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Abstract—Accurate wheat yield prediction critically depends 

on the precise detection and counting of wheat spikes. 
Although machine vision has emerged as a promising solution 
for this task, challenges such as dense spike distributions, 
morphological variability, and interference from weeds 
continue to hinder the performance of existing methods. To 
address these issues, this study presents an enhanced version of 
the multi-object detection model RT-DETR, tailored for 
automated wheat spike detection and counting in images. A 
novel feature extraction module, FasterSEV2, is proposed by 
integrating the SENetV2 attention mechanism into the 
FasterNet architecture, replacing the original backbone 
convolution of RT-DETR. This modification significantly 
reduces redundancy and computational complexity. 
Furthermore, the RT-DETR encoder is replaced with 
RepGFPN, which effectively captures both local and global 
features of wheat spikes, thereby improving robustness to 
variations in size and morphology. The improved RT-DETR is 
also integrated with DeepSORT, enabling accurate tracking 
and counting of wheat spikes. To facilitate evaluation under 
challenging conditions, a meticulously annotated dataset of 
wheat spikes is constructed. Experimental results indicate that 
the proposed method achieves a mean Average Precision of 
94.5%, representing a 1.1% improvement over the original 
model. These findings demonstrate the effectiveness and 
practical applicability of the proposed approach for automated 
wheat spike counting in the context of precision agriculture. 

Index Terms—Wheat spike detection, precision 
agriculture, automatic counting, improved RT-DETR. 

I. INTRODUCTION

S one of the most important food crops worldwide, 
wheat plays a critical role in ensuring food security and 

promoting the sustainable development of agriculture [1]. 
Accurate counting of wheat spikes is vital for yield 
prediction, and can provide essential data for the adjustment 
of planting density in subsequent growing seasons. However, 
manual spike counting is impractical due to the small size 
and dense spatial distribution of wheat in field environments. 
With advancements in computer vision, the deployment of 
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fixed cameras and unmanned aerial vehicles (UAVs) for 
monitoring crop growth and maturity has become a central 
focus in precision agriculture research. Recent studies have 
explored image-based wheat spike counting methods and 
their application in agricultural settings [2][3]. 

Traditional approaches to automatic wheat spike counting 
typically rely on the extraction of handcrafted features such 
as shape [4], texture [5], and color [6], followed by the use 
of trained classifiers to identify and count spikes [7][8][9]. 
Although these methods may achieve acceptable 
performance under controlled conditions, their effectiveness 
diminishes in diverse field environments and across varying 
growth stages, where visual differences substantially 
increase the rates of both missed and false detections. 
Moreover, the selection of appropriate features often 
requires extensive empirical experimentation and analysis, 
limiting the scalability and robustness of such methods [10]. 
In recent years, advances in deep learning have significantly 
improved computer vision performance, with convolutional 
neural network (CNN) [11]-based object detection 
frameworks—such as the YOLO [12][13][14] and R-
CNN [15][16][17] families—receiving substantial attention 
for wheat spike recognition. Wu et al. [18] achieved 
automated spike counting by optimizing the YOLOv7 model, 
while Li et al. [19] enhanced detection efficiency by 
integrating Faster R-CNN with RetinaNet. Despite the real-
time inference capabilities of YOLO-based models, these 
architectures continue to face notable challenges in 
accurately detecting densely distributed wheat spikes 
characterized by chromatic and morphological variability. In 
particular, YOLO-based approaches often exhibit reduced 
performance under partial occlusion and show limited 
robustness in distinguishing spikes from visually similar 
background elements, such as weeds. Although R-CNN 
variants typically offer higher detection precision, they 
impose considerable computational overhead due to their 
region proposal mechanisms, especially when applied to 
high-resolution agricultural imagery with complex 
backgrounds. Alternative approaches have also been 
explored. Sadeghi-Tehran et al. [20] applied superpixel 
segmentation using linear iterative clustering (LIC) in 
conjunction with CNN-based feature modeling, while Wang 
et al. [21] proposed a fully convolutional network (FCN) 
architecture that integrates Harris corner-based feature 
extraction. Despite these advancements, existing methods 
consistently encounter high error rates under challenging 
conditions such as spike overlap, weed interference, and 
variations in illumination—factors that pose significant 
obstacles to the reliable deployment of these models in real-
world agricultural settings. 
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Fig 1 The examples of wheat spike images 

