
 

  

Abstract— Binary quantile regression is one of the widely 

applied methods in the last decade due to the attractive features 

of this method for researchers, as it is not affected by outlier 

values, meaning it is considered one of the robust methods, and 

provides more details about the effect of independent variables 

on dichotomous or binary dependent variables. In this study, a 

Bayesian method is hybrid binary quantile regression, binary 

quantile regression LASSO, and binary quantile regression 

adaptive LASSO for variable selection and estimation. The 

error follows an Asymetric Laplace distribution. The method 

will be applied to model the hypertension status data. This study 

used 635 patients of hypertension obtained from Arasuka Solok 

Hospital, West Sumatra, Indonesia. This study proved that 

Bayesian Adaptive LASSO binary quantile regression resulted 

smallest value of mean square error (MSE) than those produced 

Bayesian LASSO binary quantile regression and Bayesian 

binary quantile regression. Model hypertension status in 

Arosuka Solok Hospital is significantly influenced by weight, 

age, cholesterol, smoking and blood sugar levels. At quantile 

0.05, increase in age for 1 year, the level of hypertension status 

increases by 2.360 times. If there is an increase in body weight 

by 1 kg, the hypertension increases by 2.046 times. If there is a 1 

mg/dL increase in cholesterol, the hypertension level increases 

by 1.289 times. If there is a 1mg/dL increase in Triglyceride, the 

hypertension level increases by 1.150 times. If there is a 1 mg% 

increase in blood sugar levels, the hypertension level increases 

by 1.633 times. It is concluded that binary Bayesian adaptive 

LASSO quantile regression has the best performance than other 

methods in modeling the hypertension case. 

 
Index Terms—Hypertension status; binary, Bayesian 

quantile regression, Adaptive LASSO. 
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I. INTRODUCTION 

ypertension is the leading cause of cardiovascular 

disease and premature death worldwide, due to the 

widespread use of antihypertensive drugs, the global average 

blood pressure (BP) has remained constant or slightly 

decreased over the past four decades [1]. Hypertension can be 

defined as persistent blood pressure where the systolic 

pressure is above 140 mmHg and the diastolic pressure is 

above 90 mmHg [2]. Hypertension is a non-communicable 

disease that is an important health problem worldwide due to 

its high and increasing prevalence and association with 

cardiovascular disease, stroke, retinopathy, and kidney 

disease.  

Hypertension is a disease that affects almost 25% of adults. 

The prevalence of hypertension is predicted to increase by 

60% by 2025, which is around 1.56 thousand people. Patients 

and 95% were primary hypertension [3]. Hypertension 

prevalence data nationally is 34.1%. Hypertension in West 

Sumatra is 25.1%, for Solok City is 31.6% and is ranked 3rd 

out of 19 districts and cities in West Sumatra [4]. 

Minangkabau ethnicity has distinctiveness in its traditions 

and culture. Traditional food Minangkabau traditional foods 

such as rendang are claimed to be high in saturated fat. The 

coconut oil and coconut milk used as the main ingredients to 

make rendang are the main source of rich in saturated fatty 

acid [5].  this reason, it is necessary to identify the factors that 

affect hypertension status to provide additional information 

to the community to avoid factors that cause hypertension so 

that hypertension cases decrease. Solok City has the highest 

number of hypertension cases in West Sumatra [6]. The 

method used to see the mathematical relationship between the 

independent variable and the dependent variable is regression 

analysis [7][8].  

Classical regression analysis can model data if the classical 

assumption of normality is met. In fact, in the field, there are 

many data that violate the assumption of normality. In 

modeling hypertension status (yes or no) which is binary, it 

cannot be modeled with ordinary regression methods or least 

squares methods because it clearly violates the assumption of 

normality. Modeling data that violates these classical 

assumptions can be overcome by quantile regression 

[9][10][11][12]. In quantile analysis, the estimated regression 

model can be explained by the relationship between the 

independent variable and the dependent variable at various 

quantiles [13]. However, quantile regression requires a large 
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sample size. This limitation of the quantile method is 

overcome by hybridizing it with the Bayesian method. The 

Bayesian method is able to estimate model parameters from 

small data because there is a prior distribution in the 

estimation process [14]. The hybridization of quantile 

regression and Bayes method is known as Bayesian quantile 

regression [15][16][17]. Research using the Bayesian 

quantile regression method has been done by many previous 

researchers including [18][19][20][12][21] which discusses 

variable selection in a binary context sensitive to outliers, 

heterogeneous values and other anomalies.  

Quantile regression has also been applied to censored data 

to construct the height gain of stunted infants [22][23]. 

Quantile regression models have also been applied to high-

dimensional data with dichotomous response data using 

normal prior gamma [24]. Quantile regression is a method 

that handles covariate effects and handles the overfitting 

problem well [25]. Bayesian quantile regression applied to 

binary dependent variables is called Binary Bayesian quantile 

regression. The binary quantile regression method does not 

require error assumptions in modeling and the estimator is 

robust to outliers.  

