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Abstract—This paper comprehensively analyzes the

approximation of wavelet expansions constructed from a Riesz
basis and addresses the unique challenges posed by the lack of
orthonormality. By analyzing the remainders of the wavelet
expansions, we prove that the integral of the remainders from
 to  converges to zero for infinitely differentiable
functions based on the Riesz basis,when the scale function
satisfies the partition of unity condition and the vanishing
moment conditions. This result applies to both the Shannon
and Meyer wavelets, because their scale functions satisfy the
conditions. For r -order differentiable functions with
monotonically decreasing r -th order derivatives, we derive the
approximation of the wavelet expansions and an explicit
estimation of convergence rate in the 1 ( )L R -norm through
careful analysis and refined bounding techniques, assuming
that the scale function has compact support and satisfies the
partition of unity condition. Furthermore, for infinitely
differentiable functions, we establish the exact convergence
rate in the 1 ( )L R -norm. We demonstrate that both the Haar
wavelet (orthogonal) and the linear B-spline wavelet
(non-orthogonal) achieve this convergence rate, as their scale
functions meet the required conditions. Our results generalize
the approximation of wavelet expansions to broader scenarios
and enhance their practical ut i l i ty in computational
applications.

Index Terms — wavelet expansions, Riesz basis,
approximation, convergence rate, non-orthogonal systems

I. INTRODUCTION
AVELET analysis, since the establishment of its
theoretical foundation, has been widely applied by

mathematicians and engineers in diverse fields including
numerical computation, signal detection, image processing,
noise filtering, and financial analysis [1]-[4]. In practical
applications, constructing wavelet expansions that achieve
precise approximation or quantified convergence rates is
often essential. Researchers have extensively studied the
approximation of wavelet expansions, particularly in the
context of orthonormal wavelet systems. A well-developed
theoretical framework has been established, yielding
numerous significant results. For instance, reference [5]
investigated the approximation of orthogonal wavelet
expansions for functions 2 ( )f L R under the assumption
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that the scale function  satisfies the decay condition
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where C and  are both positive constants. Under this
condition, the authors established pointwise and uniform
convergence of such expansions. Building on this work,
reference [6] derived the convergence rate of orthogonal
wavelet expansions, demonstrating that their approximation
error decays exponentially. Further refinements were
provided in [7]-[9], where a precise estimation for the
convergence rate was obtained.
In contrast, wavelet expansions constructed from a Riesz

basis which is generated by a scale function without
orthonormality present unique analytical challenges in
approximation theory. Currently, research on the
approximation of such non-orthogonal wavelet expansions
remains insufficient. Reference [9] investigated the
convergence of a class of non-orthogonal wavelet
expansions, proving their convergence in 2 ( )L R -norm and
providing the order of convergence rate.
This paper extends these investigations by analyzing the

approximation and the rate of convergence of wavelet
expansions constructed from Riesz basis in the 1 ( )L R -norm.
Specifically, we focus on functions that are r -order
differentiable with monotonically decreasing r -order
derivatives. Our results contribute to bridging the gap in the
theoretical understanding of non-orthogonal wavelet
systems and their practical applicability.

II. WAVELET EXPANSIONS BASED ON RIESZ BASIS
In what follows, we establish the necessary mathematical

framework and notation.
Let 2 ( )L R be the Hilbert space of all Lebesgue

measurable and square-integrable functions, equipped with
the inner product-induced norm

1
2 2
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( | ( ) | )f f x dx




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Let 1 ( )L R be the Banach space of all Lebesgue

measurable and absolutely integrable functions, with the
corresponding norm defined as

1
| ( ) |f f x dx




  .

Definition 1 [9] Assume that the sequence of closed
subspaces { }k k ZV  of 2 ( )L R satisf ies the following
conditions:

(i) 1k kV V  ( k Z );

(ii) 2 ( ) k
k

L R V




  and {0}kk
V




  ;
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(iii) kf V if and only if 1(2 ) kf V   ;
(iv) if kf V , ( ) kf n V   ( n Z );
(v) there exis ts 0V  such that { ( )}n Zn  

composes a Riesz basis of 0V ,
then we call  a scale function of 2 ( )L R , { }k k ZV  the
multiresolution analysis generated by the scale function  .
Let { }k k ZV  be a multiresolution analysis in 2 ( )L R

generated by a scale function  . Then the system

,{ (2 )}k
k n Zx n  forms a Riesz basis for 2 ( )L R . Below we

present four canonical examples of such Riesz bases.
Example 1(Shannon wavelet basis) The Shannon wavelet

is generated by the sinc-type scale function
sin( ) xx

x



 .