TABLE I 
DIVISION OF THE DATASET 

Training set Validation set Test set Total 

GWHD 3093 368 840 4301

Self-made 406 102 206 714

Total 3499 408 1046 5015

Accurately counting wheat spikes across an entire field in 
agricultural monitoring is crucial, necessitating methods that 
prevent duplication or omission. Video-based approaches 
are preferred over static image-based techniques for their 
comprehensive and dynamic tracking capabilities over large 
areas. These video-based tracking methods, previously 
utilized for fruit counting in diverse crops, have been 
increasingly employed in tracking wheat spike. Recent 
studies have predominantly utilized YOLO-based models as 
object detectors in conjunction with Deep SORT as the 
tracking algorithm for spike tracking and counting in wheat. 

In order to enhance applicability in agricultural settings, 
this study combines Deep SORT with an upgraded version 
of the Real-time Object Detection model (RT-DETR) 
known as DETRs Beat YOLOs. RT-DETR, renowned for its 
efficiency in multi-object detection tasks, strikes a favorable 
balance between speed and accuracy. Nevertheless, 
deploying the original RT-DETR in real-world agricultural 
conditions is hindered by challenges like dense spike 
distribution, weed interference, and phenotypic variations 
across growth stages. To address these challenges, two 
targeted enhancements to the RT-DETR architecture are 
proposed.  

(1) Firstly, a novel feature extraction module named
FasterSEV2 is introduced to capture global information and 
local details of wheat spikes efficiently while minimizing 
computational burden. FasterSEV2 integrates the SENetV2 
into the FasterNet architecture. (2) Secondly, the backbone 
block of RT-DETR is replaced with the FasterSEV2 module 
to decrease false and missed detection rates, especially in 
scenarios involving occluded wheat spikes and weed 
interference. (3) Additionally, the RT-DETR encoder is 
substituted with the RepGFPN module, a multi-scale fusion  
module, to integrate detailed low-level features with high-
level semantic information. This modification broadens the  

model's adaptability to diverse wheat fields characterized by 
significant variations in spike colors and shapes. 

II. EXPERIMENTAL DATA

The publicly accessible Global Wheat Head Detection 
Dataset (GWHD) [29] is employed to ensure impartial 
training and assessment of the proposed model. This dataset 
comprises information from various wheat cultivation areas 
worldwide, encompassing over 3,000 high-resolution 
images, each with a resolution of 1024 × 1024 pixels. 
Standardization has been applied to all original images, 
involving center-preserving cropping to 1024 × 1024 pixel 
regions. 

To enhance the dataset's generalization capacity and adapt 
it to practical applications in wheat fields, we construct a 
dataset comprising challenging images of wheat spikes. 
Image acquisition was conducted using a fixed Sony α7R IV 
full-frame camera, equipped with a 35mm prime lens, for 
vertical overhead shooting at a height of 1.5 meters. The 
high-resolution sensor (9506 × 6336 pixels) is used to 
capture images during three critical growth stages of wheat: 
the milking, wax-ripening, and full-ripening stages. The data 
includes some challenging scenes, such as dense wheat 
spikes, changes in illumination, and weed interference.  

A significant amount of manual labor was dedicated to 
annotating wheat spike regions in all images to preprocess 
the data for training deep learning models for wheat 
spike detection. Fig 1 shows typical samples from the 
two datasets: the first row depicts samples from the 
GWHD dataset, and the second row shows samples from 
the self-made dataset. These samples illustrate the 
variety and complexity of the wheat spike scenes. 
The dataset's comprehensive composition and statistics 
are outlined in Table 1. 
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Fig 2 Overall framework of the wheat spike counting model