Binary quantile regression was introduced by research 

[26][27]. Binary quantile regression is used also in simple 

two-step estimation with misinformation of endogenous 

variables [28]. Bayesian quantile regression with binary 

scaled response variables still lacks precision, so binary 

Bayesian quantile regression with regulation parameters or 

penalty functions using LASSO was developed [29][30]. In 

this study, a binary Bayesian quantile regression method with 

adaptive LASSO penalty was applied to model hypertension 

status of patients from Arosuka Solok Hospital. 

II. MATERIALS AND METHODS 

A. Data Set  

The data used in this study are related to hypertension 

status obtained from Arosuka Solok Hospital, West Sumatra. 

The data used is observed directly from the polyclinics of 

internal medicine and cardiology in 2024. The data used was 

635 patients. This secondary data consisted of seven 

independent variables and one binary dependent variable, 

namely hypertension status with categories (1 = Hypertension 

and 0 = Not hypertension). Hypertension status (Y) as a 

binary dependent variable is based on systolic blood pressure 

(SBP) and diastolic blood pressure (DBP). It is said to be 

hypertension if SBP ≥ 140 mmHg and DBP ≥ 90 mmHg.  

 Hypertension status is assumed to be influenced by 

gender [31],[32]. Elderly patients with hypertension are 

predominantly female compared to males [33]. Patients with 

severe hypertension were also 100% female [34]. 

Hypertension status is also influenced by age. 15-65 years old 

are prone to hypertension [35]. Menopausal women have an 

increase in degenerative diseases, one of which is 

hypertension [36],[32]. Smoking can cause hypertension due 

to chemicals contained in tobacco, especially nicotine 

[37],[38],[39],[40]. Body weight is another factor that is 

assumed to influence hypertension  [41],[42]. Hypertension 

is also influenced by factors originating from within the 

human body are cholesterol [43],[44],[45], triglycerides 

[46],[47],[48], and blood sugar levels [49],[50],[51]. Table 1 

below presents a description of the categorical data used in 

this study as independent variables. Table 1 informs that 43% 

were male and 36% were smoking.  

 
TABLE 1.  

STATISTICS DESCRIPTIVE OF CATEGORICAL VARIABLES 

Variable Category Frequency Percentage 

(%) 

Gender Male 281 43% 

 Female 372 57% 

Smoking Yes 235 36% 

 No 318 64% 

 

B. Quantile Regression Method  

If a vector 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)′   is declared as the 

dependent variable and  𝒙 = ( 𝑥1, 𝑥2, … , 𝑥𝑘)′ is defined as the 

independent variable, then the hypothesis model for the 𝜏𝑡ℎ 

quantile, where 0 < 𝜏 < 1  with n samples and k predictors 

for 𝑖 = 1,2, … , 𝑛 is written as:   

 

𝑦𝑖 = 𝛽0𝜏 + 𝛽1𝜏𝑥𝑖1 + 𝛽2𝜏𝑥𝑖2 + ⋯ + 𝛽𝑘𝜏𝑥𝑖𝑘 + 𝜀𝑖.      (1) 

  

with 𝜷(𝜏)  as the parameter vector and 𝜺  as the residual 

vector. The conditional quantile function 𝜏𝑡ℎ  in the quantile 

regression method is defined as 𝑄𝜏(𝒚|𝒙𝒊) = 𝒙𝒊
′𝜷𝝉 , the 

estimated value of the parameters in the quantile regression 

equation 𝜷�̂�  is obtained by minimizing the following 

equation [52]:  

∑ 𝜌𝜏(𝑦𝑖 − 𝒙𝒊
′𝜷𝝉)

𝑛

𝑖=1

. 
 

(2) 

with 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)) is the loss function with the 

equation [10]:  

𝜌𝜏(𝜖) = 𝜀(𝜏𝐼(𝜀 ≥ 0) − (1 − 𝜏)𝐼(𝜀 < 0)).    (3) 

𝐼 ( . ) is an indicator function, which has a value of 1 when 

𝐼 ( . ) is true dan 0 otherwise.  

 

C. Bayesian Binary Quantile Regression Method 

Binary quantile regression was introduced by Benoit et al. 

[26], which is an extension of quantile regression where the 

dependent variable is dichotomous or binary and consists of 

two categories. One of standard notations for Binary quantile 

regression model for 𝜏𝑡ℎ  quantile and n samples and k 

predictors for 𝑖 = 1,2, … , 𝑛 is written as: 

𝑦𝑖
∗ = 𝛽0𝜏 + 𝛽1𝜏𝑥𝑖1 + 𝛽2𝜏𝑥𝑖2 + ⋯ + 𝛽𝑘𝜏𝑥𝑖𝑘 + 𝜀𝑖. (6) 

 

𝑦𝑖
∗ = 𝒙𝒊

′𝜷𝝉 + 𝜀𝑖. (7) 

where  𝒙 = ( 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘)′ is independent variable for 

sample for 𝑖 = 1,2, … , 𝑛, and  𝜷(𝜏) the parameter vector and 

𝜺 as the residual vector and𝑦𝑖 is the observed response of 𝑖𝑡ℎ 

subject determined by the latent unobserved response 𝑦𝑖
∗,  

𝑦𝑖 = {
1, if 𝑦𝑖

∗ ≥ 0 

0, otherwise.
 

