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ABSTRACT—At present, the public key cryptosystem is

seriously threatened by the quantum computer. Therefore, in
the post-quantum cryptography era, it is of great significance to
study secure public key cryptography under quantum
computing. This study introduces an Oracle-based assumption
concerning multiple exponentiation, which is derived from the
tropical Jones matrix problem. According to the assumption, a
hybrid encryption scheme including symmetric encryption,
message authentication code, and hash function is designed. In
the standard model, the security of the scheme is proved; that is,
the scheme has the indistinguishability under the
chosen-ciphertext attack (IND-CCA). Unlike existing tropical
cryptographic schemes, the scheme explicitly resists linear
algebraic attacks, KU attacks, generalized KU attacks, and
quantum attacks, making it a potential candidate for
post-quantum cryptographic applications.

Index Terms—hybrid encryption; Jones matrix; public key
cryptography; tropical algebra

I. INTRODUCTION

iffie and Hellman first introduced the notion of
public-key cryptography in their seminal work [1],

marking a major advancement in its subsequent applications
to securing networked systems. Public key cryptosystems,
especially elliptic curve cryptography (ECC)[2], are widely
used in Internet communication[3], digital signatures[4],
cryptocurrency, and other fields due to their efficiency and
security. The security of most schemes mainly depends on
three kinds of mathematical problems: (1) integer
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factorization problem (IFP) [4]; (2) Discrete logarithm
problem (DLP) [5]; (3) Elliptic curve discrete logarithm
problem (ECDLP) [6]. However, the above problems are
threatened by quantum computers. Shor proposed a quantum
algorithm [7] to solve IFP and DLP in polynomial time. In
addition, Proos and Zalka proposed a quantum algorithm [8]
to solve ECDLP on qF .

In 2014, Grigoriev and Shpilrain pioneered the application
of tropical semirings in constructing key exchange protocols
[9], demonstrating that solving systems of multivariate
quadratic polynomial equations over such algebraic
structures is NP-hard. Nevertheless, subsequent analysis
revealed an inherent limitation: if the tropical matrix entries
include negative values, each component rapidly converges
to negative infinity as the exponentiation power grows. Due
to this vulnerability, the protocol was compromised by a
heuristic cryptanalysis method developed by Kotov and
Ushakov in 2018 [10]. In order to resist KU-attack, In 2019,
Grigoriev and Shpilrain developed an innovative key
exchange mechanism [11] utilizing tropical matrix semidirect
products. Nevertheless, Rudy and Monico [12] discovered
that the exponentiation operation in tropical matrix
semidirect products exhibits partial order-preserving
properties, which enabled them to successfully compromise
the scheme through an efficient binary search approach.
Subsequent cryptanalysis by Isaac and Kahrobaei [13],
followed by Muanalifah and Sergeev [14], demonstrated
additional vulnerabilities in the protocol's construction,
leading to successful security breaches. In 2020, Muanalifah
and Sergeev introduced two kinds of new tropical exchange
matrices (LP matrix and Jones matrix) and proposed three
key exchange protocols [15] by using the bilateral action of
matrices. In 2022, Huang and Li introduced a novel
public-key cryptosystem [16] utilizing the algebraic action of
two-side tropical circulant matrices. Also in 2022, Huang and
Li developed a new key exchange mechanism [17] by
leveraging the matrix multiple exponentiation problem, with
security analysis demonstrating its resistance against existing
cryptanalytic methods. In 2023, Ahmed et al. [18] proposed a
new tropical structure and designed a new key exchange
protocol based on this new tropical semiring. However, this
protocol was successfully attacked by [19] and [20]. In 2024,
Huang and Kong proposed a key exchange protocol [21]
based on the Jones matrix multiple exponentiation problem
and proved its security, indicating that it has the
characteristics of anti-quantum computing.