III. MODE

This study introduces a novel Transformer-based network 
designed for wheat spike counting by enhancing RT-DETR, 
a high-performing multi-object detection model. The 
network architecture, depicted in Fig 2 consists of three 
main components: the Backbone, RepGFPN, and Decoder. 
Initially, the SENetV2 attention mechanism is incorporated 
into the partial convolutional structure of FasterNet to create 
a new backbone module named FasterSEV2. The wheat 
images are passed through the improved backbone network 
for feature extraction. The feature maps from the last three 
layers are then fed into RepGFPN for feature fusion. Finally, 
the decoder completes the detection process. This module 
replaces the original backbone in RT-DETR, effectively 
reducing computational redundancy while improving the 
network's capacity to capture both local details and global 
contextual information of wheat spikes. This adjustment 
helps alleviate false positives and missed detections, 
particularly in scenarios involving partial occlusion or 
interference from weeds. Subsequently, the encoder of RT-
DETR is substituted with the RepGFPN module to facilitate 
efficient multi-scale feature fusion, thereby enhancing 
detection performance across various wheat maturity stages, 
such as the milk, dough, and full ripening phases. Finally, 
the integrated feature maps are inputted into the decoder for 
prediction. 

A. Wheat spike feature extraction module FasterSEV2
In wheat fields, spikes are typically small and densely

distributed, often leading to occlusion by surrounding 
foliage. Moreover, the visual similarity between weeds and 
wheat spikes presents additional challenges, frequently 
resulting in false positives and missed detections. In real-
world agricultural scenarios, ensuring high detection 
efficiency is essential for the practical deployment of the 
model. 

The Backbone of RT-DETR utilizes the conventional 
convolutional architecture ResNet18. In ResNet18, 
convolution is applied across all channels of the input 
feature map, resulting in high computational complexity. 
The ResNet18 is replaced with FasterNet, which is better 

suited to meet the real-time requirements of wheat spike 
counting. Partial convolution (PConv), a core component of  
FasterNet, applies a regular convolution to only a part of the 
input channels for spatial feature extraction and leaves the 
remaining channels untouched, thereby significantly 
reducing unnecessary computation and memory access. 
Although FasterNet excels in inference speed and 
computational efficiency, it encounters challenges in 
detecting wheat spikes, particularly in the face of weed 
interference. To address these issues, the attention module 
SENetV2 is incorporated into FasterNet, resulting in the 
creation of a new feature extraction module termed 
FasterSEV2. This integration enhances the model's ability to 
capture wheat spike features, thereby improving its 
performance in wheat spike detection tasks. 

The architecture of FasterSEV2 is shown in Fig 3 Firstly, 
partial convolution (PConv) operates on the channels of the 
input feature map, where c represents the total number of 
channels. In contrast to traditional convolution that 
processes all c channels, PConv significantly reduces 
redundant computations and memory access. Following 
PConv, two pointwise convolution (PWConv) operations are 
applied. The PConv+PWConv structure effectively 
integrates information across all channels, creating a T-
shaped convolution architecture that emphasizes central 
features [30]. Then, the SENetV2 module is incorporated 
into the last convolutional layer of FasterNet. SENetV2 
enhances feature expression by introducing an aggregated 
dense layer that employs a multi-branch convolutional 
architecture. Specifically, after standard convolution, the 
output undergoes an activation operation, which is realized 
through two fully connected layers that utilize two 1×1 
convolutional layers to compute channel-wise weights. The 
aggregated result is then passed through another convolution, 
producing a new feature map. This process strengthens the 
model's ability to capture complex inter-channel 
dependencies, improving the extraction of both local details 
and global features of the wheat spikes. 

This integration significantly reduces false positives 
and missed detection, particularly in cases of partial 
occlusion of wheat spikes or weed interference.
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Fig 3 Overall architecture of FasterSEV2 

Fig 4 Structure of the fusion module  

B. Multi-scale feature fusion of wheat spikes based on
RepGFPN

Significant variations in the color, size, and morphology 
of wheat spikes occur across different maturity stages (i.e., 
milk, wax, and full maturity). Concurrently, the color of the 
straw and leaves also evolves with crop development. For 
instance, during the milk stage, the spikes, straw, and leaves 
exhibit a gradual transition from green to yellow. By full 
maturity, these components adopt a golden hue, and the 
grain size of the wheat spikes becomes noticeably smaller 
than in earlier stages. These dynamic visual changes present 
substantial challenges for accurate wheat spike detection. 

