when detecting tiny defects,
as the enhanced small-scale feature weights enhance the
model’s performance.

(3) This paper addresses the issue of low detection accu-
racy in existing models by designing the L-Head inspection
head. This detection head integrates the DFL-based regres-
sion design concept, enabling precise localization of steel
surface defects. It is particularly effective in detecting small
defects, significantly improving detection accuracy for these
types of imperfections.

II. RELATED WORK

The technology for detecting defects on steel surfaces
has progressed alongside industrial advancements. Initially,
inspections relied heavily on manual visual evaluation. Over
time, techniques based on traditional image processing and
machine learning began to emerge. More recently, the rise of
deep learning technology has led to significant breakthroughs
in this area, particularly with the increasing application of the
YOLO algorithm for steel surface defect detection.

A. Traditional methods

In the past [12], detecting defects on steel surfaces pri-
marily depended on manual visual inspection and traditional
image processing methods, including machine learning tech-
niques. Manual inspection involves workers using their eyes
to directly examine the steel surface for defects such as
scratches, holes, and cracks. While this approach is flexible,
it is also inefficient and heavily influenced by the subjectivity
of the inspectors. Fatigue from long hours of work can lead
to oversight and errors in detection. For example, traditional
image processing techniques such as gray-scale transforma-
tion, filtering, and edge detection are commonly employed
to preprocess steel surface images and extract features. For
instance, Gaussian filtering is employed to eliminate image
noise, while the Canny operator is used to detect edges and
highlight defect contours. The identified defective regions are
subsequently isolated and recognized through morphological
operations. However, these methods struggle in complex
backgrounds and with tiny defects. Additionally, feature
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extraction often depends on numerous manual designs, which
can lack strong generalization capabilities.

Traditional machine learning methods rely on image pro-
cessing techniques that involve manually extracting features
such as texture and shape. These features are then used
with classifiers like Support Vector Machines (SVM) and
K-Nearest Neighbors (KNN) for defect classification. For
instance, when using SVM, it is crucial to carefully choose
the appropriate kernel function and parameters in order
to construct a hyperplane that can effectively differentiate
between normal and defective samples. Feature engineering
is challenging and struggles to address the various and
complex defects found on steel surfaces. Additionally, model
performance can be limited by the quality of features. For
example, Tang et al. [13] provided a comprehensive overview
of image processing algorithms used for detecting surface
defects in steel products. This includes steps such as image
preprocessing, region of interest (ROI) detection, segmen-
tation of ROI images, feature extraction and selection, and
classification of defects.

B. Detection method based on the YOLO algorithm

The YOLO algorithm is a well-established deep learning
model used for object detection. Unlike traditional detec-
tion methods that execute classification and localization in
separate steps, YOLO achieves real-time object detection
through an end-to-end approach [14]. This ability has at-
tracted considerable interest in the field of steel surface defect
detection. Numerous scholars have enhanced the YOLO
algorithm to satisfy the requirements of steel surface defect
detection. Li et al. [15] put forward an optimized network
featuring high-speed and high-precision performance without
augmenting the overall model size. Generally, adjustments
made to enhance the feature extraction capabilities of shallow
networks tend to have a negative impact on the model’s
inference speed. To overcome this challenge and maintain an
equilibrium between detection accuracy and speed, they inte-
grated an enhanced Fusion-Faster module into the YOLOvV7
backbone network. The module utilizes partial convolution
(PConv) as its core operator. By doing so, it not only
improves the feature extraction ability of the shallow network
but also ensures that the inference speed remains unaffected.
Guo et al. [16] presented an enhanced MSFT-YOLO model
derived from a single-stage detector. In this model, a TRANS
module, crafted based on the Transformer architecture, is
embedded in both the backbone network and the detection
head. Thanks to this, the model can blend local features
with global information. Additionally, it utilizes a multi-scale
feature fusion architecture that merges features at different
scales. This significantly enhances the detector’s adaptability
to targets of diverse sizes.

