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A Multi-Branch Transformer Model Integrating
Temporal Spectral and Spatial Features for
Four-Class EEG Signal Classification
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Abstract—This paper proposes a multi-branch Transformer
model that integrates time-domain, frequency-domain, and
spatial-domain feature extraction for the four-class EEG
classification task. To fully exploit the multi-dimensional
information of EEG signals, we design a parallel multi-branch
architecture. In this architecture, time-domain features are
extracted through a combination of convolutional neural
networks (CNNs) and Transformer encoders;
frequency-domain features are obtained via short-time Fourier
transform (STFT) and further optimized by convolutional
layers; spatial-domain features are processed using depthwise
separable convolution and spatial attention mechanisms,
dynamically adjusting the weights of spatial features to
enhance the model's feature extraction capability. To further
improve model performance, we introduce a dynamic weight
adjustment mechanism, enabling the model to automatically
learn and optimize the importance of time-domain,
frequency-domain, and spatial-domain features and adjust the
contribution of each feature branch according to different task
requirements, significantly enhancing the model's accuracy
and robustness. Additionally, we employ data augmentation
and cross-validation strategies to enhance the model's
generalization ability. Experimental results show that the
proposed model achieves  significant  performance
improvements on the BCI Competition 2a public dataset.
During the cross-validation process, the model's highest
accuracy and average accuracy on the validation set reached
93.36% and 92.79%, respectively, demonstrating its superior
classification ability and strong generalization. The innovation
of this paper lies in: by integrating time-domain,
frequency-domain, and spatial-domain information, a novel
multi-modal feature processing framework is proposed, and by
combining spatial attention mechanisms and dynamic weight
adjustment mechanisms, the accuracy and reliability of EEG
classification are effectively improved.

Index Terms—Convolutional Neural Network, Short-Time
Fourier Transform, Transformer, Brain Computer Interface,
Motor Imagery
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I. INTRODUCTION

RAIN Computer Interface (BCI) technology, by

directly decoding electroencephalogram (EEG) signals,
has established an efficient communication channel between
the human brain and external devices, demonstrating broad
application prospects in intelligent healthcare, rehabilitation
assistance, and virtual reality fields [1]. Among them, motor
imagery, as an autonomous control paradigm without
external stimulation, generates recognizable EEG signals
through the brain's imagination of specific limb movements,
providing a natural control method for BCI systems [2].
However, motor imagery EEG signals generally have low
signal-to-noise ratios and significant inter-individual
differences, which directly affect the accuracy of feature
extraction and classification, becoming one of the core
bottlenecks restricting the development of BCI technology
[3].

Traditional EEG signal feature extraction methods, such
as Wavelet Transform (WT) and Common Spatial Pattern
(CSP), mainly rely on manual feature extraction and shallow
classifiers. Wavelet Transform extracts local features
through time-frequency analysis and is suitable for the
analysis of time-frequency characteristics, but its limitations
are significant. The manual design of feature extraction
processes is vulnerable to noise and individual differences,
and classification based on wavelets or CSP typically
employs simple classifiers like Support Vector Machine
(SVM), which struggle to effectively capture complex
nonlinear relationships. For instance, Yang et al. used CSP
for feature extraction of EEG signals and SVM as the
classifier, achieving an accuracy rate of 78.7% [4]. Due to
the frequency band selection issue of CSP, He et al. explored
the limitations of traditional feature extraction methods
(such as CSP), especially their robustness in the presence of
individual differences and noise [5]. With the introduction of
deep learning techniques, traditional methods have
gradually been replaced by automated and adaptive feature
extraction and classification methods. Feature extraction is a
crucial step in EEG signal processing and directly affects
classification performance. Traditional methods like CSP
maximize inter-class differences through spatial projection,
but they have poor robustness to individual differences and
noise, particularly in complex multi-channel backgrounds
[6]. In contrast, deep learning, especially Convolutional
Neural Networks (CNN), can automatically learn
multi-level and multi-scale features, avoiding the limitations
of manual feature selection. Mahamune et al. proposed a
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model combining CSP and CNN, achieving a classification
accuracy of 75.03% on the BCI Competition IV 2a dataset,
an improvement of over 10% compared to traditional
methods [7]. Gao et al. proposed a model combining Gated
Recurrent Unit (GRU) and CNN, achieving a classification
accuracy of 80.7% on the BCI Competition IV 2a dataset
and enhancing the robustness of deep learning in decoding
small-scale EEG datasets [8].