The encoder in the original RT-DETR model 
predominantly focuses on large and prominent targets 
during feature extraction, limiting its ability to capture the 
fine-grained details of smaller wheat spikes. To address this 
limitation and enhance the model’s capacity to represent the 
distinctive characteristics of wheat spikes, the original 
encoder is replaced with the Re-parameterized Generalized  

Feature Pyramid Network (RepGFPN). RepGFPN 
employs a feature pyramid structure to extract multi-scale 
features and integrates a heavily parameterized 
convolutional design along with a multi-scale feature 
aggregation mechanism to effectively fuse information 
across different feature levels. This enhancement 
significantly improves the model’s ability to detect wheat 
spikes of varying sizes and shapes under complex field 
conditions. 

The re-parameterized convolution simplifies complex 
multi-branch convolutional structures into a more efficient 
single-branch convolution during inference. In the training 
phase, multiple convolutional branches are employed to 
capture fine-grained features of wheat spikes across 
different scales and orientations, enabling the network to 
learn more diverse and informative representations. 
Branches with larger convolutional kernels are responsible 
for capturing global shape and positional cues, whereas 
branches  with  smaller  kernels  focus  on  edge  details  and  
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Fig 5 The framework of object tracking 

textural patterns. During inference, these branches are 
merged into a single, re-parameterized convolutional 
operation, which significantly reduces computational 
complexity while preserving the model’s feature extraction 
capabilities. Additionally, the multi-scale feature 
aggregation mechanism is designed to integrate features 
from multiple spatial resolutions effectively. RepGFPN 
fuses low-level spatial details with high-level semantic 
representations to construct a more comprehensive and 
robust feature map. By attending to features across multiple 
scales, RepGFPN enhances the model’s ability to accurately 
localize and delineate wheat spikes of varying sizes and 
shapes.  

The Fusion block, as illustrated in Fig 4 integrates 
multiple 1×1 convolutional layers with re-parameterized 
convolutions to enhance multi-scale feature representation. 
Initially, feature maps are processed in parallel branches. In 
the upper branch, a 1×1 convolution is directly applied, and 
its output is forwarded to the concatenation stage. In the 
lower branch, a sequence of 1×1 followed by 3×3 
convolutions is employed to extract more complex spatial 
features. Both branches aim to reduce the dimensionality of 
the input feature maps. Subsequently, the outputs of the two 
branches are concatenated and passed through an additional 
1×1 convolution to fuse the information, resulting in 
enhanced multi-scale feature representations. 

C. Wheat spike Tracking and Counting
During the capture of wheat spikes in field conditions,

instances of missed frames or overlapping regions between 
individual images may occur. As a result, relying solely on 
object detection can lead to duplicate or missed counts. To 
address this issue, the integration of object tracking 
algorithms is proposed. Multi-Object Tracking (MOT) aims 
to track multiple targets across consecutive video frames by 
assigning each detected object a unique identity (ID), 
thereby ensuring consistent identification and tracking  
throughout the video sequence. Among the existing tracking  

algorithms, DeepSORT has been widely adopted for spike  
counting tasks. Previous studies have demonstrated that 
DeepSORT effectively reduces duplicate and missed counts 
by combining spatial and appearance features. Accordingly, 
DeepSORT is employed in this study as the tracking 
algorithm for wheat spikes. The proposed wheat spike 
tracking pipeline is illustrated in Fig 5. Specifically, the 
improved RT-DETR model is first applied to perform object 
detection and generate bounding boxes for wheat spikes in 
each frame. Subsequently, DeepSORT is used to predict 
object trajectories and associate detections across frames, 
assigning unique IDs to each tracked spike. This approach 
facilitates real-time, accurate counting and robust tracking 
across sequential frames. 

Due to the partial occlusion of wheat spikes and camera 
motion, individual spikes may repeatedly appear within the 
detection range across different frames, leading to ID loss or 
switching. This results in duplicate or missed counts. To 
address these issues, a virtual fixed counting line is 
established in each video frame, and a multi-frame cross-
line counting strategy combined with a multi-frame 
confirmation mechanism is employed to ensure accurate 
spike counting [24]. As illustrated in Fig 6 ,a virtual 
counting line is placed in the central region of the video 
frame to delineate two counting zones, namely Area A and 
Area B. A spike is considered to have crossed the virtual 
line and entered Area A if its center pixel coordinates in 
Area B are greater than or equal to the pixel coordinates of 
the line in the current frame, and subsequently, the center 
coordinates fall below the line in future frames. When a 
spike is partially located in both areas (i.e., straddling the 
virtual line), the count is not immediately incremented. 
Instead, the spike is continuously tracked across successive 
frames, and the count is increased by one only when the 
entire spike has completely crossed the line into Area A. 
This approach reduces false counts caused by partial 
visibility or motion blur and enhances counting precision. 
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Fig 6 Multi-frame Cross-line Counting Diagram 