III. STEEL SURFACE DEFECT DETECTION IMPROVEMENT
METHODS

YOLO is a cutting-edge target detection algorithm that
has gained popularity in the field of computer vision due to
its speed and efficiency. YOLOv5, YOLOvS, and YOLO11
are part of the same technological development system.
Compared to the YOLOv8 model, YOLOI11 features a sig-
nificant adjustment at the module level, as it replaces the

C2F module with the C3K2 module. The C3K2 module
has a distinctive configuration of convolutional kernels and
connections, allowing the network to capture and integrate
feature information with greater accuracy. This characteris-
tic is extremely beneficial for subsequent target detection
tasks and other vision applications, and it is anticipated to
further enhance detection performance and the effectiveness
of visual task processing. An improved overall structure is
illustrated in Fig. 1.

A. C3k2-iRMB_CGA module

In the task of detecting defects on steel surfaces, there
are significant variations in lighting conditions and image
contrast, among other factors. Implementing a normalization
layer can help the model adapt to these variations more
effectively and enhance its generalization capability. One
core idea of the inverted residual block, iRMB, is to inte-
grate a lightweight Convolutional Neural Network (CNN)
architecture with a modeling structure based on the attention
mechanism, in order to create efficient mobile networks.
The iRMB builds upon the iRB for CNNs by adapting its
principles for attention-based models. It reevaluates the key
components of the Inverted Residual Block (IRB) and the
Transformer, aiming to create a unified approach. This design
focuses on maximizing the efficient use of computational
resources while achieving high accuracy, all while keeping
the model lightweight.

CGA enhances diversity in features fed to the attention
head, as illustrated in Fig. 2. CGA differs from traditional
self-attention by offering unique input segmentations for each
attention head and cascading the output features across these
heads. This method reduces computational redundancy in
multi-head attention and enhances the model’s capacity by
increasing network depth, leading to a more efficient and
powerful model. The CGA specifically divides the input
features into different sections, These are then allocated to
each attention head. Every head computes its respective self-
attention mapping. Subsequently, the outputs of all heads
are aggregated and projected back to the input dimension
via a linear layer. CGA enhances the model’s computational
efficiency without introducing extra parameters. Furthermore,
each head’s output is incorporated into the next head’s
input through a sequential process, progressively refining the
feature representation.

In this study, we enhance the C3k2 module by substituting
the self-attention module of iRMB with the CGA module,
as illustrated in Fig. 3. The improved model offers several
advantages: it enhances stability. Normalization accelerates
convergence, reduces internal covariate bias, and promotes
training stability. In the scenario of detecting defects on
steel surfaces, the normalization layer can help the model
better handle variations in lighting, contrast, and other fac-
tors, thereby enhancing its generalization ability. Secondly,
involves optimizing nonlinear feature extraction. This process
allows the model to learn more intricate feature representa-
tions. Because steel surface defect features often exhibit non-
linear characteristics, the activation function plays a crucial
role in helping the model capture these complex features,
ultimately enhancing the accuracy of defect detection.

The input data first passes through a 1x1 convolutional
layer, which adjusts the number of channels and integrates
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Fig. 2: Cascaded Group Attention.

information across channels to reduce subsequent computa-
tions. Next, the data enters a 3x3 deep convolutional layer,
where local features are efficiently extracted by convolving
each channel independently. Finally, the data goes through
another 1x1 convolutional layer to further adjust the channel
dimensions and integrate the features. After that, the output
from the second 1x1 convolutional layer is combined with
the output from the first 1x1 convolutional layer through a
skip connection. This approach helps to fuse different levels
of features and addresses the issue of gradient vanishing.
Finally, the fused features are processed through the CGA
cascade group attention module, where the attention mech-
anism assigns weights based on the significance of the fea-
tures. This enables the model to focus on the most important
features, thereby enhancing its expressive capabilities.

B. The SPPF-LSKA module

The SPPF module primarily achieves feature fusion
through maximum pooling operations at multiple scales.
However, steel surface defects exhibit a wide range of
intricate and diverse features. This complexity can make it
challenging for the module to effectively capture and fuse the
various types of multi-scale information present in complex
defect scenarios. When it comes to tiny defects, large-scale
pooling operations often result in the loss of important
details. On the other hand, for larger defects, small-scale
pooling struggles to effectively capture the overall features.
As a consequence, the final fused features fail to accurately
represent complex defect scenarios, which negatively impacts
detection accuracy.