In 2001, Abdalla et al. [22] proposed a hybrid encryption
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scheme based on the Diffie-Hellman problem and proved that
it achieves indistinguishability under chosen-ciphertext
attack in the standard model. In 2010, Chen et al. proposed an
identity-based encryption scheme [23] based on DHIES. The
scheme employed a bilinear pairing of the secondary key
combination structure. It only needed to perform a pair of
calculations during the public key generation process and did
not require a special hash function. The researchers formally
established the scheme's security under selective
identity-based chosen-ciphertext attacks (IND-sID-CCA)
within the random oracle framework. Nevertheless, Susilo et
al. [24] successfully employed the XL algorithm to
cryptanalyze multivariate quadratic (MQ) problems under
specific parameter configurations, thereby proving the
vulnerability of Chen's construction against
chosen-ciphertext attacks. In 2010, Pei et al. [25] introduced
a novel public-key cryptosystem leveraging the properties of
ergodic matrices. However, Gu et al. [26] employed the
ergodic matrix property and the linearization method to prove
that the security reduction of the public key encryption
scheme is incorrect. In 2015, Huang [27] proved that the
computational TEME problem is polynomial-time solvable
and cracked the ciphertext of the cryptosystem based on the
ergodic matrix. In 2024, based on the two-sided action
problem of the tropical LP matrix, Pan et al. [28] proposed an
Oracle two-sided tropical matrix action hypothesis designed
a hybrid encryption scheme based on the hypothesis, and
proved that the scheme has indistinguishability under the
chosen-ciphertext attack in the standard model. Muanalifah
and Sergeev [15] pointed out that there exists a generalized
KU attack in the two-sided action problem of tropical
matrices.
Our contribution: This work presents a novel public-key

cryptosystem constructed from the Jones matrix multiple
exponentiation problem. The proposed framework combines
symmetric encryption primitives, message authentication
codes, and cryptographic hash functions, with a formal
security proof demonstrating IND-CCA2 security in the
standard model. Compared to previous schemes, the scheme
proposed in this paper can resist linear algebraic attacks, KU
attacks, generalized KU attacks, and quantum attacks.

The structure of this paper is organized as follows. Section
2 provides the necessary mathematical preliminaries and
background concepts. Section 3 details our proposed
public-key encryption scheme based on the Jones matrix
multiple exponentiation (ME) problem. The security analysis
and formal proofs are presented in Section 4. Finally, Section
5 concludes the paper with a summary of our contributions
and findings.

II. PRELIMINARIES

We represent the set  1,2, ,n as  n .
To facilitate understanding of the subsequent content, we

have provided some foundational concepts.
Definition 2.1 ([29] (Semiring)). A semiring is a

triple  , ,   where  is a non-empty set equipped with two
binary operations  (addition) and  (multiplication)
satisfying the following axioms:

(1) It forms a commutative monoid concerning addition,
having a zero-element denoted as 0 ;

(2) It forms a monoid concerning multiplication, having an
identity element 1 and 1 0 ;

(3)      , , ;a b c a b c a b a c a b c a c b c             R .
Definition 2.2 ([30] (Tropical Semiring)). Let

 S   Z . Define two operations  and  as follows：

 max , ,x y x y x y x y    

 and 0 satisfied the following equations：
  , 0 ,x x x x x       Z

The algebraic structure  , ,S   forms a commutative
semiring where the additive neutral element is  and the
multiplicative neutral element is 0. This structure is referred
to as the integer tropical semiring.
Definition 2.3 ([31] Tropical Matrix). Denote by
 k SM the collection of all square matrices of dimension

k k with entries from the set S . We define binary operation
 and  on  k SM :

Denote ,ij ijA a B b        , then

ij ij ij ijA B a b a b              

1 1 2 2ij ij i j i j ik kjA B a b a b a b a b                   

Example 2.1. Let
1 2 2 5

,
2 3 4 6

A B
   

    
   

, we have

1 2 2 5 2 5
2 3 4 6 4 6

A B
     

        
     

,

1 2 2 5 6 8
2 3 4 6 7 9

A B
     

        
     

.

A. Jones Matrix
To facilitate understanding of the encryption scheme we

propose in the future, we examine a particular class of
matrices originally introduced by Jones [32] in his
foundational work.
Definition 2.4 ([15] (Jones Matrix)). Consider an n n

tropical matrix ijA a    . If A satisfies the inequality:

 , , ,ij jk ik jja a a a i j k n     ,
then A is termed a Jones matrix.
Definition 2.5 ([15] (Deformation). Given a Jones matrix

ijA a    and a real number  R , we define the

 -deformation of A as the matrix     ijA a  , where each

entry is given by
     1

ij ij ii jja a a a
  

   .