IV RESULTS & DISCUSSION 

A. Experiment Details
All experiments were conducted on a Windows 11

operating system, utilizing an Intel® Core i7-13700H 
processor and an NVIDIA GeForce RTX 4060 Laptop GPU. 
The software environment comprised Python 3.8 as the 
programming language, PyTorch 11.1 as the deep learning 
framework, and CUDA 11.2 for GPU-accelerated 
computation. The training parameters were set as follows: 
an initial learning rate (lr) of 0.0001, a momentum of 0.9, 
and a weight decay of 0.0001. 

To comprehensively assess the performance of the 
proposed model, several widely used evaluation metrics 
were employed, including Precision, Recall, F1-score, and 
mean Average Precision (mAP). Let TP denote the number 
of true positives (positive instances correctly identified), TN 
the number of true negatives (negative instances correctly 
identified), FP the number of false positives (negative 
instances incorrectly identified as positive), and FN the 
number of false negatives (positive instances incorrectly 
identified as negative). The evaluation metrics are computed 
as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்௉

்௉ାி௉
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
  ሺ2ሻ

𝐹1 ൌ 2 ൈ
௉௥௘௖௜௦௜௢௡ൈோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
           ሺ3ሻ

Precision measures the accuracy of the model in the 
positive prediction, and Recall reflects the model's ability to 
identify positive samples, and F1-score provides a more 
comprehensive assessment of the model's performance. 

Mean Average Precision (mAP) refers to the average 
precision at different thresholds, considering both the 
detection accuracy and localization precision: 

𝑚𝐴𝑃 ൌ
ଵ

௡
∑ 𝐴𝑃௝    ሺ4ሻ௡
௝ୀଵ

where 𝐴𝑃 ൌ ׬ 𝑝 ⋅ 𝑟
ଵ
଴

𝑑𝑟  represents the area under the 

Precision-Recall curve for one category, and n denotes the 

number of categories. This study employs mAP50 to assess  
the model. mAP50 denotes the mAP value when the 
threshold of IOU (Intersection over Union) is set at 0.5, IOU 
is defined as: 

஺௥௘௔ ௢௙ ௨௡௜௢௡𝐼𝑂𝑈 ൌ ஺௥௘௔ ௢௙ ௢௩௘௥௟௔௣  (5) 

The IOU is calculated as a ratio of the area of overlap to 
the area of the union. The prediction results are considered 
correct when IOU≥0.5. 

 

B. Convergence of the model
The performance of the proposed model was

comprehensively evaluated by analyzing the trends of key 
evaluation metrics and loss functions during training.  Fig 7 
(a)a) illustrates that Precisio Recall, F1-score, and mAP50
exhibited rapid increments with training epochs, followed
by gradual stabilization, indicating successful model
convergence.  Notably, mAP50 peaked at approximately
0.97, showcasing the model's precise object localization
capability.  The Recall curve consistently outperformed the
Precision curve, underscoring the model's effective target
retrieval and wheat spike detection.  The F1-score,
balancing Precision and Recall, stabilized at around 0.93,
affirming the model's sustained high accuracy and
completeness in detection.

Fig 7 (b) depicts the variations in loss functions, 
specifically cls_loss and giou_loss, throughout the training 
and validation processes. Each of the four loss curves 
displayed a consistent decrease, indicative of continuous 
optimization throughout training. Both training and 
validation loss trends closely mirrored each other, 
suggesting strong generalization capabilities of the model 
and the absence of overfitting issues.
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Fig 7 Evaluation metrics and loss values with the number of iterations

TABLE II 
ABLATION EXPERIMENTAL RESULTS 

FasterNet SENetV2 RepGFPN Precision Recall mAP50 Param GFlops 

90.5% 90.2% 93.4% 20.1M 58.08 
√ 90.9% 90.5% 93.6% 16.8M 50.66 
√ √ 91.2% 90.4% 94.0% 17.1M 50.67 
√ √ √ 91.9% 91.1% 94.5% 22.2M 64.4 

