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Abstract—Epilepsy is one of the most common neurological
diseases worldwide. However, how to accurately detect epileptic
seizure events and their occurrence times remains a challenging
problem that is difficult to solve. Therefore, this study proposes
an electroencephalogram (EEG) signal analysis method based
on a graph capsule network combined with a spatio-temporal
spectrum hierarchical residual attention mechanism. The
aim is to improve the accuracy of epilepsy detection and
prediction by capturing spatio-temporal dependencies and
feature correlations. Firstly, a hierarchical spatio-temporal
spectrum fusion module is adopted to characterize the
dynamic spatio-temporal coupling information features of
different rhythms of epileptic EEG signals, thereby obtaining
dynamic spatio-temporal features. At the same time, a multiple
hybrid attention mechanism is used to effectively extract the
graph structure correlation information in the signal spatial
interaction space. With the help of these spatial correlation
features, a detailed and fine-grained characterization of the
spatial information is achieved. Finally, a hierarchical residual
attention graph capsule module is established. By fusing
multi-information of the graph structure in the time domain,
frequency domain, and spatial domain, the most discriminative
feature information is obtained. The experimental results show
that this method exhibits certain effectiveness in terms of
accuracy, sensitivity, specificity, false positive rate per hour
(FPR/h), and the area under the curve (AUC).

Index Terms—epilepsy prediction, EEG signals, deep
learning, hierarchical spatio-temporal spectral fusion features,
hierarchical residual attention graph capsule module
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I. INTRODUCTION

EPILEPSY is a transient brain dysfunction caused by the
sudden abnormal and disordered discharge of neurons

in the brain [1]. This discharge is triggered by the local or
generalized hypersynchronization of neuronal components.
Different from other neurological diseases, epilepsy is a
neurological disorder characterized by recurrent seizures,
and it is accompanied by various neuropathological changes
with increasing age. According to statistics from the World
Health Organization (WHO), approximately 2.4 million
people worldwide are diagnosed with epilepsy each year,
and the affected population exceeds 70 million. The early
mortality rate of epilepsy patients is two to three times that
of the general population [2][3][4]. In China, the overall
prevalence of epilepsy is 7.0 cases per 1,000 people, and
the annual incidence rate is 28.8 cases per 100,000 people.
The prevalence of active epilepsy (defined as experiencing
seizures within one year) is 4.6 cases per 1,000 people. It
is estimated that there are approximately 9 million epilepsy
patients in China, including 5 to 6 million patients with active
epilepsy. In addition, about 400,000 new epilepsy cases
are added each year, making it the second most common
neurological disease. Among epilepsy patients, about 70%
of them can have their conditions controlled by antiepileptic
drugs, and about 10% of them can be cured by surgery.
However, approximately one-third of patients suffer from
drug-resistant epilepsy. Since epilepsy is a syndrome with
multiple risk factors and a strong genetic tendency, its
pathogenesis is not yet fully understood. This greatly hinders
the diagnosis and treatment of epilepsy, leading to increased
morbidity and mortality, reduced social participation, and
comorbidities such as mental disorders, stigmatization, and
other complications. These factors impose a heavy burden
on patients, their families, and society [5]. In addition,
patients with uncontrolled epileptic seizures are also at risk of
permanent memory impairment, depression, anxiety, suicidal
ideation, and other mental illnesses, which seriously impair
their quality of life [6][7]. Establishing an epileptic seizure
warning system to predict seizures and take timely protective
measures can significantly reduce the risk of accidental
injuries in patients with chronic epilepsy. Meanwhile,
accurate early diagnosis and classification of seizure types
are crucial for successful treatment. Therefore, studying
the detection and prediction of epileptic EEG signals has
important clinical and social significance for improving the
quality of life of epilepsy patients [8].

Currently, the methods used for diagnosing epilepsy
in clinical practice include positron emission tomography
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(PET) [9], magnetic resonance imaging (MRI) [10], and
EEG [11]. Among them, EEG is widely applied in the
detection and prediction of epileptic EEG signals because
it can directly capture neuronal signals and continuously
monitor the electrical activities and potential characteristics
of neurological diseases [12]. Automated epilepsy seizure
detection and prediction methods based on EEG can reduce
the subjective variability caused by differences in clinicians’
experience and alleviate the recording workload of medical
staff. In the early stage, the automated detection and
prediction of epileptic EEG signals generally follow the
pattern of ”feature extraction + classifier”. The feature
extraction methods mainly include wavelet packet transform
(WPT), discrete wavelet transform (DWT), statistical time-
domain features (STFs), spike discharge rate, and nonlinear
feature extraction techniques, etc. The classifiers mainly
rely on machine learning algorithms, such as decision
tree classifier (DTC), k-nearest neighbors algorithm (KNN),
support vector machine (SVM), artificial neural network, and
ensemble classifiers, etc.

This comprehensive method that combines multiple
feature extraction methods with classifiers demonstrates a
certain degree of flexibility. It can obtain features under
different frequency transformations and magnify the fine
grained features of EEG signals, thereby enhancing the
accuracy of feature extraction from coarse to fine in EEG
signals and improving the final detection and prediction
accuracy. However, due to the highly complex phase space
and high dimensional feature information of EEG signals
themselves, this low dimensional feature extraction method
may lead to a large number of coupling relationships
between signals and make it difficult to accurately capture
spatiotemporal information. These limitations will ultimately
affect the detection and prediction accuracy of epileptic EEG
signals.