The corresponding family ,{ (2 )}k
k n Zx n  constitutes a

Riesz basis for 2 ( )L R .
Example 2(Meyer wavelet basis) The scale function 

of Meyer wavelet is explicitly defined through its Fourier
transform ̂ , which has compact support in the frequency
domain:
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where v is a smooth transition function satisfying

0, 0
( )

1, 1
x

v x
x


  
and

( ) (1 ) 1, [0,1]v x v x x    .
The corresponding family ,{ (2 )}k

k n Zx n  forms a Riesz

basis for 2 ( )L R .
Example 3 (Haar wavelet basis) The Haar wavelet

employs the characteristic function
1,0 1

( )
0,

x
x

elsewhere


 
 


,

which generates a Riesz basis ,{ (2 )}k
k n Zx n  for 2 ( )L R .

Example 4 (Linear B-spline Wavelet basis) The linear
B-spline scale function  is given by

, 0 2
( ) 1 ,1 2

0,

x x
x x x

elsewhere


 
   



.

This piecewise linear function yields a Riesz basis
,{ (2 )}k
k n Zx n  for 2 ( )L R .

For 1 ( )f L R , define the operators as

( )( ) ( ) (2 )
2

k
k k

n

nA f x f x n  ( )k Z . (1)

He re { }k k ZA  is a fami ly of opera to r s def ined on

1 ( )L R and equation (1) represents wavelet expansions
constructed from the Riesz basis ,{ (2 )}k

k n Zx n  .
In what follows, we will first analyze the approximation

of wavelet expansions (1) and then invest igate the
convergence rates.

III. APPROXIMATION OF THE INFINITE INTEGRALS OF
WAVELET EXPANSIONS

In this section, we analyze the approximation of the
wavelet expansions (1) by evaluating the integrals of
( )kA f f from  to  .
Theorem 1 Let 1 ( )f L R be an infinitely differentiable

function. If the scale function  satisfies the partition of
unity condition

( ) 1
n

x n   ( )x R (2)

and the vanishing moment conditions
( ) 0 ( 1,2, )jx x dx j




   , (3)

then the infinite integrals of the remainders of wavelet
expansions (1)

[( )( ) ( )]kA f x f x dx




converge to zero as k   .
Proof Starting from the partition of unity condition (2),

we express the difference as

( )( ) ( ) ( ) (2 ) ( ) (2 )
2

k k
k k

n n

nA f x f x f x n f x x n      

[ ( ) ( )] (2 )
2

k

k
n

nf f x x n   . (4)

Applying the Taylor’s expansion of f at
2k
n :
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( )
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j
k

j

k
j

nf nf x x
j
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Consequently, the infinite integrals from  to 

become
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From the vanishing moment conditions (3), we have
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where the vanishing moment conditions (3) ensure the
equality. Therefore,

[( )( ) ( )]kA f x f x dx




converge to zero as k   .
Remark 1 Theorem 1 establishes that under certain

conditions, the integrals of the remainders kf A f of
wavelet expansions (1) from  to  converge to zero
as k   .
Remark 2 (Approximation of the Shannon and Meyer

wave l e t s ) Con s i de r 1 ( )f L R to be an in f i n i t e l y
differentiable function. The scale functions of both the
Shannon wavelet (example 1) and the Meyer wavelet
(example 2) satisfy the partition of unity condition (2) and
the vanishing moment conditions (3). As a direct
consequence,

[( )( ) ( )]kA f x f x dx




converge to zero as k   . This implies that the integrals
of the remainders kf A f of wavelet expansions (1) from
 to  converge to zero as k   .

IV. APPROXIMATION OF THE WAVELET EXPANSIONS IN
1 ( )L R -NORM

In this section, we investigate the approximation and
convergence rate of the wavelet expansions (1) by analyzing
the 1 ( )L R -norm of kA f f .
Theorem 2 Let 1 2( ) ( )f L R L R  be an r -order

differentiable function ( 1)r  with ( )| |rf monotonically
decreasing. Suppose the scale function  has compact
support supp [ , ]a b  and satisfies the partition of unity
condition (2). Then the following error bound holds:

1kA f f
1

, , 0

( 1)
1 !2 2

r
j k j r k

k j k
j

C R C R
j r






  ,

in which
 

, | ( ) |
2

j
j k k

n

nC f ( 1, 2, , )j r  ,

| ( ) |b j
j a
R x x dx  ( 0,1, , 1)j r  .