The deformation of the Jones matrix satisfies the
commutative law of multiplication under specific conditions,
and we have the following theorem:
Theorem 2.1 ([15]). For any Jones matrix A and real

parameter 1  , the  -deformation  A  preserves the
Jones matrix property.
Theorem 2.2 ([15]). For any Jones matrix  kA SM and

parameters , [0,1]   , the deformed matrices satisfy the
commutativity relation:

       A A A A      .
Building upon the preceding results, we now introduce the
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notion of a quasi-polynomial as follows.
Definition 2.6 ([15] (Quasi-polynomial)). Let  kN SM

be a Jones matrix. We say a matrix B is a quasi-polynomial of
N if it can be expressed as

 
M

B a N 


  

whereM is a finite set of rational numbers in the interval [0,1]
and each a S  . The collection of all such

quasi-polynomials of N forms the set denoted by  S N  
  .

B. Multiple Exponentiation Problem of Tropical Jones
Matrices

Before defining the ME problem, let’s first introduce a
new semigroup action.

Consider a non-negative integer circulant matrix A, a Jones
matrix  kN SM , and a vector

    1 2, , ,
n

nH H H H S N     


 .

We now examine the action of the multiplicative semigroup

 nC
Z on the Cartesian product   nS N  

  , defined

component-wise as follows:
1 2

1 1 1
, , ,i i ni

n n nA a a a
i i ii i i

H H H H
  

     
 


 ,

where each component H jia
iH represents the jia -fold tropical

product i i iH H H   . This construction yields a

well-defined semigroup action of  nC
Z on   nS N  

  .

Definition 2.7 ([17] (ME problem)). Given a Jones matrix
 kN SM and a vector

    1 2, , ,
n

nH H H H S N     




where A
U H
 

for some unknown circulant matrix
 nA C  Z , the “Multiple Exponentiation Problem” (ME

Problem) consists of finding such a matrix A given only H


and U


. Here, the underlying Jones matrix N is not known a
priori.
Proposition 2.1 ([17]). When there exists a component iH

in the vector H


such that all other components satisfy
j iH H for j i (where  ,i j n ), the Multiple

Exponentiation Problem reduces to the Discrete Logarithm
Problem in polynomial time.

Based on the ME problem, we can construct a one-way
function  f A of the Jones matrix.

Definition 2.8 (One-way Function). Let  nA C  Z be a

circulant matrix,     1 2, , ,
n

nH H H H S N     


 , define the

one-way function  f A as follows:

 
A

f A H


.

C. Hybrid Encryption Scheme and Its Security Definition
We define the following cryptographic spaces:
Message space:  *0,1Message  ,

Ciphertext space:  *0,1Ciphertext  ,

Randomness space:  0,1  (denoting infinite binary
strings),

Public key space:  *0,1PK  ,

Secret key space:  *0,1SK  .
The hybrid encryption algorithm consists of three

algorithms,  , ,ASYM E D K , where K is the key

generation algorithm, which takes a coins r Coins as input
and outputs a key pair  ,pk sk PK SK  ; Algorithm E is the
encryption algorithm, which takes a public key pk PK ,
plaintext x , a coins r Coins as input, and outputs ciphertext

 , ,y E pk x r ; Algorithm D is the decryption that takes in
the private key sk SK , ciphertext y Ciphertext , and
outputs plaintext    ,D sk y BAD . The BAD indicates that
the ciphertext is invalid, that is, it is not the encryption result
of any plaintext.