   (8) 

combining the quantile regression technique with the binary 

selection regression model, the following binary quantile 

regression models can be obtained:  

𝑄𝜏(𝑦𝑖
∗|𝑥𝑖) = 𝒙𝒊

′𝜷𝝉 + 𝜀𝑖,    (9) 

where, 𝑄𝜏(𝑦𝑖
∗|𝑥𝑖) = inf {(𝑦𝑖|𝐹(𝑦𝑖|𝑥𝑖) ≥ 𝜏)}  is conditional 

quantile, 𝛽𝜏  is parameter at the 𝜏𝑡ℎ  quantile. Because the 

latent variable 𝑦𝑖
∗is not observable, it is not possible to use 

formula (9) to estimate the parameters directly. Based on the 
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invariance of quantile, the following transformations can be 

performed:  

𝑄𝜏(𝑦𝑖 |𝑥𝑖) = 𝑄𝜏(ℎ(𝑦𝑖
∗|𝑥𝑖) = ℎ(𝑄𝜏(𝑦𝑖

∗|𝑥𝑖)

= ℎ(𝑥𝑖
′𝛽𝜏). 

 (10) 

where ℎ(𝑥𝑖
′𝛽𝜏) = 𝐼(𝑥𝑖

′𝛽𝜏 > 0). Let  𝜌𝜏(𝑢) =
|𝑢|−(2𝑝−1)𝑢

2
 is a 

test function. The parameter 𝛽𝜏  is determined by the 

following formula [53]:  

∑ 𝜌𝜏(𝑦𝑖 − ℎ(𝒙𝒊
′𝜷𝝉))

𝑛

𝑖=1

. 
(11)  

where ℎ(𝒙𝒊
′𝜷𝝉) = 𝐼(𝒙𝒊

′𝜷𝝉>0) is indicator variable equal 1 if 

𝐼(𝒙𝒊
′𝜷𝝉) is true and 0 for otherwise.  

 

Yu and Moyeed [15] suggested that the process of 

minimizing the loss function of quantile regression is 

equivalent to maximizing the likelihood function of the 

Asymmetric Laplace Distribution (ALD) because the loss 

function in quantile regression is identical to the ALD 

likelihood function. ALD is used in the process of forming a 

random variable 𝜀  is ALD distributed with a likelihood 

density function 𝑓(𝜀) is: 

 

𝑓𝜏(𝜀) = 𝜏(1 − 𝜏)exp (−𝜌𝜏(𝜀)).    (12) 

 

with 0 < 𝜏 < 1   and 𝜌𝜏(𝜀)  being the loss function with 𝜀 

being the error of the estimation and 𝐼(𝜀) being the indicator 

function. ALD has a combined representation of several 

distributions, namely based on the exponential and normal 

distributions used in forming the likelihood function. 

The likelihood function so that the estimator becomes more 

effective and natural or close to the true value so that the 

correct estimation process can be produce. The ALD 

distribution is one of the continuous probability distributions. 

Suppose Z is a random variable with exponential distribution 

( 𝑍~𝑒𝑥𝑝 (1))  and U is a random variable with standard 

normal distribution 𝑈~𝑁 (0,1). If 𝜀  is an ALD distributed 

random variable then 𝜀  can be expressed in the following 

equation: 

𝜀 = 𝜃𝑧 + 𝑝𝑢√𝑧.     (13) 

where 𝜃 =
1−2𝜏

(1−𝜏)𝜏
 and 𝑝2 =

2

(1−𝜏)𝜏
 [15]. Based on equation 

(14) , the likelihood function used in parameter 𝜷 estimation 

for the  𝜏𝑡ℎ  quantile in the Bayesian quantile regression 

analysis is formulated in equation (9) as follows [30]: 

𝐿(𝒚𝒊
∗|𝜷, 𝝈, 𝒗)

= (∏ (𝜎𝑣𝑖)
−

1
2)

𝑛

𝑖=1
(exp (−

(𝑦𝑖
∗ − (𝒙𝒊

′𝜷𝝉 + 𝜃𝑣𝑖))2

2𝑝2𝜎𝑣𝑖
)). 

(14) 

 

with 𝜎 > 0  as the scale parameter and dan 𝑣𝑖 = 𝜎𝑧𝑖 

spreading exp (𝜎) distribution. Based on equation (14) the full 

conditional distribution of 𝑦𝑖
∗is truncated normal distribution: 

  

𝒚𝒊
∗|𝜷, 𝝈, 𝒗

= {
𝑁(𝒙𝒊

′𝜷𝝉 + 𝜃𝑣𝑖, 𝑝2𝜎𝑣𝑖)𝐼(𝑦𝑖
∗ > 0), if 𝒚𝒊 = 1 

𝑁(𝒙𝒊
′𝜷𝝉 + 𝜃𝑣𝑖, 𝑝2𝜎𝑣𝑖)𝐼(𝑦𝑖

∗ > 0), if 𝒚𝒊 = 0 
. 