Traditional EEG signal classification methods often rely
on traditional classifiers such as support vector machines
(SVM), which perform well when dealing with linear and
low-dimensional data. Shi et al. proposed a pattern
recognition method that used the improved squirrel search
algorithm (ISSA) to optimize support vector machine
(SVM), extracted the time domain features of EEG signals
and directed them to SVM as feature vectors for
classification and recognition, and achieved good results [9].
However, with the increase in data dimension and
complexity, traditional classification methods are faced with
overfitting, difficulty in feature selection, and low
computational efficiency. In this context, deep learning
methods have gradually become an important tool in the
field of EEG signal classification.

In recent years, CNN has become a mainstream method
for EEG signal processing due to its powerful spatial feature
extraction capability and has been widely used in EEG
signal classification [10]. By stacking convolution layers
and pooling layers, CNN can effectively and automatically
extract features and perform end-to-end classification [11].
For example, Craley et al. adopted multichannel CNN and
short and long-term memory (LSTM) methods to further
improve the robustness and accuracy of EEG signal
classification [12]. However, it is difficult for CNN to
effectively capture the global time dependence when
processing long time series data [13]. Tan et al. found that
CNNS are not good at modeling long-distance dependencies
and obtaining global context information [14].

To overcome this shortcoming, the Transformer model
has been developed. The Transformer model is a deep
learning architecture based on a self-attention mechanism to
capture long-term dependencies in EEG signals. With the
self-attention mechanism, the Transformer can dynamically
adjust the weights at different time points according to the
global context of the signal, thus improving the accuracy of
classification. The EEG classification method based on the
Transformer proposed by He et al. shows its advantages in
processing long-time series data [15].

In addition, CNN and Transformer are emerging forces in
EEG signal classification with their powerful automatic
learning and characterization capabilities. By combining the
model of CNN and Transformer, Li et al. achieved better
performance in processing EEG signals, overcoming the
deficiency of medium and long-distance dependence of
CNN and the deficiency of local features in the Transformer
[16]. Lu et al. proposed integrating CNN and Transformer
into a single framework model in parallel, which can better
interact and integrate local and global features [17].

Traditional methods such as CSP are prone to the problem
of decreasing classification accuracy under the condition of
large noise and individual differences. In contrast, deep

learning-based methods are more robust and can
automatically adjust feature extraction and classification
strategies, thereby improving classification accuracy.
Traditional methods generally only focus on spatial features
or temporal features, while deep learning-based methods can
handle both spatial features and temporal features at the
same time, further improving the accuracy and
generalization ability of classification.

In this paper, a four-classification model based on the
fusion of CNN and Transformer is proposed. The spatial
features of EEG signals are extracted by CNN; the temporal
features are captured by the Transformer's axial attention
mechanism. CNN can automatically extract spatial features
from EEG signals, avoiding the process of relying on
manual feature selection in traditional methods. Meanwhile,
Transformer enhances the modeling capability of timing
information by modeling timing features with axial attention.
The model can not only model the spatial features of the
input signal but also capture the timing dependence of the
signal through the self-attention mechanism of the
Transformer, thus fully integrating the advantages of spatial
feature extraction and timing modeling, and improving the
accuracy and robustness of feature extraction.

The four-classification model based on the fusion of CNN
and Transformer proposed in this paper shows high
classification accuracy and robustness in motion
imagination tasks. By combining CNN and Transformer, we
not only overcome the limitations of traditional methods but
also improve the adaptive and classification performance of
EEG signal processing. The experimental results show that
the model can process EEG signals in complex backgrounds
and achieve excellent performance in motion imagination
BCI tasks, which have great practical application potential.