Fig 8 Heatmap of RT-DETR and the proposed method
Original image RT-DETR Ours

(a)evaluation metrcics (b)loss
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C. Ablation experiments
An in-depth ablation study was conducted to analyze the 

effects of FasterNet, SENetV2, and RepGFPN modules on 
wheat spike detection performance.  The baseline model, 
lacking these modules, achieves 90.5% Precision, 90.2% 
Recall, and 93.4% mAP50, with 20.1M parameters and 
58.08 GFLOPs.  Introducing FasterNet as a lightweight 
backbone reduces parameters to 16.8M and GFLOPs to 
50.66, enhancing detection performance with a slight 
increase in Precision and Recall by .4% and .3%, 
respectively.  This affirms FasterNet's role in accelerating 
inference and improving feature representation. 
The integration of SENetV2 significantly boosts model 

accuracy, with Precision increasing to 91.2% and mAP50 to 
94.%. These enhancements indicate that SENetV2 
effectively recalibrates channel-wise feature responses, 
improving the model's capacity to differentiate between 
wheat spikes and background, thereby reducing false 
positives. While Recall exhibits minor fluctuations, the 
overall trend suggests enhanced classification reliability.  
Upon incorporating RepGFPN, the comprehensive model 

achieves peak performance, with Precision, Recall, and 
mAP50 reaching 91.9%, 91.1%, and 94.5%, respectively. 
Particularly noteworthy is the .9% Recall enhancement over 
the SENetV2-enhanced version, underscoring RepGFPN's 
superior ability to capture detailed spatial information 
critical for detecting closely packed or partially obscured 
wheat spikes. The marginal increase in parameter count and 
computational load (22.2M, 64.4 GFLOPs) is justified by 
the substantial improvements in accuracy.  
In conclusion, the ablation results highlight the distinct 

contributions of each module to the overall performance. 
FasterNet ensures lightweight and efficient processing, 
SENetV2 enhances feature selection, and RepGFPN 
improves spatial fusion and Recall. The amalgamation of all 
three components yields a well-balanced architecture that 
upholds high detection accuracy while maintaining 
computational efficiency, rendering it well-suited for 
practical applications in precision agriculture. 

Fig 9 Parameters and mAP50 after embedding the submodule 

Fig 8 displays heatmaps visualizing attention patterns 
from the baseline RT-DETR model and the proposed model 
across different challenging samples: the first row shows a 
sample with dense wheat spikes; the second row, a sample 

under low light; and the third row, a sample with highly 
similar (or confounding) weeds. The RT-DETR model 
exhibits dispersed and inaccurate attention allocation, 
frequently confusing background elements like weeds or soil 
with wheat spikes, especially in complex field settings. In 
contrast, the proposed model exhibits enhanced precision in 
identifying key wheat spike regions, with focused and 
consistent attention in relevant areas. The heatmaps reveal 
that the improved model consistently emphasizes genuine 
spike structures while suppressing irrelevant features like 
overlapping leaves or stems. This suggests that the proposed 
network has superior feature discrimination capabilities and 
resilience to visual disturbances. The refined focus not only 
reduces false alarms but also captures a more exhaustive 
range of spike instances, addressing the detection limitations 
seen in RT-DETR. These qualitative findings visually 
corroborate the quantitative enhancements observed in the 
ablation study and underscore the model's proficiency in 
interpreting dense and obscured agricultural environments. 

An ablation study was conducted to evaluate the influence 
of various backbone networks on the model's overall 
performance. Only the backbone architecture was altered, 
while all other components remained consistent to maintain 
a fair comparison. The study examined five different 
backbones: ResNet18, FasterNet, RepViT [32], 
ShuffleNetV2 [33], and the newly introduced FasterSEV2. 
The comparative outcomes are presented in Table 3. While 
RepViT and ShuffleNetV2 excel in lightweight design, their 
performance is hindered by inferior feature representation 
capabilities. FasterNet, on the other hand, outperforms 
ResNet18 in accuracy while utilizing fewer parameters, 
thanks to the integration of partial convolution (PConv) for 
improved local feature extraction. 