Unlike traditional methods, the LSKA attention mecha-
nism applied to multi-scale feature integration, as illustrated
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in Fig. 4, can adaptively assign different weights to features
at various scales. This capability effectively enhances the
feature information that is crucial for defect detection. For in-
stance, when addressing small-sized defects, LSKA increases
the emphasis on small-scale features, prompting the model to
concentrate more on these details. Conversely, when handling
large-sized defects, it highlights large-scale features, enabling
the model to make more efficient and accurate judgments
when dealing with defects of varying sizes.

As shown in Fig. 5, the LSKA module is integrated into
the SPPF and constructed as the SPPF-LSKA module. In
this module, the original KxK convolution operation is
re-disassembled. The process begins with a decomposition
into a (2d — 1)x(2d — 1) depth convolution, a K/dxK/d
cavity depth convolution, and a 1x1 convolution. Next, both
the 2D depth convolution and the cavity convolution are
further refined and broken down into 1D horizontal and
vertical convolutions. Finally, these decomposed convolution
kernels are cascaded sequentially to complete the entire
computational process. This module can significantly en-
hance the effectiveness of multi-scale feature fusion. LSKA
can compensate for the shortcomings of SPPF in capturing
multi-scale information related to complex defects. It accu-
rately adjusts the feature weights for defects of different
sizes, allowing the model to effectively retain key details
when detecting small defects by enhancing the importance
of small-scale features. Conversely, when identifying large
defects, LSKA emphasizes large-scale features to capture
the overall characteristics in a comprehensive manner. This
fusion greatly enhances the model’s capability to identify
complex defects on steel surfaces. As a result, it significantly
improves detection accuracy and ensures the efficient and
precise execution of steel surface defect detection tasks. This
advancement provides more reliable technical support for
quality control in industrial steel production.

C. L-Head module

Small surface defects on steel can often be overlooked
during inspection. To address this issue, we designed the L-
Head inspection head using a DFL regression design. The
structure of the L-Head inspection head is depicted in Fig.
6. Firstly, the L-Head allows for more precise bounding box
positioning. The shapes and sizes of defects on the steel
surface exhibit diverse characteristics, and accurate bounding
box positioning is crucial for properly assessing the severity
of these defects. DFL redefines the bounding box regression
problem as a distribution learning problem. This approach
enables more precise localization of bounding boxes by
predicting the probability distribution for each potential lo-
cation. In comparison to traditional bounding box regression
methods, DFL offers improved accuracy in identifying the
boundaries of steel surface defects. The L-Head plays a
crucial role in enhancing the detection accuracy of small
defects. Its distribution modeling approach, known as DFL,
improves the model’s ability to identify small targets. When
it comes to detecting minor imperfections on steel surfaces,
the L-Head can more accurately predict both the location
and size of these defects, thanks to DFL. This significantly
boosts the overall detection accuracy for small defects.

IV. TESTS AND ANALYSIS
A. Datasets source

The dataset chosen for this study is the NEU-DET dataset,
an open-source resource provided by Northeastern Univer-
sity. This dataset is essential for researching surface defect
detection algorithms for steel plates. It encompasses a variety
of complex situations that are commonly encountered in
industrial production environments. This includes typical
types of steel surface defects such as Scratches, Patches,
Inclusions, Rolled-in_scale, Pitted_surface, and Cracking. As
illustrated in Fig. 7.

B. Test environment and parameter configuration

We implemented our environment with VSCODE, all run-
ning on Ubuntu. The software stack utilized included Python
3.10, PyTorch 2.2. The hyperparameter configurations for the
model are presented in Table I.

TABLE I: The configuration of our model.