 

(15) 

The prior distribution used in this study are 𝜷𝜏~𝑁(𝑏0, 𝐵0),  

𝑣𝑖~exp (𝜎)  and 𝜎~𝐼𝐺(𝑎, 𝑏) . While, posterior distribution 

for each prior are as follows:  

 

(𝜷|, 𝜎, 𝑣, 𝒚𝒊
∗ )~𝑁[(𝑩𝟎

−𝟏 + 𝒙𝒊(𝑝2𝜎𝑣)−1𝒙𝒊
′)−1(𝑩𝟎

−𝟏𝒃𝟎 +

𝒙𝒊(𝑝2𝜎𝑣)−1𝑥𝑖
′)−1𝑦𝑖

∗ − 𝑥𝑖(𝑝2𝜎𝑣)−1𝜃𝑣𝑖), (𝑩𝟎
−𝟏 +

𝒙𝒊(𝑝2𝜎𝑣)−1𝒙𝒊
′)−1], 

(𝑣𝑖|𝜷, 𝜎, 𝒚𝒊
∗ )~𝐺𝐼𝐺(

1

2
, (

(𝑦𝑖
∗−𝑥𝑖

′𝛽𝜏)

𝑝2𝜎

2

) , (
2

𝜎
+

𝜃2

𝑝2𝜎
)),          (16) 

(𝜎|𝜷, 𝒗, 𝒚𝒊
∗ )~𝐼𝐺(𝑎 +

3𝑛

2
, (𝑏 +

 ∑ 𝑣𝑖 +𝑛
𝑖=1 ∑ + (

(𝑦𝑖
∗−(𝑥𝑖

′𝛽𝜏+𝜃𝑣𝑖))

2𝑝2𝜎

2

)𝑛
𝑖=1 ).  

 

D.  Bayesian LASSO Binary Quantile Regression Method 

Mathematically, estimates of Bayesian LASSO binary 

quantile regression parameter can be calculated by [30],[26]: 

𝛽𝐿𝐴𝑆𝑆𝑂=min
𝛽𝜖ℝ

∑ 𝜌𝜏(𝒚𝒊
∗  − 𝒙𝒊

′𝜷)𝑛
𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑘

𝑗=1 .   (17) 

 

where 𝜆 is a non-negative variable penalty coefficient. Prior 

distribution 𝜷𝜏 , 𝜂2, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿  used for n-th sample with k 

predictor according to for used in Bayesian LASSO binary 

quantile regression is: 

 

𝑓(𝛽|𝜂2, 𝑠𝑗)

= ∏ ∫
1

√2𝜋𝑠𝑗

∞

0

𝑘

𝑗=1

𝑒𝑥𝑝 (−
𝛽𝑗

2

2𝑠𝑗
)

𝜂2

2
𝑒𝑥𝑝 (

−𝜂2

2
𝑠𝑗)𝑑𝑠𝑗 

 

𝑓(η2|𝛿, 𝜁) =
𝜁𝛿

Γ(𝛿)
η2(𝛿−1) exp(−𝜁η2), 

𝑓(𝜁|𝛿) = 1, 

𝑓(𝜎) = 𝜎𝑎1
−1

exp(−𝑎2𝜎), 

𝑓(𝑠𝑗|η2) =
η2

2
exp (−

η2

2
𝑠𝑗), 

𝑓(𝑣𝑖|𝜎) = 𝜎 exp(−𝑣𝑖𝜎), 

𝑓(𝛿|𝜁, η2 ) =
(𝜁η2)𝛿

Γ(𝛿)
. 

 

 

 

, 

 

(18) 

with 𝜂 = 𝜎𝜆, η2~𝐺𝑎𝑚𝑚𝑎(η2, 𝜁−1), 𝒔 = ( 𝑠1, … , 𝑠𝑘), 𝑖 =
1,2 … 𝑘,  𝒗 =  ( 𝑣1, … , 𝑣𝑛), 𝜎 > 0, 𝑎1 > 0, 𝑎2 > 0 , η2 > 0, 
𝜁 > 0, 𝛿 > 0. Based on equation (18), the joint posterior 

distribution Bayesian LASSO binary quantile regression is 

obtained as follows: 

𝑓(𝜷𝝉|𝜂2, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝑁(

𝜎 ∑ �̂�𝑖𝑗
𝑛
𝑖=1 𝑥𝑖𝑗

2𝑣𝑖

1

 𝑠𝑗
+𝜎 ∑

𝑥𝑖𝑗
2

2𝑣𝑖

𝑛
𝑖=1

,
1

1

 𝑠𝑗
+𝜎 ∑

𝑥𝑖𝑗
2

2𝑣𝑖

𝑛
𝑖=1

), 

𝑓(𝜂2|𝜷𝝉, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝐺𝑎𝑚𝑚𝑎 (𝜁 + 𝑘, 𝑣 + ∑
𝑠𝑗

2

𝑘
𝑗=0 ), 

𝑓(𝑣|𝜷𝝉, 𝜂2, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝐺𝑎𝑚𝑚𝑎(𝜁, 𝜂2), 

𝑓(𝜁|𝜷𝝉, 𝜂2, 𝜎, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝐺𝑎𝑚𝑚𝑎(𝜁, 𝜂2), 