Proof Starting from equation (4) in the proof of Theorem
1, we express and estimate the approximation error in the

1 ( )L R -norm:

1
| ( )( ) ( ) |k kA f f A f x f x dx
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Using Taylor’s formula with integral remainder of f at

2k
n :
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we bound the 1 ( )L R -norm of the approximation error as

follows:
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b rr

k k ka
n

x ns f s ds x dx    

1 2: I I  . (5)
We bound the term 1I :

 
1

1 ( 1)
1

1 | ( ) | | ( ) |
!2 2

r bj j

k j k a
j n

nI f x x dx
j







  

1
,

( 1)
1 !2

r
j k j

k j
j

C R
j






 , (6)

where
 

, | ( ) |
2

j
j k k

n

nC f ( 1, 2, , )j r  ,

| ( ) |b j
j a
R x x dx  ( 0,1, , 1)j r  .

Since the scale func t ion  has compact suppor t
supp [ , ]a b  , the following equations hold:

1
( ) ( ) ( )

b n

a n
n

x dx x dx x dx  
  

 
    

1 1

0 0
( ) ( )

n n
x n dx x n dx       .

From the partition of unity condit ion (2) , we have
1

0
( ) 1

n
x n dx   . Thus,

( )b

a
x dx 1 .

This confirms both the scale function  and | ( ) |jx x
( 0,1, , 1)j r  are integral on [ , ]a b .
We bound the term 2I :

 1 1
2 0

1 (1 ) | ( ) | | ( ) |
2 2 2

b rr

k k ka
n

x nI s f s x dsdx    

 1 1

0

1 [ ] [ ](1 ) | ( ) | | ( ) | .
2 2 2

b rr

k k ka
n

xs xs n xss f x dsdx  
    

Further simplification using the monotonicity of ( )| |rf
yields:

 1 1
2 0

1 [ ](1 ) | ( ) | | ( ) |
2 2

b rr

k ka
n

n xsI s f x dsdx 
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1 (1 ) | ( ) | | ( ) |
2 2
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k ka
n

ns f x dsdx   
1, 1

0
(1 ) | ( ) |

2
br k r

k a

C
s x dsdx  

, 0

2
r k

k

C R
r

 , (7)

where
 

, ( )
2

r
r k k

n

nC f , 0 | ( ) |b

a
R x dx  .

Combining the bounds (5)-(7) , we arrive at the total
approximation error:
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1kA f f
1

, , 0

( 1)
1 !2 2

r
j k j r k

k j k
j

C R C R
j r






  ,

in which
 

, | ( ) |
2

j
j k k

n

nC f ( 1, 2, , )j r  ,

| ( ) |b j
j a
R x x dx  ( 0,1, , 1)j r  .

Conclusion Let 1 2( ) ( )f L R L R  be an r -order
differentiable function ( 1)r  with ( )| |rf monotonically
decreasing. Assume the scale function  has the compact
support supp [ , ]a b  and satisfies the partition of unity
condition (2). Then the approximation error of the wavelet
expansions (1) is bounded by

1kA f f

1
21

, , 0

( 1)
1 !2 2

j
r

j k r k

k j k
j

C c C R
R

j r







  ,

in which
 

, | ( ) |
2

j
j k k

n

nC f ( 1, 2, , )j r  ,
1

2 2( | ( ) | )b

a
R x dx  , max{| |,| |}c a b .

Proof From Cauchy-Schwarz inequality, we derive
1 1

2 22 2| ( ) | ( ) ( | ( ) | )b b bj j

a a a
x x dx x dx x dx    

1
2 2( )c j

c
R x dx


 

1
2 2

0
2 ( )c jR x dx 

1
12
22

2 1

j
jcR Rc

j




 


, (8)

where
1

2 2( | ( ) | )b

a
R x dx  , max{| |,| |}c a b .

From Theorem 2, we derive

1kA f f

1
21

, , 0

( 1)
1 !2 2

j
r

j k r k

k j k
j

C c C R
R

j r






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in which
 

, | ( ) |
2

j
j k k

n

nC f ( 1, 2, , )j r  ,
1

2 2( | ( ) | )b

a
R x dx  , max{| |,| |}c a b .