In order to further explore the deep and spatiotemporal
information of epileptic EEG signals, Gao et al. [13] adopted
a spatiotemporal multi-scale convolutional neural network
(CNN) with dilated convolutions to expand the receptive
field and systematically aggregate global information. They
also employed a feature weighting and fusion strategy based
on the attention mechanism to better integrate features and
eliminate redundant information in the dilated convolution
blocks. Ding et al. [14] proposed a signal analysis method
based on a convolutional neural network and a multi-head
attention mechanism (MHAM). Georgis Yap et al. [15]
combined a CNN with a long short-term memory network
(LSTM) and a temporal convolutional network (TCN) to
develop three unsupervised methods (CNN, CNN-LSTM,
TCN autoencoder) to reduce the workload of data annotation.
Although the LSTM and the attention mechanism are
proficient in extracting semantic relationships and improving
the accuracy of epileptic seizure detection and prediction in
deep network models combined with EEG signal analysis,
the LSTM has difficulties in capturing global information
and directly modeling the long-range dependencies in time
series. At the same time, the attention mechanism focuses
too much on the global context and is likely to overlook
time series information. In addition, CNNs that rely on
Euclidean structural spectral features to analyze time series
signals or spectrograms often ignore key information such

as the connectivity and functional connections based on the
physical distances between brain regions.

In order to capture the relationships between electrode
leads and gain an in-depth understanding of the current state
or evolutionary characteristics of the complex brain system,
this paper proposes a novel EEG signal analysis method for
epilepsy based on a spatio-temporal spectrum hierarchical
residual attention graph capsule module. By utilizing the
structural information of the EEG signal graph, this method
can obtain the physiological and pathological states of
individuals. In addition, considering the complex interactions
between different structural and functional regions of the
brain, this paper employs multiple modular subnetworks to
explore the three-dimensional multi channel relationships
of multi scale information in the time frequency space.
This generates autonomous, multi level, and diverse graph
structure features that can fully capture and integrate EEG
information with highly complex spatiotemporal interactions.
Therefore, this method coordinates the multi rhythm spatio-
temporal dependencies in the epileptic brain, which is helpful
for improving the prediction of the onset of epileptic seizures.
Finally, we introduce quantitative indicators to evaluate the
ability of the model to localize the onset of epileptic seizures.
To sum up, the main contributions of this study are as
follows:

1. By constructing a hierarchical spatio-temporal spectrum
attention module, the model can effectively capture the
complex spatio-temporal interaction features in EEG signals,
as well as the time-frequency information and spatial
relationships of multi scale EEG signals.

2. A multiple hybrid attention mechanism is established
to extract and integrate the spatio-temporal features in
EEG signals, enabling the differentiation of different spatio-
temporal states.

3. A hierarchical graph capsule module is proposed
to address the problem of missing contextual spatial
information. This module converts low-dimensional complex
information into geometric graph structure information,
thereby enhancing the model’s ability to handle complex
data.

II. METHODS

The graph structure is a data structures composed of
nodes and edges, which is used to represent various complex
relationships and connections. Generally, a directed graph G
can be represented as G = {V,U,A}, where V is the vertex
set with |V | = n nodes; U ∈ Rn×c is the node attributes,
and its i-th row Ui∈ Rc represents the features of the c-
channelindexed by node i, and A ∈ Rn×n is the adjacent
matrix, whose (i, j)th entry indicates connections from node
j to i.

To deeply explore the spatial relationships between
various attributes (such as frequency, time, and amplitude)
in electroencephalogram signals, this paper proposes a
seizure detection and prediction framework based on a
graph capsule with a hierarchical spatio-temporal spectral
residual attention network, as illustrated in Fig.1. This
method primarily comprises four subnetworks: (1)Temporal
embedding module; (2)Hierarchical spatio-temporal spectral
fusion attention module; (3)Multiple hybrid attention
mechanism; (4)Hierarchical residual attention graph capsule
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module. The following sections provide detailed information
for each step.

A. Temporal Embedding Module

To eliminate coupling factors in EEG information without
altering the signal size, a temporal embedding module is
designed. The dynamic subband EEG processed by this
module serves as input data for the hierarchical spatio-
temporal spectral fusion attention module.

Specifically, the temporal embedding module is
constructed by cascading a temporal convolutional layer
and a standard residual block. The temporal convolutional
layer integrates a 2D convolutional layer with a kernel size
of 1×3, stride of 1, padding of 1, and 4 groups, followed
by a batch normalization layer and an Exponential Linear
Unit (ELU) activation function. Subsequently, the standard
residual block sequentially contains a 2D convolutional
layer with a kernel size of 1×3 and 8 groups, a batch
normalization layer, another 2D convolutional layer, another
batch normalization layer, and a skip connection layer with
a kernel size of 1×1. Preprocessed EEG data is fed into this
temporal embedding module, and after processing, dynamic
subband EEG data is generated as output.