𝑓(𝑣𝑖|𝜷𝝉, 𝜂2, 𝑣, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝐺𝐼𝐺 (
1

2
, (

(𝑦𝑖
∗−𝑥𝑖

′𝛽𝜏)

𝑝2𝜎

2

) , (
2

𝜎
+

𝜃2

𝑝2𝜎
)), 

𝑓(𝑠𝑖|𝜷𝝉, 𝜂2, 𝑣, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝐺𝐼𝐺 (
1

2
, 𝛽𝑗

2, 𝜂2 ), 

𝑓(𝜎|𝜷𝝉, 𝜂2, 𝑣, 𝜁, 𝒔, 𝒗, 𝛿, 𝒚∗)~𝐺𝐼𝐺 (𝑎 +
3𝑛

2
, (𝑏 +

∑ (
(𝑦𝑖

∗−(𝒙𝒊
′𝜷𝝉+𝜎𝑣𝑖)

2𝑝2𝑣𝑖

2

)𝑛
𝑖=1 + 𝑣𝑖).                                         (19) 
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E. Bayesian Adaptive LASSO Binary Quantile Regression 

Method 

To estimates of Bayesian Adaptive LASSO binary quantile 

regression parameters can be calculated by study [30]:  

𝛽𝐴𝐿𝐴𝑆𝑆𝑂=min
𝛽𝜖ℝ

∑ 𝜌𝜏(𝒚𝒊
∗  − 𝒙𝒊

′𝜷)𝑛
𝑖=1 + ∑ 𝜆𝑖|𝛽𝑗|𝑘

𝑗=1 .             (20) 

where 𝜆𝑖 is a non-negative variable penalty coefficient, 𝑖 =

1,2, . . , 𝑘.  Prior distribution for 𝜷𝜏 , 𝜆𝑗
2, 𝜁, 𝜎, 𝒔, 𝒗, 𝛿  used in 

Bayesian Adaptive LASSO binary quantile regression is as 

follows [54]: 

 

𝑓(𝜷|𝜆𝑗
2, 𝑠𝑗)

= ∏ ∫
1

√2𝜋𝑠𝑗

∞

0

𝑘

𝑗=1

𝑒𝑥𝑝 (−
𝛽𝑗

2

2𝑠𝑗
)

𝜆𝑗
2

2
𝑒𝑥𝑝 (

−𝜆𝑗
2

2
𝑠𝑗)𝑑𝑠𝑗,   

𝑓(𝜁|𝛿) = 1, 

𝑓(𝜎) = 𝜎𝑎1
−1

exp(−𝑎2𝜎), 

𝑓(𝑠𝑗|𝜆𝑗
2) =

𝜆𝑗
2

2
exp (−

𝜆𝑗
2

2
𝑠𝑗), 

𝑓(𝑣𝑖|𝜎) = 𝜎 exp(−𝑣𝑖𝜎),                                                  (21) 

𝑓(𝛿|𝜁, 𝜆𝑗
2 ) =

(𝜁𝜆𝑗
2)

𝛿

Γ(𝛿)
 

  

 

 

 

 

 

 

 

(21) 

 

with 𝒔 = ( 𝑠1, … , 𝑠𝑘),𝑖 = 1,2, … , 𝑘, 𝒗 =  ( 𝑣1, … , 𝑣𝑛), 𝜎 > 0, 
𝑎1 > 0, 𝑎2 > 0, 𝜆𝑗

2 ≥ 0, 𝜁 > 0, 𝛿 > 0 

Based on equation (21), the joint posterior distribution 

Bayesian Adaptive LASSO binary quantile regression is 

obtained as follows: 

 

𝑓((𝛽|𝒚𝒊
∗, 𝑠𝑗,𝑣𝑖, 𝜎)~𝑁(�̅�𝑗 ,  �̅�𝑗),  

with,  �̅�𝑗
2 = ( 𝜎 ∑

𝑥𝑖𝑗
2

2𝑣𝑖
+

1

𝑠𝑗

𝑛
1 )

−1

, 

�̅�𝑗 =

 �̅�𝑗
2𝜎 ∑

(𝒚𝒊
∗−∑ 𝑥𝑖𝐼𝛽𝐼−𝑖≠𝑗 𝜁𝑣𝑖 )

2𝑣𝑖

𝑛
𝑖=1 ,

𝑓(( 𝜎|𝒚𝒊
∗, 𝑠𝑗,𝑣𝑖 , 𝜎)~𝐺𝑎𝑚𝑚𝑎 (

3

2
𝑛 + 𝑎1, ∑ (

(𝒚𝒊
∗−𝜁𝑣𝑖)