Hyperparameter ~ Value
optimizer sgd
batch Size 32

epoch 200
weight Decay 0.005
learning rate 0.01

C. Model evaluation indexes

In this paper, we select several metrics for model eval-
uation, including Precision (P), Recall (R), mean Average
Precision (mAP), Frames Per Second (FPS), GFLPOs, and
Parameters. The optimal values for each metric are high-
lighted in bold in the table. Precision measures the proportion
of positive cases that the model predicts correctly, as indi-
cated in Eq. (1). Recall, assesses how well the model predicts
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actual positive cases, as shown in Eq. (2). Together, Precision
1 1

and Recall provide a comprehensive assessment of both the
accuracy and completeness of the model’s classification. The
mAP thoroughly evaluates the weighted average of precision
rates across various recall rates in target detection tasks. It
provides a detailed measure of the model’s overall perfor-
mance in each detection category. The calculation formula
can be found in Eq. (3).

Frames per second (FPS) indicates the number of frames
an algorithm processes in one second. It is a crucial metric
for assessing the efficiency and responsiveness of algo-
rithms in real-time applications. The calculation formula
can be found in Eq. (4). Giga Floating Point Operations
(GFLPOs) measures the computational load of the model
during operation, while parameters (Params) represent the
size of the model. Together, these two metrics offer insights
into the model’s complexity and resource requirements. By
evaluating performance from these different perspectives,
they provide valuable support for model optimization and
assessment.

ip
pP= 1
tp+ fp M
__tp
r= tp+ fn @)
1 n
mAP = - AP, 3)

=1

FPS =

= 4)
Ttotal Tpre + Tdet + Tpost

D. Comparative experiments with different models

To compare the efficiency of the improved algorithms
presented in this paper, we selected the two-stage algorithm
Faster R-CNN and the one-stage algorithms YOLOVSs and
YOLOvV6n for our comparison experiments. The results of
these experiments are summarized in Table II, and some
visualization results are displayed in Fig. 8.

To further investigate the model’s detection performance
in various scenarios, we conducted a systematic evaluation of
its effectiveness in identifying different types of steel surface
defects. The results are detailed in Table IV. This data visu-
alization emphasizes the model’s strengths in various defect
detection scenarios while clearly outlining its limitations.
These findings provide crucial insights for the subsequent
optimization and improvement of the model, serving as a
key foundation for enhancing its performance.

Our improved model, which incorporates the C3K2-
iRMB_CGA module, the SPPF-LSKA module, and the L-
Head module, demonstrates strong performance in terms
of accuracy. As shown in Table III, our model achieves
an accuracy of 77.1%. This is significantly higher than
the second-order algorithm, Faster R-CNN, which achieves
an accuracy of 67.4%. It also outperforms other first-order
algorithms, such as YOLOv8n, which has an accuracy of
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TABLE II: Comparison experiments of different models.

Models P R mAP50  mAP50-95  Params(M)  GFLOPs FPS
Faster R-CNN  0.674  0.685 0.722 0.407 43.5 183.5 46.8
YOLOvVS5s 0.755  0.732 0.730 0.432 59 24 259.4
YOLOvV6n 0.718  0.712 0.723 0.423 11.6 4.5 295.3
YOLOvV8n 0.749  0.758 0.757 0.435 8.1 3.0 218.7
YOLOV10n 0.696  0.688 0.713 0.417 6.7 2.7 245.2
YOLOI11 0.711  0.741 0.780 0.442 6.3 2.6 303.0
ours 0771 0.717 0.782 0.448 7.8 2.7 312.5

(b) Inclusion

(c) Patches (d) Pitted_surface

|
(f) Scratches

(e) Rolled-in_scale

Fig. 7: Steel surface defects.

74.9%. The C3K2-iRMB_CGA module enhances model sta-
bility and optimizes nonlinear feature extraction. The SPPF-
LSKA module compensates for the limitations of the original
SPPF module in capturing multi-scale information about
complex defects and can accurately adjust feature weights
for defects of various sizes. The L-Head module integrates a
regression design concept based on DFL, providing strong
capabilities for bounding box localization. The combined
effect of these modules significantly increases the model’s
accuracy in predicting positive samples, thereby reducing the
likelihood of misjudgment. Moreover, the R of our improved
model is 71.7c, which is slightly lower than YOLOv8n’s
recall of 75.8%. However, it remains at a high level and is
sufficient for actual detection purposes. Although the L-Head
module alters feature processing to some degree, which may
limit the extraction of recall-related features, the strengths
of the other modules compensate for this shortcoming. As
a result, the overall recall rate remains high. The mAP50

and mAP50-95 scores of 78.2% and 44.8% exceed those of
other algorithms. This improvement is due to enhancement
modules that ensure stable and accurate target detection,
while performing well across different overlap levels.

