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Abstract—Multi-scale feature extraction remains a critical 
limitation in classification-focused image encoders like Vision 
Transformer (ViT) and ResNet, which struggle to capture 
localized features and global context essential for vision-
language tasks. This study adapts hybrid transformers—
Convolutional Vision Transformer (CvT), Multi-Axis Vision 
Transformer (MaxViT), and Convolution and Attention 
Network (CoAtNet)—originally developed for classification, to 
assess their effectiveness in Visual Question Answering (VQA) 
and Image Captioning, benchmarked against ViT. For VQA, 
nine models integrate these encoders with BERT, RoBERTa, or 
GPT-2 through a stacked cross-attention module, evaluated on 
DAQUAR, CLEVR, VizWiz, PathVQA, and SuperCLEVR3D 
datasets using accuracy, WUPS, and F1 scores. For Image 
Captioning, four models pair the encoders with a custom 
LLaMa-3 based decoder and a spaCy frequency tokenizer, 
assessed on Flickr8k with ROUGE scores. Results show hybrid 
transformers outperform ViT: CoAtNet excels in open-ended 
VQA tasks, MaxViT in reasoning-heavy scenarios, and CvT in 
efficiency-driven cases, while CoAtNet leads in captioning 
ROUGE scores, followed by MaxViT. This multi-task analysis 
indicates that hybrid transformers, by extracting hierarchical 
and spatial features at multiple scales, address weaknesses of 
ViT in localization and relational reasoning to varying degrees. 
CoAtNet shows strength across diverse tasks, MaxViT excels in 
complexity, and CvT offers efficiency. These findings highlight 
multi-scale approaches as a route to advanced vision-language 
models, with potential applications in medical imaging and 3D 
reasoning. 

 
Index Terms— Hybrid Transformers, Visual Question 

Answering, Image Captioning, Vision and Language 

I. INTRODUCTION 
ISION and language integration attracts significant 
attention from researchers, with efforts concentrating on 

advanced pre-training and Large Language Models (LLMs) 
like BERT [1], RoBERTa [2] , GPT-2[3], and LLaMa-3[4] to 
enhance accuracy in tasks such as VQA and image 
captioning. These LLMs frequently refine textual outputs, yet 
image encoding in these systems receives less scrutiny. Most 
studies employ standard architectures like Faster R-CNN, 
ResNet, VGG, ViT [5], or Swin Transformer. 
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Although effective, these encoders, originally designed for 
classification or detection, struggle to provide the flexible, 
multi-scale visual representations demanded by modern 
vision-language tasks. As datasets evolve to encompass real-
world scenarios, medical imaging, and 3D reasoning, 
traditional architectures often fail to match the capabilities of 
advanced LLMs, underscoring the need for innovative 
encoder designs like hybrid transformers. 

Traditional feature extraction methods include grid-based, 
region-based, and patch-based approaches, each offering 
distinct advantages. Grid-based methods like ResNet divide 
images into equal cells by preserving spatial structure but 
they lack deep contextual connections. Region-based 
techniques like Faster R-CNN prioritize object detection, 
capturing local details but overlook global scene context. 
Patch-based methods like ViT divide images into fixed 
patches and process them using transformers to capture long-
range relationships while losing hierarchical structure and 
fine spatial details. Convolutional Neural Networks 
(CNNs)[6] like ResNet excel at extracting local features such 
as edges and textures but remain constrained by fixed 
receptive fields, limiting their ability to capture long-range 
relationships vital for vision-language reasoning. ViT 
enhances scalability and global context, yet its flat, patch-
based design omits multi-scale hierarchies and local 
precision, reducing its effectiveness for tasks requiring 
detailed localization or relational reasoning. 

Hybrid transformers address these limitations by 
combining convolutional and transformer mechanisms. CvT 
combines convolutional tokenization with transformer layers 
that merge local region-based features with global patch-
based context in a hierarchical framework. MaxViT applies 
multi-axis attention which combines grid and block-based 
processing to capture broad spatial layouts and fine details 
across scales. CoAtNet integrates convolutional depth with 
attention-based breadth, producing detailed hierarchical and 
spatial representations. These designs offer a versatile 
approach to feature extraction, suited to vision-language 
demands. Although established in image classification, 
hybrid transformers remain untested in vision-language 
modeling, presenting an unexplored area. 

This study pursues two objectives:  
• To compare CvT, MaxViT and CoAtNet against ViT as 

image encoders pairing with LLMs as text encoders in 
VQA and image captioning across datasets including 
DAQUAR, CLEVR, VizWiz, PathVQA, 
SuperCLEVR3D, and Flickr8k. 

• To evaluate their multi-scale feature extraction 
capabilities for open-ended and reasoning-based vision-
language tasks and to assess how hierarchical and spatial 
representations improve cross-modal understanding.  
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To our knowledge, this work is among the first to apply 
hybrid transformers to vision-language modeling, extending 
their scope beyond classification. The study aims to improve 
vision-language integration and provide insights into 
optimizing image encoders for real-world and specialized 
applications. 