II. METHOD

The aim of this study is to comprehensively analyze EEG
signals through a multi-branch deep learning network and to
improve the classification accuracy by using the fusion of
time-domain, frequency-domain, and spatial-domain
features. In the process of EEG signal processing, the
preprocessing steps, including bandpass filtering, artifact
removal, and standardization, are first carried out to ensure
signal quality and remove noise. Then, we use a short-time
Fourier transform (STFT) to extract the local frequency
features of the signal from the perspective of the frequency
domain. In order to further improve the performance of the
model, we use a deep neural network architecture with three
branches: time domain, frequency domain, and spatial
domain, and capture the information of EEG signals in these
three dimensions by convolutional neural network (CNN)
and depth-separable convolution. The features extracted
from each branch are fused by concatenation, and the final
classification task is completed by the fully connected layer.

In addition, the study introduces Transformer encoders to
enhance the modeling capability of timing signals, using
their self-attention mechanism to capture long-term
dependencies. In the training process of the model, adaptive
learning rate adjustment and cross-validation techniques are
combined to avoid overfitting and ensure the generalization
ability of the
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Fig. 1. Timing diagram of a complete test of BCI Competition IV 2a data set

model. Through these innovative methods, this study
expects to achieve higher accuracy and stronger robustness
in EEG signal classification tasks.

A. Data Acquisition

The BCI Competition IV 2a dataset contains EEG
recordings from nine individuals performing four distinct
motor imagery tasks: left hand (type 1), right hand (type 2),
foot (type 3), and tongue (type 4). The experiment was
structured into six sessions, each comprising 48 trials.
Participants were seated comfortably in an armchair facing a
21-inch LCD screen. At the start of each trial (t =0 s), a
fixed "+" symbol appeared on the black screen,
accompanied by a brief auditory cue. Two seconds later (t =
2 s), an arrow pointing left, right, downward, or upward was
displayed for approximately 1.25 s, corresponding to the
four motor imagery tasks: left hand, right hand, feet, and
tongue. During this phase, subjects imagined executing the
indicated movement until the "+" symbol disappeared at t =
6 s. Following this, they rested briefly before the screen
turned black again. Each trial lasted about 8 seconds on
average. The timing of a full trial is illustrated in Figure 1.

B. Data Preprocessing

In this study, EEG signals first need to undergo data
preprocessing to eliminate noise and artifacts. We use the
MNE library to load raw EEG data and perform a series of
processing on it. First, bandpass filtering is applied to the

EEG signal with a frequency range of 8 Hz to 30 Hz. This
pass-through filter can effectively remove low-frequency
noise (such as myoelectric artifacts) and high-frequency
noise (such as electrical interference), thereby preserving the
main signal components associated with the electrical
activity of the brain. Then, after filtering, we normalize the
EEG signal to ensure that the signal amplitude is in the same
range for each channel, usually using a normalization
method of zero mean and unit variance. In addition, we also
used artifact removal techniques, especially the interference
of EEG signals by electrical ocular artifacts (EOG). By
labeling and excluding the electrodes containing the
ophthalmic electrical signal (e.g., EOG-left, EOG-central,
EOG-right), we can significantly improve the quality of the
signal and reduce noise caused by non-brain-derived
activity.

After data preprocessing is completed, EEG signals are
divided according to the event markers in the experimental
design to generate signal segments with multiple time
windows. In order to enhance the robustness of the model,
we also use data enhancement techniques to add Gaussian
noise to the signal to simulate different -electrical
disturbances and limit the enhanced signal to the amplitude
range of [-1, 1] through signal clipping. The enhanced data is
used together with the original data for model training, thus
increasing the diversity of training data and helping to
improve the generalization ability of the model. The EEG
preprocessing process is shown in Figure 2.
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Fig. 2. Flow chart of EEG preprocessing

Volume 52, Issue 8, August 2025, Pages 2883-2892



TAENG International Journal of Computer Science

64 Filters(3*3)

Raw EEG o

-
-

0000

sjouuey)

A

Times

@:

1D Conv

64 Filters(3*3)

)

L L 1 I

l
O=0000

@

,,

1D Conv Multi-Head Global
Attention AveragePooling

Fig. 3. Time domain feature extraction diagram

C. Feature Extraction

In order to further improve the accuracy of EEG signal
classification, a multi-branch deep learning network
structure combining time-domain, frequency-domain,
spatial-domain features is proposed. In this network, the
time-domain branch, the frequency-domain branch and the
spatial-domain branch, respectively, process different
features from the EEG signal and fuse them to form the final
classification decision. This method makes full use of the
information of EEG signals in different feature Spaces to
enhance the classification ability.