In terms of computational metrics, the GFLPOs for Faster-
RCNN reach as high as 183.5G, with the number of param-
eters totaling 43.5M. These figures are significantly higher
than those of other models, indicating that Faster-RCNN re-
quires substantial computational resources during operation.
In contrast, our improved model achieves GFLPOs of 7.8G
and has 2.7M parameters. While this is slightly more than
YOLOVSs, which has GFLPOs of 5.9G and 2.4M parameters,
our model demonstrates a clear advantage in computational
efficiency, meeting the demands of real-time detection.

Notably, the CGA mechanism in the C3K2-iRMB_CGA
module greatly enhances the model’s computational effi-
ciency without adding extra parameters. This optimization
is crucial in maintaining a balance between overall compu-
tational volume and efficiency.

In summary, our enhanced model attains an excellent equi-
librium between detection accuracy, computational efficiency
and inference speed, and has significant advantages over
other comparative models, with high application value and
potential in the field of target detection.

As shown in Fig. 8, YOLOI1 faces several detection
challenges. It has issues with repeated detections for surface
defects such as Crazing, Inclusion, and Patches. Additionally,
it misses detections for the Pitted Surface defect and misiden-
tifies defects like Rolled-in Scale and Scratches. These
problems stem from YOLO11’s unoptimized model structure,
which struggles to accommodate the complex and varied
characteristics of steel surface defects.And our enhanced
algorithm successfully identified all of them accurately.

While our model exhibits lower detection accuracy specif-
ically for the Rolled-in scale defect, it remains effective in
accurately detecting the target overall. It is important to note
that the accuracy for detecting other types of defects is signif-
icantly higher. This improved performance can be attributed
to the synergy between the modules, which enhances the
model’s ability to identify and locate a variety of steel surface
defects. This capability provides a strong assurance for the
quality inspection of steel surfaces.

E. Ablation experiments

In target detection, enhancing model performance typically
depends on the combined effectiveness of its individual com-
ponents. To thoroughly examine the specific effects of the
improved C3K2-iRMB_CGA module, the SPPF-LSKA, and
the L-Head module on the YOLO11 model’s performance,
we conducted model ablation experiments. The results of
these experiments are presented in Table III.
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TABLE III: Ablation experiments.

Yololl ~ C3K2-iRMB_CGA  SPPF-LSKA  L-Head p R mAP50  mAP50-95  FPS
v 0711 0741  0.780 0.442 303.0
v v 0729 0731  0.778 0.447 500.0
v v 0736 0742 0.764 0.444 250.0
v v 0725 0731  0.781 0.447 208.3
v v v 0714 0715 0771 0.437 934
v v v 0.677 0720  0.769 0.431 476.1
v v v 0.690 0729  0.774 0.443 84.7
v v v 0771 0717 0782 0.448 3125

Table III presents the results from a series of experiments performance.

conducted with the YOLOI11 model. The first set of ex-
periments serves as a benchmark using the YOLOI11 base
model without any additional components. This benchmark
achieved a P of 71.1%, a R of 74.1%, a mAP50 of 78.0%, a
mAP50-95 of 44.2%, and a processing speed of 303.0 FPS.