2

4𝑣𝑖
+𝑛

𝑖=1

𝑝(1 − 𝑝)𝑣𝑖 + 𝑏1)), 

𝑓(𝜆𝑗
2|𝑠𝑗,,  𝜎)~𝐺𝑎𝑚𝑚𝑎(1 + 𝑎0,

 𝑠𝑗,𝜎

2
+ 𝑏0), 

𝑓(( 𝑠𝑗,|𝜆𝑗
2, 𝛽, 𝜎, )~𝐺𝐼𝐺 (

1

2
+ 𝛽𝑗

2, 𝜎𝜆𝑗
2 ), 

𝑓(( 𝑣−1|𝒚𝒊
∗, 𝛽, 𝜎, )~𝐺𝐼𝐺 (

1

2
,

𝜎

2
,

𝜎(𝑦𝑖
∗−𝑥𝑖

′𝛽)
2

2
 ), 

𝑓(( 𝑠𝑗,|𝒚𝒊
∗, 𝛽, 𝜎, )~𝐺𝐼𝐺 (

1

2
,

𝜎

2
,

𝜎(𝑦𝑖
∗−𝒙𝒊

′𝜷)
2

2
 ),                       (22) 

 

The multiple roots algorithm proposed by Yun [55] will be 

used to sample from it, and the constraint condition ‖𝛽‖1 will 

be imposed value. The steps are follows: set initial value 

𝜷, 𝑣, 𝜎, 𝜆𝑗
2(𝑗 = 1,2, … , 𝑘) ; from the 𝑓(( 𝒚𝒊

∗|𝑦, 𝜷, 𝑣𝑖 , 𝜎, ) 

generate 𝒚𝒊
∗, 𝑖 = 1,2, … , 𝑛 ; from 𝑓( 𝑣−1|𝒚𝒊

∗, 𝜷, 𝜎, ) generate 

𝑣−1, 𝑖 = 1,2, … , 𝑛; from 𝑓(( 𝜎|𝒚𝒊
∗, 𝑠𝑗,𝑣𝑖, 𝜎)generate 𝜎; from 

𝑓((𝜷𝒋|𝒚𝒊
∗, 𝑠𝑗,𝑣𝑖 , 𝜎) generate 𝛽𝑗 ; and the constraint condition 

𝛽 = 1, 𝑗 = 1,2, … , 𝑘 ; from 𝑓(( 𝑠𝑗,|𝜆𝑗
2, 𝜷, 𝜎) generate 𝑠𝑗,, 𝑗 =

1,2, … , 𝑘 ; from 𝑓(𝜆𝑗
2|𝑠𝑗,,  𝜎)  generate 𝜆𝑗

2, 𝑗 = 1,2, … , 𝑘 ; 

return the second to seventh step.  

 

III. RESULT AND DISCUSSION  

In this section, we apply the proposed Bayesian approach 

for Bayesian binary quantile regression (BBQR), Bayesian 

LASSO binary quantile regression (BBLQR) and Bayesian 

Adaptive LASSO binary quantile regression (BBALQR) for 

find the model hypertension status. The parameters 

estimation process was carried out by determining mean and 

variance of each parameter formulated in the posterior 

distribution. Table 2 present the parameters estimation 

results, with confidence interval width of 95% for quantiles 

0.05; 0.25; 0.55; 0.75; 0.95.  

 

Based Table 2, the BBQR, BBLQR and BBALQR 

methods obtained the variable gender (𝑋1𝐷1) statistically not 

significant in influencing hypertension status in all quantiles, 

namely quantiles 0.05; 0.25; 0.55; 0.75; and 0.95. BBQR 

method variable age (𝑋2) statistically significant in quantiles 

0.25; 0.55; 0.75. BBLQR method variable age 

(𝑋2)statistically not significant in influencing hypertension 

status in all quantiles and BBALQR method resulted that 

variable age (𝑋2)  statistically significant in influencing 

hypertension status in all selected quantile. BBQR, BBLQR 

and BBALQR methods variable smoking (𝑋3𝐷1)  not 

statistically significant in all quantile. 

 

The BBQR the variable body weight (𝑋4) statistically not 

significant in influencing hypertension status in all quantiles, 

namely quantiles 0.05; 0.25;0.75, BBLQR methods obtained 

the variable body weight (𝑋4) statistically not significant in 

influencing hypertension status in all quantiles and BBALQR 

method obtained variable body weight (𝑋4)  is statistically 

significant in influencing hypertension status in all quantiles.  

The BBQR the variable cholesterol (𝑋5)  statistically not 

significant in influencing hypertension status in all quantiles, 

namely 0.05; 0.25;0.75. BBLQR methods obtained the 

variable cholesterol (𝑋5) statistically not significant in 

influencing hypertension status in all quantiles and while 

BBALQR method obtained variable cholesterol (𝑋5)  is 

statistically not significant in influencing hypertension status 

only in 0.05 and 0.95 quantile.  

 

The BBQR, BBLQR obtained variable triglyceride(𝑋6) 

statistically not significant in influencing hypertension status 

in all quantiles, namely quantiles 0.05; 0.25; 0.55; 0.75; and 

0.95 and BBALQR method obtained variable triglyceride 

(𝑋6)  is statistically significant in affecting hypertension 

status in quantiles 0.55;0.75 and 0.95. The BBQR, BBLQR 

obtained variable blood sugar levels (𝑋7)  statistically not 

significant in influencing hypertension status in all quantiles, 

namely quantiles 0.05; 0.25; 0.55; 0.75; and 0.95, BBALQR 

method variable blood sugar levels (𝑋7)  is statistically 

significant in affecting hypertension status in all quantile. 