1)Time domain features: First, the time-domain branch
uses a one-dimensional convolutional neural network
(ConvlD) to process the EEG signals. This branch can
capture the local dependence of the signal in the time
dimension through the convolution operation so as to
identify the short-term change pattern in the EEG signal.
After the convolution operation, we also introduce the ReLU
activation function to enhance the nonlinear representation
capability. In the process of capturing time domain features,
we have added a Transformer encoder to the time domain
branch in order to handle long time series dependencies. The
ability to model EEG signal sequences can be improved by
using the self-attention mechanism to effectively capture the
long-range dependent information of the signal. Time
domain feature extraction is shown in Figure 3.

First, the local time features of EEG signals are extracted
by a one-dimensional convolution layer. Through sliding
window operation, ConvlD is able to learn short-term
dependencies in time dimension to extract local patterns in
EEG signals [18]. Given input EEG segmentX € RCxT
(where C represents the number of channels and T represents
the time step), one-dimensional convolution is calculated as
follows:

k=1
W' =0 o Px, +b") M
j=0

where: h” is the feature after the layer convolution, K is the

size of the convolution kernel, w;l) is the weight of the

convolution kernel and 5” is the bias term, f(e) is the

activation function (ReLU). Through the convolutional layer,
the model extracts the features of the short-term dependence
relationship.

To capture long-term time dependencies, introduce a
Transformer Encoder. This module models long-term
dependence through multi-head self-attention mechanisms:

KT
Attention(Q, K, V) = softmax 0

Ja

V ©))

Among them, Q, K, and V are the query, key, and value
matrix, respectively, and dk is the dimension of the key.
Different time relationships are learned in parallel by
multiple attention heads, and the results are finally
concatenated.

2)Frequency domain features: To extract useful
frequency-domain features from EEG signals, we use the
short-time Fourier transform (STFT). STFT is an analytical
method that can provide time and frequency localization
information and is especially suitable for analyzing
non-stationary signals such as EEG[19]. With STFT, we are
able to convert the EEG signal into a spectrogram to reveal
the frequency composition of the signal and its properties
over time.

In this study, we applied STFT to the time series signals of
each EEG channel, using a sliding window of 32 sampling
points for the Fourier transform. The selection of this
window size is based on the consideration of the spectral
characteristics of the signal and the experimental
requirements. After STFT calculation, the signal is
converted into a two-dimensional matrix, where each row
represents a frequency component within a time window,
and the columns correspond to a different frequency range.
This spectrum map provides a rich set of frequency-domain
features for subsequent deep-learning models, helping them
capture potential frequency patterns in the signal. Frequency
domain feature extraction is shown in Figure 4.
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Fig. 4. Frequency domain feature extraction diagram

First, the original time domain signal is converted to the
frequency domain by a short-time Fourier transform (STFT).
The goal of STFT is to analyze the frequency component of
a signal over time, as follows:

k=1 k-1
) _ 0 ()
ht(f - f(zzwm),nxi+m,j+n + b()) @
m=0 n=0

where: h{lj is the feature after the / layer convolution, K
is the size of the convolution kernel, w,(,fn is the weight of

the convolution kernel, 57 is the bias term, f(-) is the
activation function (ReLU). Through the convolutional
layer, the model extracts the features of the short-term

dependence relationship.

In order to capture long-term time dependencies, a
Transformer Encoder must be introduced.

3)Frequency domain features: The branch is processed
based on the spectral diagram obtained by the short-time
Fourier transform. We apply two-dimensional
convolutional neural networks (Conv2D) to spectral
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graphs to extract features from both spatial and frequency
dimensions. The convolution operation can not only
extract the frequency components of the signal but also
capture the changes in the spectrum between different
times Windows. Through layer-by-layer convolution and
pooling operation, the model gradually extracts more
complex features in the frequency domain, which helps to
identify frequency patterns in EEG signals.