The introduction of the iRMB_CGA module leads to a
1.8% improvement in P and a 0.2% increase in mAP50-
95, despite a slight decline in R and mAP50. Notably, the
FPS improved significantly by 197. This enhancement is
primarily due to the CGA mechanism, which optimizes the
model’s computational efficiency without adding additional
parameters. When the SPPF-LSKA module is added alone,
the P increases by 2.5%, and the R rises by 0.1%. This
improvement occurs because the LSKA module effectively
compensates for the limitations of the SPPF in capturing
multi-scale information related to complex steel defects. By
accurately adjusting the feature weights for steel defects of
different sizes, the model can better preserve key details
when detecting small defects. The enhanced small-scale
feature weights contribute to improved detection accuracy.
In the experiment where the L-Head module was introduced
alone, the recall decreased by 1%. This may be due to the
fact that L-Head changes the feature processing and has some
limitations in extracting features related to target detection
recall. At the same time, the FPS was reduced due to the
fact that L-Head increased the computational complexity of
the model. However, it is noteworthy that the P, mAP50, and
mAP50-95 show a small improvement.

The final set of experiments includes all the enhanced
components. Although the recall rate decreased by 2.4%, the
precision rate improved significantly by 6%, along with slight
improvements in other indicators. In summary, the improved
method proposed in this paper outperforms the YOLO11 base
model in terms of overall performance. It not only enhances
the model’s detection accuracy but also optimizes detection
speed to a certain extent, allowing for more efficient and
accurate detection of steel surface defects.

As shown in Table IV, there is a significant difference
in the performance of the models for detecting steel surface
defects. Our improved model achieved the highest overall
performance, with a mAP of 78.2% and the top accuracy
in detecting Crazing, Pitted_surface, and Scratches defects,
with rates of 51.6%, 83.6%, and 96.8%, respectively. This
indicates a strong detection capability. The YOLO11 model
follows closely, with a mAP50 of 78.0%. It demonstrates a
clear advantage in detecting Inclusion, Patches, and Rolled-
in_scale defects, achieving accuracies of 88.7%, 93.9%, and
67.2%, respectively. In contrast, other models like Faster
R-CNN and YOLOv5s do not perform as well as these
two in terms of multi-class defect detection and overall

F. Comparative experiments with different detection heads

To validate the effectiveness of the proposed detection
head, L-Head, we selected several leading detection heads for
comparison, including LSDECD [17], LAWDS [18], dyHead
[19], and LSCD [20]. We conducted a comprehensive and
rigorous comparison experiment focused on key performance
indicators. The goal was to evaluate the performance of
these different detection heads from multiple perspectives,
including detection accuracy and inference speed. The results
are shown in Table V.

In Table V of the experimental results, the L-Head (ours)
achieves a P of 72.5%. This surpasses the performance of
other detection heads, including LSDECD at 69.5%, LAWDS
at 70.4%, LSCD at 70.5%, and dyHead at 72.3%. This
indicates that the L-Head has a high accuracy in predicting
positive samples. Regarding the R index, the L-Head reaches
73.1%, which is higher than other comparative detection
heads such as LSDECD at 64.5% and LAWDS at 62.5%.
This highlights its strong ability to recognize all positive
samples effectively.

In terms of mAP50, our L-Head achieved a value of
78.1%, which is significantly higher than LSDECD and
LSCD, both at 67.1%, and LAWDS at 67.8%. It is only
slightly lower than dyHead, which scored 77.4%. This
performance indicates that our detector head can detect
targets more stably and accurately when the Intersection over
Union (IoU) threshold is set at 0.5. When evaluating the
mAP50-95 metric, our L-Head scored 44.7%, surpassing the
performance of other detector heads. This suggests that it has
superior detection capabilities across various IoU threshold
ranges. Notably, our designed L-Head also achieved a de-
tection speed of 208.3 FPS, significantly higher than that of
other detector heads.

G. Comparison experiment between C3K2-iRMB_CGA and
C3k2-iRMB

To thoroughly explore the advantages of our improved
C3K2-iRMB_CGA module over the C3k2-iRMB module,
we conducted comparative experiments. The experimental
results are shown in Table VI.

From the experimental results in Table VI, our improved
module, C3K2-iRMB_CGA, achieves 72.9%, 73.1%, 77.8%,
and 44.7% in P, R, mAP50, and mAP50-95, respectively,
which is an improvement of 2.1%, 0.5%, 0.01%, and 0.02%,
respectively, compared to the C3k2-iRMB module. Notably,
the C3K2-iRMB_CGA module reaches 500 FPS, a 214.3
improvement over the C3k2-iRMB’s 285.7. This is because
the CGA module optimizes the computational efficiency of
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TABLE IV: Comparison of ours model with other typical target detection algorithms for different types of defects.