Table present the results of the 95% confidence interval width 

estimates generated from this method. Next, the comparison 

of error values from the application of three methods is 

presented in Table 3 below. 
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TABEL 2. 

THE PARAMETERS ESTIMATED AND WIDTH OF 95% CONFIDENCE INTERVAL USING BBQR, BBLQR, and BBALQR 

Independent Variables BBQR BBLQR BBALQR 

 Estimated  

Mean (𝜷)̂ 

Width 95% 

CI 

Estimated  

Mean (𝜷)̂ 

Width 95% 

CI 

Estimated  

Mean (𝜷)̂ 

Width 95% 

CI 

𝝉 = 𝟎. 𝟎𝟓 

Intercept  -5.613* 4.210 -0.004 0.012 -299.877* 483.066 

Gender(𝑋1𝐷1) 0.081 0.135 -0.0002 0.001 0.369 8.163 

Age (𝑋2) 0.014 0.029 0.00001 -3.42e-05 0.859* 0.986 

Smoking (𝑋3𝐷1) 0.169 0.379 -0.00009 0.001 8.610 3.015 

Body weight (𝑋4) 0.007 0.013 -0.000001 1.744e-05 0.716* 0.769 

Cholesterol (𝑋5) 0.002 0.004 0.000004 -8.133e-06 0.254* 0.907 

Triglyceride (𝑋6) -0.001 0.002 -0.000005 2.436e-05 0.140 0.78 

Blood sugar levels (𝑋7) 0.002 0.007 -0.000009 3.301e-05 0.491* 1.019 

𝝉 = 𝟎. 𝟐𝟓 

Intercept  -271.685* 2.008 -0.0121 0.033 -303.529* 409.461 

Gender(𝑋1𝐷1) 0.046 0.082 0.0005 0.0008 -2.441 16.92 

Age (𝑋2) 0.014* 0.016 0.0001 0.0002 0.864* 0.991 

Smoking (𝑋3𝐷1) 0.205 0.426 0.0015 0.003 1.124 8.817 

Body weight (𝑋4) 0.009 0.018 0.00004 0.0001 0.847* 0.927 

Cholesterol (𝑋5) 0.002 0.004 0.00001 4.130e-05 0.319 0.93 

Triglyceride (𝑋6) -0.00001 0.002 -0.000002 7.677e-06 0.403 0.941 

Blood sugar levels (𝑋7) 0.0001 0.001 0.00001 3.802e-05 0.755* 0.944 

𝝉 = 𝟎. 𝟓𝟓 

Intercept  -155.370* 1.447 0.808* 0.459 -307.137* 391.607 

Gender(𝑋1𝐷1) 0.015 0.035 -0.002 0.008 -1.378 6.795 

Age (𝑋2) 0.013* 0.013 0.001 0.003 1.088* 0.611 

Smoking (𝑋3𝐷1) 0.210 0.435 0.019 0.052 0.711 6.781 

Body weight (𝑋4) 0.009* 0.018 0.0009 0.002 0.575* 0.638 

Cholesterol (𝑋5) 0.002* 0.004 0.0001 0.0004 0.468 0.825 

Triglyceride (𝑋6) 0.0002 0.0002 -0.00002 0.0001 0.699* 0.748 

Blood sugar levels (𝑋7) 0.0003 0.0006 -0.00003 0.0001 0.989* 0.206 

𝝉 = 𝟎. 𝟕𝟓 

Intercept  -109.947* 2.147 0.987* 0.075 -291.114* 368.275 

Gender(𝑋1𝐷1) 0.002 0.039 -0.0002 0.001 2.516 7.036 

Age (𝑋2) 0.016* 0.019 0.00008 0.0002 0.951* 0.621 

Smoking (𝑋3𝐷1) 0.267 0.557 0.001 0.0027 13.118 21.223 

Body weight (𝑋4) 0.012 0.023 0.00007 0.0002 0.716* 0.547 

Cholesterol (𝑋5) 0.003 0.005 0.00001 4.123e-05 0.567 0.967 

Triglyceride (𝑋6) -0.00002 0.0001 0.0000004 7.345e-06 0.721* 0.753 

Blood sugar levels (𝑋7) 0.00009 0.0001 0.000002 4.7495e-06 1.073* 0.159 

𝝉 = 𝟎. 𝟗𝟓 

Intercept  196.37 3.990 0.989* 0.035 -236.146* 324.122 

Gender(𝑋1𝐷1) -0.0017 0.029 0.0003 0.0001 2.637 6.042 

Age (𝑋2) 0.0016 0.032 0.0002 0.0006 0.608* 0.984 

Smoking (𝑋3𝐷1) 0.2625 0.545 0.0003 0.0015 1.379 3.266 

Body weight (𝑋4) 0.0184 0.021 0.00001 5.5496e-05 0.804* 0.354 

Cholesterol (𝑋5) 0.0026 0.005 0.000004 1.7429e-05 0.616* 0.915 

Triglyceride (𝑋6) -0.00001 0.0006 0.000005 2.4975e-05 0.709* 0.758 

Blood sugar levels (𝑋7) -0.0001 0.0002 0.000008 3.3103e-05 1.094* 0.236 

*Significant at 𝛼 = 0.05.       