Theorem 3 Let 1 2( ) ( )f L R L R  be an r -order
differentiable function ( 1)r  satisfying the following
conditions:
(1) ( )jf  1 ( )L R ( 1, 2, ,j   1)r  ;
(2) ( )| |rf is monotonically decreasing;

(3) rC   sup | ( ) |
2

r

k
k n

nf   .

If the scale function  has compact support supp 
[ , ]a b and satisfies the partition of unity condition (2),

then we bound the approximation error as

1kA f f
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r
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j
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



  ,
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R x x dx  ( 0,1, , 1)j r  .

Proof Under the conditions of ( ) 1 ( )jf L R ( 1, 2 ,j 

, 1)r  , the following limit can be expressed as:
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   
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k

j j
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
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     1 0 1

2 1 0
| ( ) | | ( ) | | ( ) |j j jf x dx f x dx f x dx 

 
     

 2

1
| ( ) |jf x dx  

 | ( ) |jf x dx


   ( 1, 2, , 1)j r  .

Consequently, the supremum is finite:
 1sup | ( ) |

2 2
j

j k k
k n

nC f   ( 1, 2, , 1)j r  .

Applying Theorem 2, we obtain the error bound

1kA f f
1

0

1 !2 2

r
j j r

kj k
j

C R C R
j r





  ,

in which
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ( 1, 2, , 1)j r  ,

| ( ) |b j
j a
R x x dx  ( 0,1, , 1)j r  .

Remark 1 The conclus ion of Theorem 3 can be
expressed in the following simplified form:

1kA f f
1( )
2k

O ,

where “O” depends on
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ( 1,j  2, , 1)r  ,

and
| ( ) |b j

j a
R x x dx  ( 0,1, , 1)j r  .

Remark 2 Theorem 3 establishes that the wavelet
expansions (1) based on Riesz basis converge to f in

1 ( )L R -norm as k   under the specified conditions.
Furthermore, Remark 1 demonstrates that the approximation

error decays exponentially with rate order 1( )
2k

O .

Remark 3 (Approximation of the Haar and linear
B-spline wavelets ) Let 1 2( ) ( )f L R L R  be an r -order
differentiable function ( 1)r  satisfying the following
conditions:
(4) ( )jf  1 ( )L R ( 1, 2, ,j   1)r  ;
(5) ( )| |rf is monotonically decreasing;

(6) rC   sup | ( ) |
2

r

k
k n

nf   .

Both the Haar wavelet (example 3) and the linear B-spline
wavelet (example 4) possess scale functions  with
compact support that satisfy the partition of unity condition
(2). This property ensures that the wavelet expansions (1)
converge to f with respect to the 1 ( )L R -norm as k  
and the approximation error decays exponentially with rate

1( )
2k

O under the specified conditions irrespective of the

orthogonality of the Riesz basis.
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Conclusion Let 1 2( ) ( )f L R L R  be an r -order
differentiable function ( 1)r  satisfying the following
conditions:
(1) ( )jf  1 ( )L R ( 1, 2, ,j   1)r  ;
(2) ( )| |rf is monotonically decreasing;

(3) rC   sup | ( ) |
2

r

k
k n

nf   .

If the scale function  has compact support supp 
[ , ]a b and satisfies the partition of unity condition (2),

then

1kA f f

1
21

0

1 !2 2

j
r

j r
kj k

j

C c C R
R

j r






  ,

in which
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ( 1, 2, , 1)j r  ,
1

2 2( | ( ) | )b

a
R x dx  , max{| |,| |}c a b .

Proo f The re s u l t i s ob t a i n ed by su b s t i t u t i n g
equation (8) into the conclusion of Theorem 3.
Theorem 4 Let 1 2( ) ( )f L R L R  be an infinitely

differentiable function. If the scale function  has
compact support supp [ , ]a b  and satisfies the partition
of unity condition (2) , then

+

1
1 ! 2

j j
k kj

j

C R
A f f

j





 


 ,

in which
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ,

| ( ) |b j
j a
R x x dx  ( 1, 2, )j   .

Pr o o f S i n c e 1 2( ) ( )f L R L R  i s a n i n f i n i t e l y
differentiable function, we apply the Taylor's expansion

of f at
2k
n :

 
+

0

( )
2( ) ( )

2 2 ! 2

j

k
j

k k k
j

nfx n xf
j





   .