B. Hierarchical Spatio-Temporal Spectral Fusion Attention
Module

For further obtaining the multi scale information of the
above mentioned dynamic subband EEG, a hierarchical
spatio-temporal spectrum fusion attention module is adopted
here, which includes three sub modules: 1) hierarchical
spectrum block; 2) Multi scale time block; 3) Hierarchical
attention block. Each step will be described in detail in the
following subsection.

1) Hierarchical Spectrum Block
Considering that epileptic EEG signals exhibit varying

frequencies across different brain regions, for instance,
during seizure onset, the number of pathological spike
waves in EEG signals gradually increases, and there is
a significant difference between the average spike rate
in the pre ictal phase and the inter-ictal phase [16]. To
characterize the dynamic changes in multiple regions of EEG
signals, this paper employs Daubechies Wavelet Convolution
(Db waveConv) to model spike wave signals and further
constructs a hierarchical spectral module based on this
approach.

This module includes L-layer wavelet convolutions
(waveConv) based on Daubechies order-4 (Db4) wavelet. The
dynamic subband EEG embedded in the network is used as
input data for the periodic padding wavelet decomposition
of consecutive L-layer filled to obtain spectral details at
different scales [17]. is determined by the signal sampling
rate L = ⌊log2 f⌋ − 3, where f is the sampling rate of
the EEG signal data in the dataset, and ⌊�⌋ represents the
rounding operation.

Due to the fact that the wavelet transform process
includes a low-pass coefficient ◦ and a high pass
coefficient •, this module extracts the low frequency
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in the corresponding frequency band. By concatenating
low-frequency information and high frequency information
output data along dynamic sub bands, the frequency domain
features corresponding to the five brain waveforms with
shape Sw = (Sδ, Sθ, Sα, Sβ , Sγ) are finally obtained.

2) Multi Scale Temporal Block

Meanwhile, this paper adopts a multi scale temporal
analysis block(i. e. , five parallel time convolutional
layers (TCLs) with corresponding convolutional kernel sizes
of {k/8, k/4, k/2, k, k}) to obtain multi scale temporal
information of EEG signals. Each temporal convolutional
layer consists of a two dimensional convolutional layer
with trainable kernel parameters, a batch normalization layer
(BN), and an ELU activation function.

Then, the multi scale temporal analysis module takes
the preprocessed dynamic subband EEG as input data,
respectively, extracts the relevant features of different
frequency bands including δ, θ, α, β and γ, and finally
obtains the multi scale temporal domain features as
Tw = (tδ, tθ, tα, tβ , tγ),where tδ, tθ, tα, tβ , tγ represent the
temporal domain features corresponding to the δ, θ, α, β
and γ frequency bands.

3) Hierarchical Attention Block

After obtaining multi scale spatio-temporal information,
a hierarchical attention module is designed to capture the
heterogeneity of spatio-temporal multi domain features. This
module sequentially connects a 2D convolutional layer, a
batch normalization layer, a variant of the Squeeze and
Excitation (SE) module, an Exponential Linear Unit (ELU)
activation function, another 2D convolutional layer, another
batch normalization layer, another variant of the SE module,
another ELU activation function, and an adaptive average
pooling layer. It enables the parallel and in-depth capture of
spectral and temporal features while jointly enhancing cross-
domain channel responses.

The specific process is as follows. First, the multi
scale temporal frequency fusion features obtained from the
multi scale temporal block and the hierarchical spectrum
module are concatenated along the dimension of the
dynamic subband to obtain cross domain fusion features
UST = (sδ ⊕ tδ, sθ ⊕ tθ, sα ⊕ tα, sβ ⊕ tβ , sγ ⊕ tγ), where
⊕ represents the element-wise addition method. Secondly,
the obtained cross domain fusion features UST are convolved
and batch normalized, and then output to the variant
SE block. The variant SE block is a computational unit
that includes two steps: squeezing and excitation. The
squeezing is achieved through the adaptive average pooling
of the variant SE block, which compresses the global
spatial information of the data after cross-domain fusion
features UST are convolved and batch normalized into
a channel descriptor A ∈ R1×1×(V+V ) , fully capturing
channel dependencies. Here, is the number of channels
corresponding to the EEG signal data, and A is calculated
by a descriptive statistic. Therefore, the statistic of the V th
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Fig. 1. Overall network framework.

channel of A is defined as:

AV =
1

ρ

ρ∑
l=1

H(SV
w tVw)(V, 1, l), (1)

in which SV
w is the frequency-domain feature of the V th

channel inside the brainwave w, and w is δ, θ, α, β and
γ. According to tw = [t1w, t

2
w, . . . , t

V
w ], is the temporal-

domain feature of the V th channel inside the brainwave
w. is a channel cascade function and represents the spatial
dimension ρ.

Here, a simple self-gating mechanism is adopted to model
the channel dependencies in order to obtain the channel
weight Â that are adapted to the specific channel descriptor
A. The weight parameter Â of the V th channel is defined as
follows:

ÂV = α(W2β(W1AV )), (2)

where, and W2 ∈ R(V+V )×((V+V )/r) represent the weights
of two fully connected layers, and β(·) respectively represent
the ELU activation function and the sigmoid activation
function, is the number of EEG channels, and r is the
compression ratio parameter, which represents the bottleneck
of the self-gating mechanism.