The public key encryption schemes adhere to the
IND-CCA security criterion, which ensures ciphertext
indistinguishability during chosen-ciphertext attacks in the
find-then-predict experimental framework.
Definition 2.9 ([33]). Let  , ,ASYM E D K be a public

key encryption scheme and A be an adversary. Consider the
following experimental process:

Experiment ,
ind cca fg
ASYM AExp  

 ,pk sk  K

 0 1, ,x x s   ,skDA find pk

b
R
  0,1

y   pk bE x

b   , , ,skDA guess pk y s

if b b

then return 1
else
return 0

Now define the ind cca advantage  of A in the
find-and-guess notion as follows:

, ,2Pr[ 1] 1ind cca fg ind cca fg
ASYM A ASYM AAdv Exp     

For any ,t c , we define the ind cpa advantage  of ASYM
as

   , ,, maxind cpa fg ind cpa fg
ASYM A ASYM AA

Adv t c Adv    ,

where the maximum is over all A with time-complexity t ,
making to the decryption oracle at most q queries the sum of
whose lengths is at most c bits

III. HYBRID KEY ENCRYPTION SCHEME FOR JONES MATRIX
ME PROBLEM

In this section, based on the ME problem of Jones matrix,
we construct a new hybrid key encryption scheme using
message authentication code and hash function.
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A. Encryption Component
(1)Message Authentication Code
Consider a message space denoted as  0,1Message  , a

key space  0,1 mLenmKey  , and a tag space  0,1 tLenTag  . A
message authentication code consists of two polynomial-time
algorithms  ,MAC   , where:

The tagging algorithm  takes as input a secret
key k mKey and a message x Message , producing an
authentication tag  ,k x .

The verification algorithm  accepts a key k mKey , a
message x Message , and a tag Tag  , then outputs a bit

   , , 0,1b k x   , where b = 1 indicates acceptance and b =
0 denotes rejection.

For correctness, it is required that for all k mKey and
x Message ,   , , , 1k x k x   must hold. We now formalize
the security notion for message authentication codes.

The security of MAC means that it has strong existential
unforgeability under chosen message attack (suf-cma). Now
we consider an experiment. First, a random key k mKey is
determined, which is confidential to the adversary, but the
adversary can access the verification code to generate a
random oracle  k  and an authentication oracle  kv  .
Finally, adversary A can output a valid message-tag pair
 ,x   , and does not use the algorithm  k  to get x , then

the message can be said to be successfully forged by the
adversary.
Definition 3.1 ([22]). Let A be an adversary and MAC be

a message authentication scheme. Consider the following
experiment:

Experiment ,
suf cma
MAC AExp 

k
R
 mKey

 ,x t      , ,k kA   

if  , 1k x t    , and  was never return by t

in response to query x

return 1
else
return 0

Now define the advantage of the adversary's unforgeability
under chosen message attack ( suf cma advantage  ) is
defined as

, ,Pr 1suf cma suf cma
MAC A MAC AAdv Exp     ,

for any , , , ,t tt q q   , we can define the suf cma advantage 

of MAC as
   ,, , , , maxsuf cma suf cma

MAC t t MAC AA
Adv t q q Adv    ,

here the maximum refers to the maximum of the advantage of
such adversary A , t represents the time-complexity of this
attack. Adversary A performs up to tq queries on the
verification code generation oracle, and the sum of the length
of the query result is up to t bits. Adversary A performs up
to q queries on the verification oracle, and the sum of the
length of the query result is up to  bits.

(2) Symmetric Encryption
A symmetric encryption scheme consists of two

algorithms, denoted as  ,SYM E D . The encryption

algorithm E takes as input a secret key k eKey , a plaintext
x Message , and randomness r Coins , producing a
ciphertext  , ,E k x r . The decryption algorithm D accepts a
key k eKey and a ciphertext y Ciphertext , and outputs
either a plaintext x Message or a special symbol BAD ,
indicating that the ciphertext is invalid.

The security of symmetric encryption can be characterized
by indistinguishability against chosen-plaintext attacks in a
find-then-guess framework ( ind cpa fg  ). To formally
define this security notion, we model the adversary's
capabilities through a two-phase challenge experiment
consisting of a query stage followed by a guessing stage.
Definition 3.2 ([22]). Consider a symmetric encryption

scheme  ,SYM E D and a probabilistic polynomial-time

adversary A . The security experiment proceeds as follows:

Experiment ,
ind cpa fg
SYM AExp  

k
R
 eKey

 0 1, ,x x s     ,E kA find

b
R
  0,1

y   , bE k x

b     , , ,E kA guess y s

if b b

then return 1
else
return 0

The ind cpa advantage  of an adversary A against the
symmetric encryption scheme SYMSYM is formally defined
as:

, ,2Pr 1 1ind cpa fg ind cpa fg
SYM A SYM AAdv Exp        .