Spatial branches are processed by Depthwise
Separable Convolution. Deep separable convolution can
reduce computational complexity while maintaining
strong feature extraction capability. This branch
processes the spatial information of EEG signals to
capture the contribution of different spatial regions to the
signals. In addition, we introduce a spatial attention
mechanism to further enhance the model's focus on key
spatial regions, thereby improving the model's sensitivity
to spatial features in the signal. Spatial feature extraction
is shown in Figure 5.

Fig. 5. Spatial feature extraction map
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By dividing standard convolution into two steps, the depth
separable convolution reduces the computational
complexity of the model and can extract spatial features
effectively. The first is deep convolution, where each input
channel (electrode) has an independent convolution kernel.
Then, a point-by-point convolution is performed, combining
the outputs of each convolutional channel. The formula for
depth-separable convolution is as follows:

— (d)
Yi,j - in+m,j+n * ZUm,n (6)
mn
— ®)
Zi,j - zxi+m,j+n * zD-m,n (7)
mn

where: x is the input signal (such as EEG signal), y is the

feature after deep convolution, @@ and @' is the
convolution kernel of deep convolution and point-by-point
convolution, z is the final convolution feature. This method
not only ensures feature extraction but also reduces the
amount of computation, which is especially suitable for
multi-electrode data processing.

The spatial attention mechanism enhances the model's
focus on key spatial regions by calculating the importance of
each location and giving greater weight to important
locations. Common spatial attention mechanisms include
extracting spatial features using Avg Pooling and Max
Pooling, then combining the two to generate a spatial
attention map, and finally weighing the original features.
Spatial attention is calculated as follows:

A = a(Conv(Concatenate(AvgPool(X), MaxPool(X))))
@®)

where, X is the input feature (the output from the
convolution layer), AvgPool(X) and MaxPool(X) is the

average and maximum pooling operation, respectively,
A is the spatial attention diagram generated by the
convolution operation, used to weight the input feature.
Through the above process, spatial convolution and
spatial attention mechanisms extract the spatial features
of EEG signals. Finally, we carry out Global Average
Pooling on the spatial features to aggregate the features of
each spatial location into a single value, which is used as
the output feature of the spatial branch. The global
average pooling formula is as follows:
;] ALY
Fspatial = W;Z]‘XU (9)

J=

where H and M are the height and width of the spatial

feature map, respectively, X, ; is the eigenvalue of the

i,

spatial position (i, j) .

D.Data fusion and classification

After the feature extraction stage is completed, we fuse
the output features of the time domain, frequency domain ,
spatial domain branches. Specifically, the outputs of the time,
frequency, and spatial branches are spliced into a

high-dimensional feature vector and fed into a fully
connected layer for final classification. Before fusing
features, we introduced a dynamic weight learning module,
which is able to automatically learn the importance of
different branches and dynamically adjust the weights based
on each branch's contribution to the final classification result.
The dynamic weights are calculated by an additional fully
connected layer, and the output features of the time domain,
frequency domain, and airspace branches are weighted to
form a weighted feature vector.

The fully connected layer maps these weighted features to
the classification space through the multi-layer neural
network and finally outputs the category label. In order to
avoid overfitting and ensure the stability of the model on
different data sets, we use a 5-fold cross-validation. Each
break is trained using a different training set and a different
verification set. In addition, an adaptive learning rate
adjustment mechanism (such as ReduceLROnPlateau) is
adopted in the training process, which automatically adjusts
the learning rate according to the change in the performance
of the verification set to accelerate convergence and avoid
falling into the local optimal solution. To enhance the
generalization ability of the model, we used Dropout layers
during training to randomly discard the output of some
neurons, reducing the risk of overfitting.

In the time domain branch, we introduce a Transformer
encoder to improve the modelling ability of the model for
time series data. Through its self-attention mechanism,
Transformer can capture long-term dependencies in
sequence data, which is particularly important for long-term
changes in EEG signals [20]. The Transformer encoder in
each branch uses a multi-head self-attention mechanism to
learn important features in the signal in multiple subspaces,
enhancing the model's timing modeling capabilities. Feature
fusion is shown in Figure 6.