Perform channel-by-channel operations on the captured
relevant features, adaptively recalibrate the importance of
the cross domain aggregation features UST of the five brain
waveforms in different channels, and jointly improve the
distinguishability of the features. It is defined as follows:

Ŝw = [Â1S
1
w, Â2S

2
w, . . . , ÂV S

V
w ]

T̂w = [ÂV+1t
1
w, ÂV+2t

2
w, . . . , ÂV+V t

V
w ]

(3)

Finally, through adaptive average pooling operation, the
distinguishable cross domain fusion features corresponding
to the five brain waveforms are obtained UŜT̂ = (Ŝδ ⊕
T̂δ, Ŝθ ⊕ T̂θ, Ŝα ⊕ T̂α, Ŝβ ⊕ T̂β , Ŝγ ⊕ T̂γ).

C. Multiple Hybrid Attention Mechanism

To eliminate redundant information in spatio-temporal
cross domain fusion features, the concept of cross
dimensional interaction is introduced into the channel based
attention module (CBAM) [18]. By integrating an improved
dual attention module (DAM) [19] and a tripartite attention

module (TAM) [20], a multi hybrid attention mechanism is
designed. This mechanism captures interaction information
between spatial and channel dimensions of the input tensor,
fully exploits the spatio-temporal spectral fusion features of
EEG signals, enhances the expression ability of multi scale
features in complex EEG signals, and improves the model’s
learning ability and robustness.

The multi-hybrid attention mechanism takes the output
of the hierarchical attention module as input. The data
is processed through a 2D convolutional layer and a
batch normalization layer before being fed into the
hybrid attention module. This hybrid attention module
is composed of three parallel spatial attention modules
and channel attention modules, each with three distinct
branches. Finally, the multi-hybrid fusion features U =
(µδ, µθ, µα, µβ , µγ) corresponding to different brain wave
patterns with frequencies of δ, θ, α, β and γ are obtained
[21].

D. Hierarchical Residual Attention Graph Capsule Module
To obtain the fusion feature graph information of EEG

signals, as shown in Fig.2. This paper proposes a hierarchical
residual attention graph capsule module based on a multi
layer neural network. This module is mainly composed of
three parts: the Residual Attention Graph Capsule (RAGC)
block, a fully connected layer, and a capsule attention block.

1) Residual Attention Graph Capsule Block
Transform the fused features of the above five frequency

bands into a graph representation as Gw = {Vw, Uw, Âvs},
and simultaneously depict the spatiotemporal correlation of
the epileptogenic regions under different rhythms, where
w ∈ [δ, θ, α, β, γ]. Vw is a vertex set with |Vw| = λ nodes,
and the node attributes are the spatiotemporal spectrum
fused features under Uw. The dependencies between nodes
are determined by the dynamic adjacency matrix Âvs. The
feature on node a of Gw in the l-th residual graph capsule is
represented as h

(m,l)
a , where a = 1, 2, . . . , λ. H(m,l) is the

dynamic feature of the l-th layer of the residual graph capsule
network, and H(w,0) = Uw. Therefore, the aggregator in the
l-th residual graph capsule network for Gw is defined as

ϖ(m,l)
res =

∑λ
b=1 Âa,b × α1(h

(m,l)
a )β

(m,l)
1 β

(m,l)
2∑λ

b=1 Âa,b

, (4)
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Fig. 2. Hierarchical residual attention graph capsule module.

in which Âa,b is the Âvs of the (a, b) channel, and
m corresponds to five different brain frequency bands
respectively. l = 1, 2, . . . , L − 1 represents the number of
layers. β(m,l)

1 and β
(m,l)
2 are the weight matrices in the l-th

layer, and α1(·) is the ELU activation function.
Since the coupling intensities Âa,b/

∑λ
b=1 Âa,b obtained

from different dynamic subband EEG are different under the
gating response α1(h

(m,l)
b β

(m,l)
1 )β

(m,l)
2 at different times. In

order to describe the dynamic information and local features
in the EEG signals, a residual updater ν(m,l)

res is set after the
aggregator ϖ

(m,l)
res at the l-th layer, and its definition is as

follows

ν(m,l)
res = β

(m,l)
2

(
h
(m,l)
Nb +

l−1∑
n=0

β
(m,l)
1

)
, (5)

where, h
(m,l)
Nb is the neighborhood attribute obtained from

ϖ
(m,l)
res .
According to equations (4) and (5), the formula of the

residual graph capsule network on the intracortical graph Gw

under different rhythms is obtained as follows to generate
fine spatiotemporal response feature

H(m,l+1) = α2

(
D(−1)Âa,bα1

(
H(m,l)β

(m,l)
1

)
β
(m,l)
2

+
l−1∑
n=0

H(m,l)

)
, (6)

in which l = 1, 2, . . . , L − 1 represents the layer number.
m corresponds to five different brain frequency bands
respectively. D =

∑
m Âmn

vs is the degree matrix of
Âvs.β(m,l)

1 and β
(m,l)
2 are the weight matrices in the l-th

layer. α1 and α2 are ELU activation functions.
2) Capsule Attention Block
To further capture the intrinsic relationships between local

and global aspects of EEG information, a capsule attention
module is employed. Specifically, an attention mechanism is
introduced into the dynamic routing between capsule layers.
By utilizing attention scores and transformation matrices,
this module distinguishes different temporal states of EEG
signals. The length of each capsule represents the probability
of occurrence of each state, as shown in Fig.3.