Model Crazing Inclusion  Patches  Pitted_surface  Rolled-in_scale  Scratches  mAP50
Faster R-CNN 0.432 0.793 0.851 0.774 0.595 0.884 0.772
YOLOV5s 0.443 0.792 0.870 0.796 0.613 0.869 0.730
YOLOv6n 0.429 0.765 0.860 0.818 0.585 0.880 0.723
YOLOVS8n 0.480 0.823 0.888 0.817 0.627 0.906 0.757
YOLOv10n 0.404 0.772 0.845 0.809 0.601 0.847 0.713
YOLOI11 0.502 0.887 0.939 0.724 0.672 0.957 0.780
ours 0.516 0.816 0.919 0.836 0.635 0.968 0.782

tches 0.79

blled—in_scale 0.54fp!led—In_

blled—in_

lled—in_scale 0.42

Grouth truth

YOLOLI11

Fig. 8: Visualization results of experiments comparing
different models.

Ours

the model and reduces computational redundancy in the
polytomous attention without adding additional parameters,
resulting in significantly faster model inference.

Overall, the C3K2-iRMB_CGA module exceeds the per-
formance of the C3k2-iRMB module in metrics such as P,

TABLE V: Comparison experiments of different
detection heads.

Models P R mAP50 mAPS50-95 FPS
LSDECD 0.695 0.645 0.671 0.378 23.4
LAWDS 0.704 0.625 0.678 0.386 44.6

dyHead 0.723 0.709 0.774 0.448 120.5

LSCD 0.705 0.642 0.671 0.375 25.1

L-Head(Ours) 0.725 0.731 0.781 0.447 208.3

TABLE VI: Comparison experiment between
C3K2-iRMB_CGA and C3k2-iRMB.

Models P R mAP50  mAP50-95 FPS
C3k2-iRMB 0.708 0.726 0.777 0.445 285.7
C3K2-iRMB_CGA 0.729 0.731 0.778 0.447 500

R, mAP50, mAP50-95, and FPS, indicating greater potential
for applications in detecting steel surface defects.

V. CONCLUSION

This paper explores the issue of detecting defects in steel
and proposes an improved method based on the YOLO11 al-
gorithm. Specifically, the self-attention module of the iRMB
has been replaced with the CGA module, and enhancements
have been made to the C3k2 module. improves the stability
of the model during training, enabling it to learn and extract
features more robustly. In addition, the LSKA attention
mechanism has been integrated into the SPPF module to
enhance its ability to capture multi-scale information related
to complex defects. This integration addresses the SPPF
module’s limitations in managing feature weights for defects
of varying sizes. As a result, the model can effectively
emphasize small-scale features, allowing for better detection
of tiny defects. Conversely, when larger defects are present,
the mechanism highlights large-scale features, ensuring that
the overall characteristics of these defects are thoroughly
captured. Additionally, the L-Head inspection head has been
designed with a focus on integrating the regression design
concept based on DFL. This design enhances its bounding
box positioning capability, allowing for accurate detection
of defects on steel surfaces, particularly small defects. As
a result, it significantly improves the precision in identi-
fying these small defects and provides robust support for
maintaining high steel surface quality. The experimental
results indicate that the enhanced algorithm is competitive,
achieving 77.1% of P, 78.2% of mAP50, and 44.8% of
mAP50-90 on the NEU-DET dataset, with a frame rate of
312.5 FPS.

Although the improved model already has some advan-
tages in computational efficiency, with the increasing demand
for real-time and resource-constrained scenarios in industrial
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production, model lightweighting is still of great significance.
In the future, we will explore more efficient lightweight
convolutional structures to further reduce the number of pa-
rameters and computation of the model without significantly
decreasing the detection accuracy, so that it can be operated
on resource-limited edge devices and expand the application
scope of the model.
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