First, the features of the time domain, frequency domain ,
and airspace branch are Concatenated to form a
higher-dimensional feature vector. Assuming that the output
features of the time domain, frequency domain, airspace

branches are f,, - fj,, andf,,;, and respectively, then

time

the fused features can be expressed as:

[f

time’ ffreq ’ fspatial

] 10)

fcombined -

where, f,,, is the output of the time domain branch, f,, is

ime

the output of the frequency domain branch, f is the

spatial
output of the spatial branch. The linked feature f_,,,;;,.; Will

contain the feature information for all three branches.

In order for the model to automatically learn weights
based on the importance of each branch, we introduce a
dynamic weight learning module that adjusts the
contribution of each branch by calculating the weight of
each branch. The weights output by this module are
normalized by the softmax activation function, ensuring that
each weight is in the range [0,1] and that the ownership
weight adds up to 1. The formula for weight learning is as
follows:

W -ombined soft max(wﬁlsiun f -ombined ) (1 1)

C C
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Fig. 6. Spatial feature extraction map

where, W, is the learnable weight matrix used to

calculate the weights, the shape is [d 3] , where

combined >

d ompinea 15 the dimension of the fused features. W_,,pineq

is the weight vector of the calculated three branches,
representing the importance of the time domain, frequency
domain and spatial features. With the softmax function, the
resulting weights can be expressed as:

Wcombined = [atime > afreq > aspatial ] (1 2)

where, @ A gy and @, are the weights of the time

time ’
domain, frequency domain and spatial domain branches,
respectively.

Using the resulting weights o A4y and

time ’ spatial
weighted summation of the features of each branch, the final
fusion feature representation is obtained:

-f

fﬁnal =a time + afreq f ta

freq fspati al (1 3)

time spatial

where: f,, is the final weighted feature representation that
will serve as the input to the classifier.

E. Training

The Adam algorithm is used as the optimizer and the
cross-entropy loss function is used to measure loss . The
optimizer formula is as follows:

L=-Zy><log(y_pred) (14)

where L is the value of the loss function, y is the One-Hot
encoding of the real label and y_pred is the predicted output
value.

III. EXPERIMENT AND RESULTS

A. Experimental Settings

The EEG signal preprocessing and classification models

of the experimental environment and MI task were
constructed using Python, MNE library, and TensorFlow
library, respectively, and ran on a Lenovo Yoga 4s notebook
equipped with an AMD 5800H processor and 16GB
memory. On the experimental data of a single subject, 200
epochs were carried out in the training process, the batch
size was set to 32, and the learning rate was 0.001. The data
set is divided into the training set and the test set by the ratio
of 8:2, and the training set is divided by the 50-fold
cross-validation. The training set is used for model training
and parameter tuning, while the test set is only used to
evaluate the final performance of the model.

The algorithm proposed in this paper is combined with
bidirectional ~ convolutional =~ LSTM(ConvLSTM)[21],
compact multi-branch one-dimensional convolutional
Neural network (CMO-CNN)[22], fused compact
convolutional neural network (CCNN), gated recurrent unit
(GRU)[23], convolutional neural network (CNN) and long
short-term memory (LSTM) combined with CLRNet[24] for
comparison. Accuracy is selected as the evaluation
parameter. Here, TP represents the number of true positives,
FP represents the number of false positives, TN represents
the number of true negatives, and FN represents the number
of false negatives.

TP represents the number of true positives, FP represents
the number of false positives, TN represents the number of
true negatives, and FN represents the number of false
negatives.

Accuracy = N 15
y

B. Comparative test

The accuracy comparison results between the proposed
algorithm and other comparison methods on the data set of
BCI Competition IV 2a are shown in Table 1. The highest
classification accuracy and the average classification
accuracy reached 91.78% and 90.57%, respectively.
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TABLE I

ACCURACY (%) COMPARISON RESULTS ON THE BCI COMPETITION IV 2A DATA SET
Subject ConvLL.STM CMO-CNN CCNN-GRU CLRNet Ours
1 74.56 81.44 87.55 90.45 92.33
2 72.59 83.57 85.44 91.56 93.76
3 75.21 84.25 88.31 89.54 93.23
4 73.66 82.95 84.82 89.33 93.59
5 74.25 84.28 87.21 88.74 92.90
6 71.89 83.95 85.65 90.58 91.69
7 74.81 80.84 87.95 89.12 92.00
8 72.56 82.94 86.75 88.66 93.25
9 72.47 83.78 85.33 88.25 93.06
10 74.06 83.25 86.78 90.77 92.79
11 71.28 81.58 85.89 89.65 91.97
12 75.19 83.55 86.57 90.55 92.89
AVG 73.54 83.00 86.52 89.77 92.79
SD 1.34 1.14 1.10 1.01 0.66