The ind cpa advantage  of the symmetric encryption
scheme SYM is defined for any adversarial constraints ,t q
and  as:

   ,, , maxind cpa fg ind cpa fg
SYM SYM AA

Adv t q Adv    ,

where the maximum is over all A with time-complexity of t ,
making to the encryption oracle at most q queries the sum of
whose lengths is at most  bits.
(3) Hash Function
Let  : 0,1 hLenS

n nH M   (that hLen is a natural number) be
a Hash function that can transform a tropical matrix vector
into a binary bit string.

In order to ensure that the public key encryption scheme
based on Jones matrix is indistinguishability under
chosen-ciphertext attack, H should satisfy the following
assumption of Oracle multiple exponentiation based on Jones
matrix.
Definition 3.3 ([22]). Let A be an adversary, S is a

tropical matrix semiring, hLen be a number, and
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   *: 0,1 0,1 hLenH  . Now consider the following two
experiments:

Experiment , ,
odh real
S H AExp 

V   
A

f A H


U   
B

f B H


w      AB
H f BA H H   

 



    V ZZ H f V  (oracle)

b   ( ) , ,VHA U V W

return b

Experiment , ,
odh rand
S H AExp 

V   
A

f A H


U   
B

f B H


w
R
  0,1 hLen

    V ZZ H f V  (oracle)

b   ( ) , ,VHA U V W

return b

In the above experiments, if the index of W is the product
of the index of U and V , then the final return value of b is1 ,
otherwise it returns 0 . Please note that here, the adversary
can access the oracle but cannot directly query the value of

A
H


or B
H


in the oracle.
Now, define the advantage of the adversary A for the Jones

matrix of the Oracle multiple exponentiation problem as
follows:

, , , , , ,Pr 1 Pr 1odh odh real odh rand
S H A S H A S H AAdv Exp Exp           .

B. Hybrid Encryption Scheme Based on Jones Matrix
Multiple exponentiation Problem

Consider a symmetric encryption scheme denoted as
 ,SYM E D , where the key length is eLen . Additionally, let

 ,MAC   represent a message authentication code with a
key length of mLen . Furthermore, suppose there exists a hash
function  : 0,1 mLen eLenS

n nH M 
  capable of converting a

tropical matrix vector into a binary string of fixed length.
Consider a Jones matrix-based hybrid encryption scheme

denoted as  , ,JMPES E D K . This scheme comprises three

components: a key generation algorithm K , an encryption
procedure E , and a decryption mechanism D .
Key generation algorithm K :

Algorithm K
Begin

 nA C  Z
A

pk H


sk A
return  ,pk sk

End

Encryption algorithm E :
Algorithm E :
Begin

 nB C  Z

 
AB

pkZ f B H 


B
U H



 h H Z

 1, ,mKey h mLen 

 1, ,eKey h mLen mLen eLen  

 ,eM E eKey x

 ,t mKey eM

y U eM t

return y
End

Decryption algorithm D :
Algorithm  ,D sk A y

Begin
U eM t y

 
BA

UZ f sk H 


 h H Z

 1, ,mKey h mLen 

 1, ,eKey h mLen mLen eLen  

if  , , 0mKey eM t 

then return BAD
 ,x D eKey eM

return x
End

The algorithm flowchart of the hybrid encryption scheme
is described in Figure 1.