 
 

 

TABEL 3. 

 MSE FOR EACH SELECTED QUANTILE MODEL 

Quantile Methods MSE 

𝜏 = 0.05 BBQR 

BBLQR 

BBALQR 

18.963 

0.562 

0.282 

𝜏 = 0.25 BBQR 

BBLQR 

BBALQR 

2.153 

0.553 

0.530 

𝜏 = 0.55 BBQR 

BBLQR 

BBALQR 

0.435 

0.409 

0.402 

𝜏 = 0.75 BBQR 

BBLQR 

BBALQR 

0.695 

0.442 

0.430 

𝜏 = 0.95 BBQR 

BBLQR 

BBALQR 

6.264 

0.446 

0.435 

 

 
TABLE 4. 

 ODD RATIO IN QUANTILE 𝜏 = 0.05 

Independent Variables Mean (𝛽)̂ Odd Ratio 

Gender(𝑋1𝐷1) 0.369 1.446 

Age (𝑋2) 0.859 2.360 

Smoking (𝑋3𝐷1) 8.610 5.486 

Body weight (𝑋4) 0.716 2.046 

Cholesterol (𝑋5) 0.254 1.289 

Triglyceride (𝑋6) 0.140 1.150 

Blood sugar levels (𝑋7) 0.491 1.633 
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Based on the results presented in Table 3, we see that 

BBALQR produce the smallest MSE than BBQR and 

BBLQR. Based Table 2 and 3 the best model obtained for 

hypertension status in Arosuka Hospital is a model using the 

Binary Bayesian Adaptive LASSO quantile regression at 

quantile 0.05 which is formulated:   

 

 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑖) =  −299.877 + 0.369𝑋1𝐷1 +
0.859𝑋2 +  8.610𝑋3𝐷1 + 0.716𝑋4 +  0.254𝑋5 +
0.140𝑋6 + 0.491𝑋7. 

 

 (23) 

  

 

Based equation (23) can be interpreted by looking at odds 

ratio values in Table 4. Based on the Table 4 we can inform 

that if there is an increase in age 𝑋2 for 1 year, the level of 

hypertension status increases by 2.360 times. If there is an 

increase in body weight 𝑋4 by 1 kg, the hypertension 

increases by 2.046 times. If there is a 1 mg/dL increase in 

cholesterol 𝑋5 , the hypertension level increases by 1.289 

times. If there is a 1mg/dL increase in triglyceride 𝑋6, the 

hypertension level increases by 1.150 times. If there is a 

1mg% increase in blood sugar levels 𝑋7 , the hypertension 

level increases by 1.633 times. From the BBALQR model 

obtained in accordance with the model above, it is obtained 

that the status of hypertension in Arosuka Solok hospital, we 

can control the significant independent variables to reduce the 

risk of developing hypertension. 

 

The Bayesian Adaptive LASSO binary quantile regression 

method (BBALQR) using MCMC Gibbs Sampling algorithm 

is proven to be easier and more practical to apply and 

produces better estimators than estimators produced by 

ordinary quantile regression. From the case study described 

above, the best model is obtained at quantile 0.05, because it 

has small MSE. Variables that significantly affect 

hypertension status in Arosuka Solok Hospital are weight, 

age, cholesterol, smoking and blood sugar levels based on 

simulations conducted with this method. However, we are 

convinced that also in many other fields researchers could 

benefit from attractive properties of the Bayesian Adaptive 

LASSO combined with binary quantile regression.  

 

IV. CONCLUSIONS 

 

This study aims to model hypertension status as a binary 

response variable with a Binary Bayesian Quantile 

Regression approach combined with the Adaptive Lasso 

technique. The results show that this approach is able to 

effectively handle data with non-normal distribution, 

heteroscedasticity, as well as provide flexibility in evaluating 

the effect of predictor variables on various quantiles of the 

conditional distribution.  

The Bayesian Binary Quantile Regression with Adaptive 

Lasso method also proved to be able to perform variable 

selection automatically and efficiently, resulting in a 

parsimonious yet accurate model. Several significant 

predictor variables for hypertension status were identified at 

certain quantiles, indicating that the effect of predictor 

variables on hypertension is not homogeneous across the 

distribution of patient conditions. 

In this paper, we have presented a Bayesian approach for 

binary quantile regression, binary quantile regression 

LASSO, and binary quantile regression Adaptive LASSO. 

The advantages of this approach are first, compare three 

methods the estimation and variable selection procedure is 

insensitive with regard to outliers, heteroskedasticity, or other 

anomalies that can break existing methods down. And 

second, the selection of predictive variables affecting the 

dependent variable without sensitivity to abnormal values, 

unlike other methods such as the method of ordinary least 

square.  

A Bayesian approach to this problem is to put Laplace prior 

distribution on the regression parameters. The best model is 

obtained at quantile 0.05, because it has small MSE. The 

smallest MSE value is 0.282. While the factors that 

significantly affect hypertension status are age 𝑋2 , body 

weight 𝑋4, cholesterol 𝑋5, triglyceride 𝑋6, and blood sugar 

levels 𝑋7.  
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