II. RELATED WORK 
We outline the shift from early convolutional and recurrent 

models to transformer-based systems, ending with an 
evaluation of hybrid transformer architectures.  

A. Vision and Language Frameworks 
Combining visual and textual data forms the basis of VQA 

and image captioning, leading to a range of architectural 
developments. Early VQA work, by [7], merges image and 
question features by concatenation, feeding them into RNNs. 
The simple concatenation approach is widely used in various 
studies [8]-[14]. This basic approach faces difficulties in fully 
blending multimodal features. At the same time, image 
captioning progresses with the NICG [15], which uses a 
CNN-RNN encoder-decoder setup to turn static visual 
features into captions. A similar setup is done by [16], [17]. 

Later designs shift to transformer-based methods. 
CNN+Transformer combinations [18], [16], [19], [83] follow 
by ViT+RNN setups [21] that use patch-based processing for 
wider context. Current systems, pairing ViT with LLMs [22], 
[13], [14] , are in vogue. The uniform patching of ViT reduces 
detail and spatial accuracy, resulting in weaker performance 
on tasks like PathVQA and image captioning, which require 
precise descriptions. Our research builds on this by 
introducing hybrid transformers, which mix convolutional 
focus with transformer scope, to improve outcomes in both 
VQA and captioning. 

B. Embedding Techniques 
Embedding strategies are vital for aligning visual and 

textual data into a common space, supporting VQA and 
captioning. 
 
Visual embeddings 

Visual embeddings turn images into numerical vectors, 
including region-based features from object detectors [23]- 
[25], grid-based CNN outputs [26]-[29] , and patch-based 
encodings of ViT [13], [22]. Region-based features do well 
in object-focused VQA but miss the full scene for captioning, 
while grid-based methods keep spatial order but lack wider 
connections. This conversion is essential for processing 
visual and textual information together. Grid, patch, and 
region-based techniques can overcome the challenges of 
representing complex visual features in a low-dimensional 
space. ViT embeddings work well for understanding the 
whole image but have trouble capturing the small details 
needed for writing captions or giving exact VQA answers. 
We use cross-modal alignment to enhance the fusion of visual 
and textual embeddings, improving coherence in joint 
representations. These issues point to a need for embeddings 
that balance local and global aspects, which our hybrid 
transformer method targets. 
 

Textual Embeddings  
Textual embeddings convert text into vectors that match 

visual features. Early methods like GloVe and Word2Vec 
[23], [30] gave basic meaning mappings, replaced by models 
like BERT and RoBERTa [13], [14], which produce detailed 
embeddings through pretraining. These embeddings improve 
question understanding in VQA and caption clarity in image 
description, but their success depends on strong visual 
encodings. Our study uses these textual embeddings with 
hybrid visual encoders to boost performance in both tasks. 

C. Hybrid Transformers 
Vanilla Transformers struggle with vision due to limited 

spatial bias and difficult optimization. A simple improvement 
involves introducing a hybrid architecture consisting of a 
transformer and convolution. Although there is no 
comprehensive research on the application of hybrid 
transformers in multimodal tasks, these models show 
exceptional performance in areas such as object detection and 
image classification[31].  

CvT shows its versatility in Computer Vision tasks. 
Researchers have used CvT for image retrieval reranking [32] 
and for object detection[33], [34] achieving improved 
accuracy and efficiency. It used 3D convolutions to capture 
spatiotemporal features in video analysis, which helps in lip 
reading [35]. It is employed to effectively suppress the 
additive white Gaussian noise (AWGN) in images through a 
residual learning approach[36]. The integration of CvT with 
Spiking-CvT (SCvT) improves classification tasks by 
utilizing the combined capabilities of transformers and 
spiking neural networks [37].  

CvT is appropriate for classifying high-resolution remote 
sensing images because it can capture details during end-to-
end training[38]. It uses a multi-head attention mechanism 
within the CvTSRR framework to address social relationship 
detection beyond images[39]. It is used in the medical field 
to automatically generate chest X-ray reports and predict 
captions for medical images [40], [41]. Handwritten digit 
recognition has proven to be a strong suit for CvT [42]. 

CoAtNet, a hybrid model showed promise in various 
applications: Paddy crop disease detection [43], classification 
of musical notes[44], brain tumor[45] , cotton leaf 
segmentation[46], breast cancer analysis[47], identification 
of nematodes [48], recognition of parasite eggs [49]and 
classification of space objects [50]. 

MaxViT excelled in several applications. MaxViT-UNet 
[51] focused on medical image segmentation. MaxSR [52] 
used MaxViT for single-image super-resolution of individual 
images. MaxViT is used for feature extraction[53], 
representation learning, and classification of Constant-Q 
Transform (CQT) spectrograms[54] to enhance speech 
emotion recognition. The effectiveness of MaxViT in 
categorizing tomato leaf diseases is shown by [55].  