The capsi(i = 1, 2, . . . , capsσ1
) is defined to represent

the i-th node capsule. After multiplying capsi by the weight
matrix Wij(j = 1, 2, . . . , capsσ2

),the predicted feature
capsj|i containing high-level features is obtained as follows

capsj|i = Wij ⊗ capsi, (7)

where, the matrix Wij represents the internal spatial
relationship between local features and global features, and
⊗ represents the element wise multiplication operation.

Multiply the predicted feature capsj|i by different coupling
coefficients, and then obtain the state capsule capsj by
a summation operation, which is used to represent the
correlation between the key information, as follows

capsj =
∑
i

hij ⊗ capsj|i, (8)

in which, hij is the coupling coefficie nt with an equal-
probability distribution obtained after Softmax routing,
which is expressed as

hij =
econij∑
σ2

econiσ
, (9)

and, where conij is the logarithmic prior probability
initialized to 0. The log prior probability can be
discriminatively learned simultaneously with all other
weights. This process depends on the positions and types
of the two capsules, rather than the current input content.

Subsequently, in order to make the length of the state
capsule represent the probability of each state of the input
EEG signal, a squash operation is used to normalize the
vectors. This is achieved through a nonlinear activation
function to ensure that the vector length of consj falls
between 0 and 1. The formula is as follows

actj =
∥capsj∥22

1 + ∥capsj∥22

capsj
∥capsj∥2

, (10)

in which actj is the output of the activation vector of the
state capsule j.

The consistency between actj and capsj|i is evaluated by
calculating their scalar product, and this process is expressed
as

conij = conij + actij ⊗ capsj|i, (11)

where, the scalar product between actj and capsj|i is used
to update their respective coupling coefficients. If the scalar
product between actj and capsj|i is large, it proves that there
is a strong correlation between the feature capsj|i and the
activation vector actj , which indicates that this capsule is
more suitable for describing the features during the inter-
ictal or pre-ictal period. Therefore, the weight of this capsule
vector can be increased in the next iteration to dynamically
adjust the weights.
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Fig. 3. Capsule attention block.

III. EXPERIMENTATION AND RESULTS

A. Datasets

1) CHB-MIT dataset
The CHB-MIT dataset is one of the publicly available

continuous long-term epileptic seizure datasets, created by
researchers from the Massachusetts Institute of Technology
(MIT) and Boston Children’s Hospital (CHB). This
dataset can be downloaded from the following website:
https://physionet.org/content/chbmit/1.0.0/. This dataset uses
the bipolar lead technology of the international 10-20 system
to collect EEG signals from 21 electrodes, with a sampling
rate of 256 hz and a resolution of 16 bits.

This dataset was collected from 23 patients with refractory
epilepsy, totaling 24 cases (among them, cases chb21 and
chb01 were from the same patient, with an interval of 1.5
years between the two recordings. Case chb24 was added to
the dataset in December 2010 and is currently not included in
the ”Subject Information”). There are 5 male patients (aged
3 to 22 years) and 17 female patients (aged 1.5 to 19 years)
in the dataset, and the gender and age data of one patient
are missing. The dataset contains a total of 967.55 hours of
continuous EEG recordings, capturing 198 epileptic seizures.
The annotation files of this dataset provide EEG channel
information as well as the start and end times of epileptic
seizures.

The objective of the epileptic seizure prediction algorithm
is to determine that a seizure is imminent within a specific
time frame before the epileptic seizure occurs, that is, to
intervene within the Seizure Prediction Horizon (SPH) [22].
In this process, the interictal period of epilepsy is regarded
as the normal period of the patient, while the Seizure Onset
Period (SOP) is the period when the patient exhibits epileptic
symptoms. By accurately predicting the time of an epileptic
seizure, it can provide an opportunity for medical staff to
intervene, thus achieving better management and treatment
of epilepsy.

To ensure the effectiveness and rationality of the SPH and
the SOP in the epileptic seizure prediction algorithm, the
following criteria need to be met:

a). An appropriate time interval should be set between the
SPH and the SOP, so as to provide doctors, patients and their

families with sufficient time to take necessary measures to
deal with the impending epileptic seizure.

b). Premature or excessively long time intervals should be
avoided, because this will not only cause unnecessary anxiety
to patients, but also increase the difficulty of prediction.

Based on the above considerations, this paper selects
records from the CHB-MIT dataset that contain at least two
epileptic seizures and have an inter-ictal period of three hours
for the evaluation of epileptic seizure prediction. Specifically,
the pre-ictal period is defined as at least 15 minutes. For the
SPH, the signal data from 15 minutes to 1 hour before the
seizure are selected. For the inter-ictal period, the signal data
from 2 hours before to 2 hours after the seizure are used. This
setting aims to ensure the prediction accuracy while taking
into account the practical needs and response strategies of
patients and the medical team.

Fig. 4. Comparison of AUC between CNN-LSTM, TCN, and the method
used in this paper.