IV. SECURITY ANALYSIS AND EFFICIENCY ANALYSIS

A. Security analysis
This section presents a security analysis of the

aforementioned hybrid encryption scheme against
chosen-ciphertext attacks. Following the demonstration
approach outlined in [22], we establish the subsequent
theorem.
Theorem 4.1. Consider three cryptographic components:

SYM as a symmetric encryption mechanism, MAC as an
authentication protocol, and JMPES as a Jones
matrix-derived public key cryptosystem. For any , , ,t q c , the
advantage of adversary A in the chosen-ciphertext attack is

     
 

,, , , ,0,0 2 ,

                                              2 ,1, , , ,

ind cca fg ind cpa fg odh
JMPES SYM S H

suf cma
MAC

Adv t q c Adv t Adv t q

Adv t c q





   



 



where t denotes the running time of the adversary, c is an
infinite string, and the oracle algorithm performs at most q
decryption queries, and the sum of the lengths of the query
results is at most  bits.
Proof Sketch. We begin by assuming the security of both the
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symmetric encryption scheme SYM and the message
authentication scheme MAC. Furthermore, the function is
postulated to satisfy the Jones matrix-based Oracle multiple
exponentiation hypothesis. Let y U eM t be the challenge
ciphertext. The ciphertext of the adversary A 's guessing
phase can be divided into the two following forms. We call a

1Type query a ciphertext of the form U eM t . A 2Type

query has the form y U eM t with U U .
Suppose that SOMEVALID denotes the event that

adversary A performs a 1Type query y in Experiment

,
ind cca fg
JMPES AExp   such that  skD y BAD  . Let SOMEVALID

denote the event where there is no 1Type query y such that
 skD y BAD  in the experiment ,

ind cca fg
JMPES AExp   . According to

reference [22], we have the following three claims.

Claim 1. ,
, ,

1Pr 1
2 2

ind cca fg
JMPES Aodh real

S H A

Adv
Exp

 
     .

Claim 2.
 

, ,

,0,01Pr 1
2 2

ind cpa fg
SYModh rand

S H A

Adv t
Exp SOMEVALID

 
      .

Claim 3.
 , ,Pr 1 ,1, , ,odh rand suf cma

S H A MACExp SOMEVALID Adv t c q       .

From definition 8 and claims 1, 2, and 3, we have
 

 
   

,
, ,

,

,0,01 1
2 2 2 2

                  ,1, , ,

,0,0
,1, , ,

2 2

ind cca fg ind cpa fg
JMPES A SYModh

S H A

suf cma
MAC

ind cca fg ind cpa fg
JMPES A SYM suf cma

MAC

Adv Adv t
Adv

Adv t c q

Adv Adv t
Adv t c q





   



   


   



  

,

whence
 

 
, , ,,0,0 2

                              2 ,1, , , .

ind cca fg ind cpa fg odh
JMPES A SYM S H A

suf cma
MAC

Adv Adv t Adv

Adv t c q 

   



 



Since the time-complexity of the adversary A is at most t ,
and most q queries to its oracle  , we have the
inequality:  , , , ,odh odh

S H A S HAdv Adv t q . Thus, we rewrite the above
conclusion:

   
 

, ,,0,0 2 ,

                              2 ,1, , , .

ind cca fg ind cpa fg odh
JMPES A SYM S H

suf cma
MAC

Adv Adv t Adv t q

Adv t c q 

   



 


.

This is the advantage of the Jones matrix multiple
exponentiation problem public key encryption scheme under
a chosen-ciphertext attack.

By definition 2.9, the above process proves that our
proposed scheme has indistinguishability under
chosen-ciphertext attack (IND-CCA).

Breaking the private key problem of the above proposed
public key encryption scheme is actually to solve the tropical
Jones matrix multiple exponentiation problem. References
[17] and [21] have proved the difficulty of solving this
problem. Therefore, it is not feasible to solve for the private
key in the scheme given the public key in our proposed
scheme. Compared with the general Jones matrix encryption
scheme, this scheme adds a secure message authentication
code MAC and a hash function H that satisfies the Oracle
multiple exponentiation assumption. Therefore, the security
of this scheme is due to other general encryption schemes.

Table 1 provides a comparison of our scheme with other

relevant schemes in terms of resisting chosen-ciphertext
attack.

B. Efficiency analysis
We next examine the computational complexity of the

proposed hybrid encryption system. Let  nA C  Z
represent a circulant matrix with entries 0 1 1, , , na a a  bounded
within [0, s-1]. The protocol's dominant computational cost
arises from the matrix power computation A

H


. Execution
times for A

H


under different parameter configurations are
presented in Table 2, while Table 3 evaluates the scheme's
efficiency when processing messages of varying lengths.