The integration of the SENetV2 attention mechanism into 
the FasterNet architecture, known as FasterSEV2, enhances 
the model's detection capabilities, yielding a notable 
improvement in performance. Notably, FasterSEV2 
achieves an outstanding mAP50 score of 94.5%, 
demonstrating superior precision (91.9%) and recall (91.1%). 
These findings underscore the ability of FasterSEV2 to 
effectively optimize the trade-off between detection 
accuracy and computational efficiency, rendering it well-
suited for detecting wheat spikes in intricate agricultural 
settings. Despite a modest increase in model parameters and 
computational workload, the enhanced accuracy validates 
the efficacy of the proposed backbone design. 

D. Performance evaluation
A comparative evaluation was conducted to validate the

effectiveness of the proposed model against state-of-the-art 
object detection frameworks, namely Faster R-CNN, SSD, 
YOLOv7, and RT-DETR. The performance results are 
summarized in Table 4, demonstrating the superior 
performance of the proposed model across all evaluation 
metrics. Notably, the proposed model achieves a leading 
mAP50 score of 94.5%, surpassing RT-DETR by 1.1 
percentage points and YOLOv7 by 3.7 percentage points. 
Regarding Precision and Recall, the proposed model 
demonstrates values of 91.9% and 91.1%, respectively, 
indicating   its   robustness  in   accurately  identifying    true 
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Fig 10 Visualization results of wheat spike detection 

YOLOv7
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TABLE III 
THE COMPARATIVE RESULTS OF MODEL TRAINING AFTER INTEGRATING DIFFERENT BACKBONE NETWORKS 

Backbone Precision Recall mAP50 Param GFlops 

ResNet18 91.1% 90.2% 93.4% 20.1M 58.08 

RepViT 90.4% 88.0% 92.5% 13.3M 37.85 

FasterNet 91.5% 90.5% 93.6% 16.8M 50.66 

ShuffleNetV2 89.5% 87.0% 91.4% 9.3M 26.25 

Ours 91.9% 91.1% 94.5% 22.2M 64.40 

TABLE IV 
COMPARISON OF MAINSTREAM OBJECT DETECTION MODELS

Models Precision Recall mAP50 F1-score 

Faster-RCNN 48.1% 47.5% 41.1% 47.8% 

SSD 92.3% 43.2% 67.1% 58.8% 

YOLOv7 88.9% 86.8% 90.8% 87.8% 

RT-DETR 90.5% 90.2% 93.4% 90.3% 

Ours 91.9% 91.1% 94.5% 91.5% 

positives while minimizing false negatives. Additionally, the 
model achieves the highest F1-score of 91.5%, indicating a 
well-balanced trade-off between Precision and Recall.  

Fig 10 illustrates the comparative detection performance 
of various models. Faster R-CNN and SSD demonstrate 
notable shortcomings, showing a high frequency of missed 
detections and false positives. In contrast, YOLOv7 and RT-
DETR exhibit more consistent performance in densely 
populated areas of wheat spikes. However, their 
effectiveness diminishes in intricate or obstructed 
environments, leading to a continued presence of false 
alarms and missed detections. The proposed model shows 
improved accuracy in identifying wheat spikes, particularly 
in adverse environmental conditions. This enhanced 
performance is a result of design improvements that 
facilitate more effective feature extraction and 
differentiation between wheat spikes and surrounding 
elements. These findings validate the model's efficacy and 
its ability to perform well in practical agricultural settings. 

Additional experiments were conducted to evaluate the 
robustness and generalization ability of the proposed method 
on images with adverse conditions, such as densely 
distributed wheat spikes and low illumination. The detection 
outcomes under these challenging scenarios are depicted in 
Fig 11 (Rectangles: missed detection; Diamonds: false 
detection; Circles: correct detection) YOLOv7 exhibits 
decreased performance under high-density conditions, with 
frequently missed detections in heavily overlapped areas of 
wheat spikes, indicating a limitation in distinguishing 
individual targets within densely clustered regions. In 
contrast, RT-DETR, while more sensitive in such conditions, 
experiences an increase in false positives, often 
misidentifying background textures as wheat spikes. In low-
light environments, both YOLOv7 and RT-DETR show 
significant performance degradation, with elevated false 
positives and missed detections, suggesting compromised 

feature extraction capabilities when visual cues are less clear. 
The proposed method, however, maintains consistent and 
precise detection performance in both challenging scenarios 
due to enhanced feature representation and attention-guided 
localization mechanisms, enabling accurate differentiation 
of wheat spikes from complex backgrounds even in 
suboptimal lighting conditions. These findings highlight the 
superior adaptability and resilience of the proposed model, 
especially in agricultural settings where lighting and 
occlusion conditions can vary widely. 