2) TUSZ dataset
The Temple University Hospital (TUH) EEG Seizure

Corpus (TUSZ) dataset is the only open-source EEG
dataset containing annotations for multiple types of epileptic
seizures. Considering the superiority of the TUSZ dataset
in long-term maintenance and updates, we adopted the
TUSZ v2.0.1 version updated on October 4, 2023, as the
experimental data source for epilepsy detection. Since the
sampling rates of different patients in the TUSZ dataset vary,
we resampled the EEG recordings to 256 hz.
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Fig. 5. (a)ACC comparison among STS-HGCN, TA-STS-Conv and our method.(b)SPE comparison among STS-HGCN, TA-STS-Conv and our
method.(c)AUC comparison of with and without RAGC.(d)AUC comparison of with and without LRAGC.

B. Evaluation metrics

To compare with other existing methods, this paper adopts
five of the most commonly used evaluation indicators in
epilepsy-related research to assess the overall performance of
different models on the test dataset. These five indicators are
Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), False
Positive Rate (FPR), and Area Under the Curve (AUC).

Among these indicators, ACC represents the proportion
of correctly predicted samples among all samples; the
higher this value is, the stronger the model’s ability to
distinguish between different categories. SPE represents the
proportion of correctly predicted negative results among all
actual negative results. The higher this value is, the better
the model’s ability to predict and identify the inter-ictal
period of epilepsy. SEN reflects the proportion of correctly
predicted epileptic seizures. The FPR represents the number
of incorrect predictions, and the FPR/h specifically represents
the number of incorrect predictions per hour. Finally, the
AUC is used to evaluate the classification performance of
the model, and its definition formula is as follows:

ACC =
TP + TN

TP + TN + FN + FP
, (12)

SPE =
TN

FP + TN
, (13)

SEN =
TP

TP + FN
, (14)

FPR =
FP

FP + TN
, (15)

AUC =
1

2

ξ−1∑
τ=1

(xτ+1 − xτ )(yτ − xτ+1), (16)

where, TP, FP, TN, and FN in Formulas (12) to (16) represent
true positive, false positive, true negative, and false negative,
respectively. In Formula (16), x and y are the continuous

coordinate points on the ROC curve, which are represented
by {(x1 = 0, xξ = 1)|(x1, y1), (x2, y2), . . . , (xξ, yξ)}.

C. Single Subject Experiment

To demonstrate the advantages of the proposed method
over traditional structured Capsule Networks (CapsNet) and
Graph Convolutional Networks (GCN), this paper compares
the performance of three different models for seizure
detection on the TUSZ dataset. As shown in the table I, for
the training set, 1D-CapsNet [23] and the STS-HGCN [24]
achieved average ACC of 75.21% and 81.44%, respectively,
and average SPE of 82.64% and 87.34%, respectively. In
contrast, the proposed model achieved an average accuracy of
86.28% and an average specificity of 93.47%. Additionally,
the average SEN of the comparison methods was 59.88% and
66.32%, respectively, while the proposed method achieved an
average sensitivity of 70.12%.

To demonstrate the advantages of the method proposed
in this paper over traditional structured CapsNet and GCN,
we compared the performance of three different models for
seizure detection on the TUSZ test set, with the results shown
in the test set section of the table I. The findings indicate that
the 1D-CapsNet and the STS-HGCN achieved average ACC
of 73.48% and 77.31%, respectively, and average SPE of
80.43% and 83.10%, respectively. In contrast, the proposed
model achieved an average accuracy of 84.11% and an
average SPE of 91.85%. Additionally, the average SEN of the
comparison methods was 58.35% and 61.57%, respectively,
while the proposed method achieved an average SEN of
67.74%.

To validate the effectiveness of the method proposed in this
paper for seizure classification, single-subject experiments
were conducted on the TUSZ dataset, comparing the
proposed method with LSTM, CNN-LSTM, Diffusion
Convolutional Recurrent Neural Networks (DCRNN), and
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TABLE I
RESULTS OF EPILEPTIC SEIZURE DETECTION PERFORMANCE ON THE TUSZ TRAINING SET AND TEST SET

Method Training set Test set

ACC(%) SPE(%) SEN(%) ACC(%) SPE(%) SEN(%)

1D-CapsNet 75.21 82.64 59.88 73.48 80.43 58.35
STS-HGCN 81.44 87.34 66.32 77.31 83.10 61.57
Our method 86.28 93.47 70.12 84.11 91.85 67.74

TABLE II
EXPERIMENTAL RESULTS OF EPILEPTIC SEIZURE CLASSIFICATION ON

THE TUSZ DATASET

Method ACC(%) SPE(%) F1(%) Precision(%)

LSTM 71.1 71.8 65.7 65.7
CNN-LSTM 68.5 75.4 69.5 68.4

DCRNN 77.1 79.8 72.4 61.6
Mamba 72.6 80.3 69.3 70.2

Our method 78.8 81.6 74.8 75.2

the Mamba model. As shown in the table II, LSTM, CNN-
LSTM, DCRNN, and Mamba achieved average ACC of
71.1%, 68.5%, 77.1%, and 72.6%, respectively; average
SPE of 71.8%, 75.4%, 79.8%, and 80.3%, respectively; F1
scores of 65.7%, 69.5%, 72.4%, and 69.3%, respectively;
and precision values of 65.7%, 68.4%, 61.6%, and 70.2%,
respectively. In contrast, the proposed model demonstrated
superior performance with an average ACC of 78.8%, an
average SPE of 81.6%, an F1 score of 74.8%, and a precision
of 75.2%.