Compared with other encryption schemes based on
tropical algebra or traditional mathematical problems, our
scheme performs well in terms of efficiency while resisting
various attacks (such as linear algebra attack, KU attack,
generalized KU attack, and quantum attack). Although the
computational complexity is affected by the matrix size and
message length, in practical applications, appropriate
parameters can be selected according to specific
requirements to balance security and efficiency. For example,
in scenarios with extremely high security requirements and
sufficient computing resources, a larger matrix order can be
adopted; in scenarios with higher efficiency requirements and
relatively lower security requirements, the matrix order can
be appropriately reduced.

V. CONCLUSION

In this paper, we introduce a novel hybrid encryption
scheme based on the tropical Jones matrix multiple
exponentiation problem, leveraging the security of this
problem to construct a post-quantum cryptographic primitive.
Our scheme integrates symmetric encryption, message
authentication codes (MAC), and cryptographic hash
functions, ensuring security in the standard model. We
rigorously prove that the proposed scheme achieves
indistinguishability under chosen-ciphertext attack
(IND-CCA), a fundamental security requirement for modern
encryption. Compared with previous tropical algebra-based
cryptographic schemes, our work makes the following key
contributions:

(1) Novel Hard Problem Construction: We introduce and
formalize the tropical Jones matrix multiple exponentiation
problem, demonstrating its computational hardness and its
applicability to public key encryption.

(2) Enhanced Security Properties: Unlike existing tropical
cryptographic schemes, our construction explicitly resists
linear algebraic attacks, KU attacks, generalized KU attacks,
and quantum attacks, making it a potential candidate for
post-quantum cryptographic applications.

(3) Enhanced Security Properties: Unlike existing tropical
cryptographic schemes, our construction explicitly resists
linear algebraic attacks, KU attacks, generalized KU attacks,
and quantum attacks, making it a potential candidate for
post-quantum cryptographic applications.
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Fig 1. Scheme Flowchart.

TABLE I
COMPARISON AMONG RELEVANT ENCRYPTION SCHEMES

Scheme Mathematical
Problems

Chosen-Ciphertex
t Attack

Linear Algebraic
Attack KU Attack Generalized KU

Attack Quantum Attack

Abdalla[22] Diffie-Hellman
problem √ √ √ √ ×

Chen[23] Diffie-Hellman
problem √ √ √ √ ×

Pei[25]

Two-side Ergodic
Matrices

Exponentiation
problem

√ × √ √ ×

Pan[28] Two-sided matrix
action problem √ √ √ × ×

Our scheme

Jones matrix
multiple

exponentiation
problem

√ √ √ √ √

√ means that the scheme can resist the corresponding attack, while × does not.

TABLE 2
PERFORMANCE COMPARISON UNDER SOME PARAMETERS

k n s
Timing of

A
H


(s)
10 80 2 1.085
15 50 3 1.930
20 40 4 2.379
25 40 5 5.609
28 35 6 5.690

TABLE 3
PERFORMANCE COMPARISON UNDER DIFFERENT MESSAGE LENGTHS

Message lengths
(bit)

Average
encryption time

(s)

Average
decryption time

(s)

Average key
generation time (s)

Size of the key
space (bit)

Size of the
ciphertext space

(bit)
128 1.350 1.283 1.243 128 256
256 1.520 1.427 1.243 128 384
512 1.987 1.756 1.243 128 640

1024 2.165 2.142 1.243 128 1152
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(4) Rigorous Security Proofs: We establish the IND-CCA
security of our scheme in the standard model, relying on the
Oracle multiple exponentiation assumption rather than
heuristic security arguments.

Future work could focus on optimizing the proposed
scheme and exploring its integration into broader
cryptographic frameworks, such as digital signatures or
secure multi-party computation. Additionally, further
investigation into the computational hardness of the tropical
Jones matrix multiple exponentiation problem could
strengthen its theoretical foundation and practical
applicability.
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