A series of experiments were conducted to validate the 
effectiveness of integrating object detection and multi-object 
tracking algorithms for wheat spike counting. The 
DeepSORT tracking algorithm was utilized to accurately 
track the motion trajectories of individual wheat spikes 
across consecutive video frames, assigning a unique identity 
(ID) to each spike. The experiments employed the enhanced 
RT-DETR model for real-time object detection to localize 
wheat spikes in each frame. Subsequently, DeepSORT was 
applied for precise tracking. The spike counting process 
utilized a multi-frame cross-line counting approach, as 
depicted in Fig 12.  

To evaluate the counting performance of the proposed 
model, we conducted a comparative study against two 
established counting models, MCNN and TasselNetV2. An 
illustration of the evaluation images is presented in Fig 13. 
Evaluation metrics included Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and the coefficient of 
determination (R²). A lower MAE signifies a smaller 
average deviation from the ground truth, while a lower 
RMSE indicates reduced prediction variance. The R² metric 
assesses the alignment between predicted and actual values, 
with values closer to 1 denoting stronger consistency.  

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2852-2864

 
______________________________________________________________________________________ 



Fig 12 Visualization results of wheat spike tracking and counting
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Fig 11 Visualization results of the challenging images
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TABLE V 
COMPARISON OF THE PERFORMANCE OF DIFFERENT COUNTING MODELS 

Model MAE RMSE R² 
MCNN  11.09 14.32 0.90 

TasselNetV2 9.72 13.38 0.92 
Ours 9.20 11.65 0.94

V.  CONCLUSIONS

In this investigation, the FasterNet, SENetV2, and 
RepGFPN components were integrated into the multi-object 
detection Transformer framework known as RT-DETR to 
tackle the intricate challenges associated with wheat spike 
detection. These challenges include the detection of small 
and densely clustered spikes, interference from weeds, and 
variations in color among wheat spikes, straw, and leaves at 
different growth stages. These enhancements were devised 
to enhance detection precision while minimizing 
computational burden. The integration of the FasterNet 
component effectively reduces computational complexity, 
thereby enabling real-time capabilities of the model. By 
incorporating the SENetV2 block within the FasterNet 
architecture, more precise extraction of both local and global 
features is achieved, enhancing the model's capacity to 
address partial occlusion and suppress interference from 
surrounding vegetation. Furthermore, the RepGFPN module 
boosts the network's performance by facilitating efficient 
extraction and fusion of multi-scale features, crucial for 
detecting wheat spikes of diverse sizes and shapes. 
Cumulatively, these adjustments yield a model with 
improved robustness and generalization, rendering it 
suitable for deployment in varied wheat cultivation settings 
and ensuring consistent performance under diverse field 
conditions. 

While the current model has made significant 
advancements in wheat spike detection, there is a need to 
enhance its accuracy further.  Future research will be guided 
by the design principles of the Adaptive Low-Pass Filter 
(ALPF) generator and Adaptive High-Pass Filter (AHPF) 
generator embedded in the Frequency-Aware Feature Fusion 
(FAFF) module [37].  Integrating ALPF into multi-scale 
feature fusion aims to address inconsistencies between low- 
and high-resolution features of the same category, thereby 
enhancing semantic coherence.  Concurrently, AHPF is 
intended to improve the preservation of high-frequency 

detail information typically lost during down-sampling. 
Subsequent investigations will focus on combining ALPF 
and AHPF to optimize multi-scale feature fusion, reduce 
feature disparities, and enhance the extraction of intricate 
wheat spike details.  Moreover, an expanded dataset 
comprising a larger number of field-acquired wheat spike 
images will be gathered to bolster the development of more 
resilient and broadly applicable detection methodologies. 
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