As can be seen from Table 1, in the data set of BCI
Competition IV 2a, the maximum classification accuracy of
the CMO-CNN algorithm is 84.28%, the average
classification accuracy is 83.00%, and the sample standard
deviation is 1.14. The highest classification accuracy of the
CCNN-GRU algorithm is 88.31%, the average classification
accuracy is 86.52%, and the sample standard deviation is
1.10. The maximum classification accuracy of the CLRNet
algorithm is 91.56%, the average accuracy is 89.77%, and
the sample standard deviation is 1.01. The maximum
classification accuracy of the proposed algorithm is 93.76%,
the average accuracy is 92.79%, and the sample standard
deviation is 0.66. Compared with the other three comparison
methods, the maximum accuracy of the proposed algorithm

on the dataset of BCI Competition IV 2a is increased by
9.48%, 5.45%, and 2.2%, respectively, and the average
classification accuracy is increased by 9.79%, 6.27%, and
3.02%, respectively. The sample standard deviation is also
significantly better than the other three groups of
comparison experiments. Since the algorithm combines the
time domain, frequency domain, and spatial domain to form
a multi-modal feature processing framework, as well as the
CNN-Transformer algorithm with spatial domain attention
mechanism and dynamic weight adjustment mechanism, the
proposed algorithm has significant advantages in data set
classification tasks, and can better capture and learn relevant
features in EEG signals of MI tasks. It has better four
classification performance and accuracy stability.

Classification Accuracy of Different Models on Subjects
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Fig. 7. Accuracy trends of five subjects across 12 rounds on the BCI Competition IV 2a dataset
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Figure 7 shows the accuracy trends of ConvLSTM,
CMO-CNN, CCNN-GRU, CLRNet, and the algorithms
proposed in this chapter running for 12 rounds on the BCI
Competition]V 2a dataset. It can be observed that the
algorithm presented in this chapter exhibits the highest
accuracy and the best stability.

C. Ablation experiment

1) Ablation experiment settings

In order to explore the influence of each part of the deep
learning-based multi-feature fusion Transformer algorithm
proposed in this chapter, an ablation experiment is
conducted on the dataset of BCI Competition IV 2a. This
experiment evaluates the effect of the time domain,
frequency domain, space domain, and dynamic weight
adjustment mechanism on the algorithm performance by
gradually removing different modules in the algorithm. The
specific algorithm is as follows:
a. SSFM(Spectral Spatial Fusion Model): Only frequency
domain (STFT) and DSC depth can be used to separate the
convolution spatial features, and the time-domain feature
branches are removed to evaluate the impact of time-domain
features on the algorithm.TSFM(Temporal-Spatial Fusion
Model): Only time and spatial features are used, and
frequency domain (frequency domain features extracted by
STFT) is removed so as to evaluate the impact of frequency
domain features on algorithm performance.
b. T-SFM (Temporal-Spectral Fusion Model): Only the
time domain and spatial domain features are used, and the
frequency domain (frequency domain features extracted by
STFT) is removed to evaluate the importance of frequency
domain features.

c. SFFM(Full Multi-Domain Model): Remove dynamic
adjustment weights: Three-domain features (time domain +
frequency domain + airspace) are still used, but dynamic
weight adjustment is not carried out. Instead, the
three-domain features are simply spliced and input into the
full connection layer to evaluate the impact of dynamic
weight adjustment on algorithm performance.

d. FMDM(Static Feature Fusion Model): contains three
domain features (time domain + frequency domain +
airspace) and adopts a dynamic weight adjustment
mechanism for final classification. This is a complete
algorithm proposed in this chapter, which is expected to
achieve the best results on classification tasks.