From the partition of unity condition (2), we have

1

1 | [ ( ) ( )] ( ) |
2 2 2 2

b

k k k k ka
n

x n nA f f f f x dx   

 
+

1

( )1 2| ( ) ( ) |
2 ! 2

j

kb j

k ka
n j

nf x x dx
j






  

 
+

1

| ( ) |1 2 | ( ) |
2 ! 2

j

k b j

k kj a
n j

nf
x x dx

j









 

+

1 ! 2
j j

kj
j

C R
j








 ,

in which
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ,

| ( ) |b j
j a
R x x dx  ( 1, 2, )j   .

Conclusion Let 1 2( ) ( )f L R L R  be an infinitely
differentiable function. If the scale function  has
compact support supp [ , ]a b  and satisfies the partition
of unity condition (2) , then

1
2+

1
1 ! 2

j

j
k kj

j

C c
A f f R

j






 


 ,

in which
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ( 1, 2, )j   ,
1
2( | ( ) | )b

a
R x dx  , max{| |,| |}c a b .

Proof The result is derived through substitution of
equation (8) into the conclusion of Theorem 4.
Remark 1 (Approximation of Haar wavelet) Consider

1 ( )f L R  2 ( )L R to be an infini te ly different iable
function. The scale function  of Haar wavelet has
compact support [0,1) and satisfies the partition of unity
condition (2) . Observing

1
2( | ( ) | )b

a
R x dx 

1
1

2
0

( ) 1dx  ,
we obtain the approximation error bound:

1
2+

1
1 ! 2

j

j
k kj

j

C c
A f f

j






 


 ,

where
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ( 1, 2, )j   ,

max{| |,| |}c a b .
Remark 2 (Approximation of Linear B-spline wavelet)

For 1 ( )f L R 2 ( )L R that is an infinitely differentiable
function. The scale function  of linear B-spline wavelet
has compact [0, 2) and satisfies the partition of unity
condition (2) . Noting

1
2( | ( ) | )b

a
R x dx 

1
1 2

2
0 1

( ( 1) ) 1xdx x dx     ,
then

1
2+

1
1 ! 2

j

j
k kj

j

C c
A f f

j






 


 ,

in which
 1sup | ( ) |

2 2
j

j k k
k n

nC f  ( 1, 2, )j   ,

max{| |,| |}c a b .
Both the orthogonal Haar wavelet and non-orthogonal

linear B-spline wavelet satisfy the conditions of Theorem 4,
confirming that the wavelet expansions (1) achieve the
specified convergence rate regardless of orthogonality. This
equivalence demonstrates that the convergence behavior
established in Theorem 4 is fundamentally independent of
the wavelet system's orthogonality, with both types of
wavelets exhibiting identical convergence characteristics
when their scale functions meet the required conditions.

V. CONCLUSIONS
This study has sys temat ica l ly inves t iga ted the

approximation of the wavelet expansions (1) constructed
from a Riesz basis, establishing a unified framework for
both orthogonal and non-orthogonal systems. We proved
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that the integrals of the remainders of wavelet expansions (1)
from  to  converge to zero as k   under the
conditions of Theorem 1. This result holds for both the
Shannon and Meyer wavelets as their scale functions satisfy
the conditions of Theorem 1. The wavelet expansions (1)
converge to f in 1 ( )L R -norm as k   and explicit
decay rates are provided under the conditions of Theorem 3.
Additionally, the exact convergence rate in 1 ( )L R -norm is
obtained in Theorem 4. Notably, we derive a pioneering
r i go rous es t ima t ion fo r the conve rgence ra t e of
non-orthogonal wavelet expansions. Moreover, our results
demonstrate that the orthogonal wavelets (e.g., Haar) and
non-orthogonal wavelets (e.g., B-spline) achieve the same
convergence rates. This helps to bridge the long-standing
theoretical gap between orthogonal and non-orthogonal
wavelet systems.
This research significantly extends classical wavelet

approximation theory by establishing generalized error
bounds through derivative-dependent constants jC and

jR . The theoretical framework demonstrates particular
value in computational applications, where it validates the
effectiveness of non-orthogonal wavelets for signal
processing tasks requiring 1 ( )L R -convergence and adaptive
algorithms utilizing exponential decay properties for optimal
resolution selection. These contributions provide both
theoretical foundations and practical implementation
guidelines for wavelet-based computational methods.
Future research will focus on optimizing Riesz basis for

minimal support properties, extending the framework to
high-dimensional data compression, and integrating these
results with deep learning architectures. These proposed
developments promise to further bridge theoretical wavelet
analys is wi th emerging computat ional paradigms,
potentially yielding new tools for scientific computing
applications.
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