In seizure prediction experiments, the effectiveness of the
method proposed in this paper was validated by comparing
it with various advanced methods on the CHB-MIT dataset.
As shown in Fig. 4, comparisons were made with advanced
traditional deep neural networks, including CNN-LSTM [15]
and TCN [15]. The results demonstrate that, for the vast
majority of patients, the AUC of the proposed method was
significantly higher than that of CNN-LSTM and TCN,
further proving the superiority of the proposed method in
predicting seizures.

To demonstrate the advantages of the method adopted in
this paper over the traditional structured CapsNet and GCN,
we compared the performance of three different models in
predicting epileptic seizures on the CHB-MIT dataset, as
shown in Table III. The results show that, on the CHB-MIT
dataset, the average ACC of 1D-CapsNet and the Spiking-
GCNN [25]reaches 85.21% and 90.71% respectively, and the
average SPE is 85.70% and 91.18% respectively. In contrast,
the model implemented in this paper has an average ACC
of 96.04% and an average SPE of 99.16%. Meanwhile, the
average FPR of the comparative methods is 0.295/h and
0.091/h respectively, while the average FPR of the method
in this paper is only 0.026/h.

To demonstrate the superior performance of the method
proposed in this paper compared to the state-of-the-art
techniques, we conducted comparative experiments with
other multi layer deep neural networks. Table IV shows
the performance of seven different methods in predicting
epileptic seizures on the CHB-MIT dataset, including
comparisons of ACC, SPE, SEN, and FPR/h. It can be seen
that the proposed method performs excellently in epileptic
seizure prediction, achieving higher accuracy, sensitivity, and

specificity, while also having a lower FPR/h.

D. Cross Subject Experiment

In this paper, the advanced nature of the proposed method
in predicting seizures was demonstrated by comparing its
performance with two models, the STS-HGCN and the TA-
STS-Conv [26], on the CHB-MIT dataset. Table V presents
the performance results of these three models on the CHB-
MIT dataset, including three metrics: SEN, FPR/h, and AUC.

In terms of average SEN and AUC, the method proposed in
this paper achieved 89.86% and 0.889, respectively, which
are superior to the 86.87% and 0.850 of the STS-HGCN,
as well as the 87.67% and 0.870 of the TA-STS-Conv.
Furthermore, the average FPR/h of the proposed method
was 0.103/h , which is significantly lower than the 0.126/h
of STS-HGCN and the 0.112/h of TA-STS-Conv.These
results indicate that, after improvement and optimization, the
proposed method performs better in distinguishing seizure
states and can more accurately differentiate between inter-
ictal and pre-ictal states.

As shown in Fig.5(a), it visually presents the performance
results of the three models in terms of average ACC across
five datasets in cross-subject experiments. It can be seen that
the method proposed in this paper achieved higher prediction
accuracy, indicating that the model used in this paper has
stronger classification ability.

As shown in Fig.5(b), it visually presents the performance
results of the three models in terms of average SPE across
five datasets in cross-subject experiments. It can be seen
that the method proposed in this paper has higher prediction
specificity, indicating better prediction and recognition of
inter-ictal periods.

E. Influence of the Networkt

Overall, compared to the traditional CapsNet structure,
the Residual Attention Graph Capsule Network (RAGC)
proposed in this paper demonstrates stronger generalization
ability. The advantage of this network lies in its ability
to effectively represent complex temporal information and
precise spatial relationships in EEG signals. By fusing
channels, it captures and integrates spatio-temporal features,
enabling more effective discrimination of seizure states.
Fig.5(c) shows the AUC results of single subject experiments,
while Table VI presents the average performance results
of the other four metrics. When processing EEG signals,
the RAGC Network has stronger representation ability and
prediction accuracy, providing a more reliable solution for
distinguishing seizure states.

After a comprehensive analysis, the Hierarchical Residual
Attention Graph Capsule Module introduced in this
paper demonstrates more significant generalization ability
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TABLE III
PERFORMANCE COMPARISON OF 1D CAPSNET, SPIKING GCNN, AND OUR METHOD ON THE CHB-MIT DATASET

Patient 1D-CapsNet Spiking-GCNN Our method

ACC(%) SPE(%) FPR/h ACC(%) SPE(%) FPR/h ACC(%) SPE(%) FPR/h

1 88.92 89.22 0.249 96.28 96.14 0.032 96.47 99.66 0.000
2 89.07 90.78 0.281 92.18 98.31 0.025 97.89 99.70 0.000
3 84.53 83.99 0.358 96.09 93.89 0.071 96.35 99.64 0.000
5 84.84 82.73 0.345 91.58 88.84 0.125 95.76 99.58 0.027
6 81.03 80.56 0.337 87.61 89.28 0.112 94.89 99.03 0.000
7 90.27 91.25 0.202 89.69 91.25 0.086 98.38 99.27 0.000
8 84.35 85.89 0.317 86.49 90.21 0.098 96.48 99.85 0.000
9 90.74 89.87 0.223 90.51 88.89 0.112 98.86 99.71 0.000
10 88.56 88.23 0.220 89.78 89.26 0.113 97.02 99.50 0.000
11 89.40 87.56 0.201 91.39 90.34 0.095 98.46 99.22 0.114
13 80.73 83.05 0.397 89.89 90.27 0.098 94.96 98.52 0.000
14 78.68 80.62 0.257 89.01 85.96 0.142 92.75 98.79 0.000
16 76.44 79.73 0.534 89.98 89.97 0.112 89.63 98.81 0.065
17 88.62 87.30 0.201 89.12 90.28 0.098 96.89 99.44 0.049
18 84.45 85.39 0.298 92.05 91.64 0.085 96.98 98.56 0.000
20 90.09 91.52 0.176 92.85 95.61 0.044 98.77 98.76 0.247
21 79.33 85.21 0.488 91.34 93.14 0.069 92.34 97.90 0.000
22 88.34 83.19 0.223 89.85 89.04 0.114 97.86 99.20 0.000
23 80.51 82.11 0.302 87.89 90.16 0.099 93.96 98.87 0.000