2) Ablation experiment results

Table 2 presents the comparison results of the ablation
experiments conducted on the BCI Competition IV 2a
dataset. The algorithm proposed in this chapter (FMDM)
achieves the highest accuracy and the smallest standard
deviation.

One-way ANOVA results indicated that there were
significant differences among the algorithms (F = 22.00, P <
0.05). Firstly, under the condition of a = 0.05, the P values
obtained by each algorithm were all less than 0.05. This
proved that there were significant differences among the
algorithms, preliminarily demonstrating the important role
of each module in the FMDM algorithm. Secondly, T-tests
were conducted on each algorithm, and the results showed
that there were significant differences between the SSFM
and FMDM algorithms (P = 0.00006), indicating the
significant applicability of the time-domain feature branch
in the FMDM algorithm; there were significant differences
between the TSFM and FMDM algorithms (P = 0.0002),

TABLE II

ACCURACY (%) COMPARSION RESULTS OF THE ABLATIONG EXPERIMENT BASED ON THE BCI COMPETITION IV 2A DATE SET
Subject SSFM TSFM T-SFM SFFM FMDM

1 92.57 90.66 90.04 91.56 92.33

2 91.98 91.78 89.58 92.39 93.76

3 91.54 92.01 90.79 92.44 93.23

4 89.33 92.54 91.28 91.08 93.59

5 90.28 91.85 90.77 91.84 92.90

6 91.64 90.65 88.86 92.59 91.69

7 90.85 91.54 89.94 91.33 92.00

8 91.28 90.55 88.86 91.78 93.25

9 92.37 90.98 89.25 90.28 93.06

10 90.55 92.88 91.14 92.36 92.79

11 89.64 91.37 89.59 90.05 91.97

12 90.67 90.57 90.56 91.56 92.89

AVG 91.05 91.45 90.06 91.61 92.79

SD 1.02 0.79 0.85 0.82 0.66
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indicating the strong applicability of the frequency-domain
feature branch in the FMDM algorithm; although there was
no significant difference between the T-SFM and FMDM
algorithms (P = 1.18), the performance of the FMDM
algorithm (AVG =90.79, S.D. = 0.66) was better than that of
the T-SFM (AVG = 90.06, S.D. = 0.85). This proved the
spatial-domain feature branch’s applicability in the FMDM
algorithm. There were significant differences between the
SFFM and FMDM algorithms (P = 0.0008), indicating the
important role of the dynamic weight adjustment mechanism
in the FMDM algorithm.

IV. CONCLUSION

In this paper, we propose a multi-branch Transformer
model that integrates feature extraction across the time,
frequency, and spatial domains for four-class EEG
classification. By designing a parallel multi-branch
architecture, the model effectively exploits the
multi-dimensional information inherent in EEG signals,
thereby enhancing classification performance. Specifically,
time-domain features are extracted through a combination of
convolutional neural networks (CNN) and Transformer
encoders; frequency-domain features are derived via
short-time Fourier transform (STFT) and further refined
using convolutional layers; spatial features are dynamically
adjusted by integrating depth-separable convolutions with a
spatial attention mechanism, enhancing the model’ s feature
extraction capability. A dynamic weight adjustment
mechanism is introduced to enable the model to
automatically learn and optimize the relative importance of
time, frequency, and spatial features, allowing adaptive
weighting of each feature branch according to task demands.
This significantly improves the accuracy and robustness of
the model. Furthermore, the generalization ability is
strengthened  through data augmentation and
cross-validation strategies.Experimental results demonstrate
that the proposed model achieves substantial performance
improvements on the BCI Competition IV 2a dataset,
attaining peak and average accuracies of 93.36% and
92.79%, respectively, on the validation set. Compared to
several  state-of-the-art  algorithms, the maximum
classification accuracy improves by 9.48%, 5.45%, and
2.2%, while the average accuracy increases by 9.79%,
6.27%, and 3.02%, respectively. Additionally, the model
exhibits significantly lower standard deviation in
classification performance, confirming its enhanced stability
and superiority.

In summary, the CNN-Transformer model presented here,
which combines multi-modal feature extraction from time,
frequency, and spatial domains with spatial attention and
dynamic weighting mechanisms, effectively captures key
EEG signal characteristics and substantially improves
classification accuracy and robustness in four-class tasks.
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