mean 85.21 85.70 0.295 90.71 91.18 0.091 96.04 99.16 0.026

TABLE IV
COMPARISON OF SINGLE SUBJECT EXPERIMENTAL PERFORMANCE OF THE METHOD PROPOSED IN THIS ARTICLE ON THE CHB-MIT DATASET

author method Number of patients ACC(%) SPE(%) SEN(%) FPR/h

Xu et. al RF+GBDT - 91.76 - 91.87 0.083
Kapoor et. al AdaBoost+DT+RF - 93.81 88.57 91.68 -
Hussein et. al PIL-SEG+SA 10 80.61 80.71 79.32 0.239

Lu et. al CNN-LSTM 19 80.96 68.80 78.04 -
Alizadeh et. al KP-Ki-KD+CNN 16 97.1 96.3 97.5 -

Gao et. al MSPPNet 16 - - 93.8 0.054
Our method SSHRAGC 19 96.04 99.16 94.81 0.026

TABLE V
COMPARISON OF CROSS SUBJECT EXPERIMENTAL PERFORMANCE OF THE METHOD PROPOSED IN THIS ARTICLE ON THE CHB-MIT DATASET

Grop STS-HGCN TA-STS-Conv Our method

SEN(%) FPR/h AUC SEN(%) FPR/h AUC SEN(%) FPR/h AUC

A 91.22 0.077 0.851 85.71 0.081 0.849 91.37 0.078 0.881
B 85.21 0.162 0.818 83.33 0.198 0.822 87.39 0.141 0.853
C 88.19 0.156 0.842 91.34 0.058 0.875 92.01 0.128 0.918
D 86.11 0.041 0.902 90.51 0.044 0.915 91.30 0.096 0.914
E 83.64 0.192 0.837 87.45 0.177 0.887 89.24 0.072 0.901

mean 86.87 0.126 0.850 87.67 0.112 0.870 89.86 0.103 0.889

TABLE VI
PERFORMANCE COMPARISON OF THE EFFECTS OF RESIDUAL ATTENTION
GRAPH CAPSULE NETWORK AND HIERARCHICAL RESIDUAL ATTENTION

GRAPH CAPSULE MODULE ON CHB-MIT DATASET

method ACC(%) SPE(%) SEN(%) FPR/h

Without RAGC 90.32 94.57 89.23 0.159
With RAMG 93.75 95.31 90.48 0.126

Without LRAGC 93.75 95.31 90.48 0.126
With LRAGC 96.01 98.92 93.14 0.038

compared to the Single layer Residual Attention Graph
Capsule Network (LRAGC). Its advantage lies in the
ability to effectively represent complex temporal information
and precise spatial relationships in EEG signals. By
fusing channels, it captures and integrates spatio-temporal
features, enabling more effective discrimination of seizure
states. Fig.5(d) shows the AUC results of single-subject
experiments, while Table VI lists the average performance

results of the other four metrics.

IV. CONCLUSIONS

This paper proposes a novel epileptic seizure predictor
based on EEG and implements a spatio-temporal spectrum
analysis method based on hierarchical residual attention
graph capsules for analyzing epileptic EEG signals. We adopt
a sub-network, the hierarchical spatio-temporal spectrum
fusion attention network, to capture the temporal states
of the epileptic cortex under different rhythms, and use a
multiple hybrid attention convolutional network to capture
spatial couplings and eliminate false couplings. Finally, by
introducing the hierarchical residual attention graph capsule
module, we overcome the limitations of convolutional neural
networks in perceiving the relative positional relationships
between local features and address the deficiencies of
traditional capsule networks in handling EEG biosignal
features. When tested on the publicly available TUSZ
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epileptic EEG dataset, for the epileptic seizure prediction
experiment of a single subject, the average accuracy is
84.11%, the average specificity is 91.85%, and the sensitivity
is 67.74%. For the epileptic seizure classification experiment
of a single subject, the average accuracy is 78.8%, the
average specificity is 81.6%, the F1 score is 74.8%, and the
precision is 75.2%. When tested on the publicly available
CHB-MIT epileptic EEG dataset, for the single subject
experiment, the average accuracy is 96.04%, the average
specificity is 99.16%, and the average FPR/h is 0.026/h. In
the cross subject test, the average sensitivity is 89.86%, the
average AUC is 0.889, and the average FPR/h is 0.103/h,
which further improves the accuracy of the epileptic seizure
prediction method.
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