From our search of the literature, it is clear that hybrid 
transformers show superiority in capturing visual 
relationships. To achieve a deeper understanding and 
improve performance on vision and language tasks, we 
extend this study by combining hybrid transformers with 
language models. 
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III. MODEL SELECTION 
Inspired by hybrid transformers, we choose pre-trained 

CvT, CoAtNet, and MaxViT as image encoders for vision-
language tasks, combining Transformer and CNN strengths 
for multiscale feature extraction, evaluated against baseline 
ViT. For VQA, we apply BERT, RoBERTa, and GPT-2 to 
extract text features, while selecting LLaMa-3-inspired 
model as decoder for captioning.The key features of the CvT, 
CoAtNet, and MaxViT architectures are compared in Table 
1. This table highlights their unique methodologies and 
design choices, such as their attention mechanisms, 
hierarchical structures, local and global feature extraction 
strategies, and how they handle positional encoding and 
attention. 

A.  CvT [56] 
CvT improves computer vision tasks by integrating 

convolutions into ViT, blending CNN local context with 
transformer global attention. It uses a hierarchical structure 
with Convolutional Token Embeddings (CTE) for spatial 
down sampling and feature expansion, capturing local 
information through strided convolutions. Convolutional 
Transformer Blocks (CTBs) replace standard blocks by 
applying depth-wise separable convolutions in projections to 
model local, spatial contexts efficiently. Combining CNN 
subsampling and local fields with transformer global 
attention, CvT removes explicit positional embeddings, using 
inherent spatial structure for efficiency across visual tasks. 

B.  CoAtNet [57] 
CoAtNet combines CNN and self-attention to improve 

generalization and capacity for vision tasks. It uses MBConv 
blocks with depth-wise convolutions in early stages for local 
feature extraction and translation equivariance, followed by 
transformer blocks with relative attention in later stages for 
global context. Convolutions always precede attention in a 
sequential multi-stage hierarchy, capturing features at 
multiple abstraction levels. This design merges convolution 
efficiency with attention adaptability and deliver strong 
performance even with limited training data, avoiding ad-hoc 
hybrid solutions. 

C. MaxViT [58] 
MaxViT boosts efficiency by combining MBConv and 

multi-axis self-attention (Max-SA) within blocks, stacked 
vertically in a hierarchy. MBConv with depth-wise 

convolutions comes before Max-SA to capture local features, 
followed by block attention for local interactions and grid 
attention for sparse global mixing with fixed windows and 
grids. This cuts self-attention complexity from quadratic to 
linear, advancing beyond Swin Transformer masking 
requirements. Max-SA and MBConv blocks support local 
and global interactions across all stages, with MBConv 
serving as conditional positional encoding by removing 
separate positional layers, and excelling in reasoning tasks. 

IV. PROPOSED ARCHITECTURE 

A.  Visual Question Answering  
The VQA model integrates a text encoder, an image 

encoder, fusion module, and a classifier to process image-
question-answer triples across multiple configurations. The 
text encoder uses a pretrained transformer which tokenizes 
questions and generates a fixed-dimensional embedding from 
the initial token of the last hidden state. 

The fusion module applies a two-layer cross-attention 
mechanism. In each layer, the image embedding acts as the 
query, attending to the text embedding as key and value with 
four attention heads. Mathematically, this stacked fusion 
mechanism is formalized as 𝐹 = {𝐴!, 𝐴"}with iterative 
refinement defined as 𝑣#

(%) = 𝐴%(𝑣#
(%'!), 𝑣() for 𝑖	𝜖{1,2}. 

Within each layer, text embeddings are projected via 𝑘( =
𝑊)𝑣( + 𝑏) followed by multi-head attention 𝑎% =
𝑀𝐻𝐴(𝑣#

(%'!), 𝑘( , 𝑘()with 𝐻 + 4 heads. The attention output 
is processed through a residual connection and layer 
normalization as 𝑣#

(%!) = 𝐿𝑁(𝑣#
(%'!) + 𝑎%), then refined by a 

feed-forward network 𝑓% = 𝑊"𝐺𝐸𝐿𝑈 =𝑊!𝑣#
(%!) + 𝑏!> + 𝑏" 

with a 4𝑥 dimension expansion, followed by another residual 
connection and normalization 𝑣#

(%) = 𝐿𝑁=𝑣#
(%!) + 𝑓%>. 

Trainable setups employ single-vector fusion by averaging 
embeddings into one vector, while frozen setups use 
sequence-based fusion with mean pooling or text embedding 
repetition. 

Nine VQA models are evaluated, grouped by text encoder.. 
The first configuration uses trainable GPT-2 with 768D 
paired with CvT with 384D by applying single-vector fusion 
and a 384D classifier. The second configuration uses frozen 
GPT-2 with MaxViT producing a 49×1152 sequence, 
applying sequence-based fusion with mean pooling and a 
512D classifier.

 
 

TABLE I 
COMPARISON OF KEY FEATURES IN CVT, COATNET, AND MAXVIT ARCHITECTURES 

Feature CvT CoAtNet MaxViT 
Architecture Hybrid CNNs and ViT Hybrid CNNs and ViT Hybrid CNNs and ViT 
Local Feature Extraction Convolutional Token Embedding (CTE) Depth-wise convolutions in MBConv MBConv with depth-wise convolutions 
Global Context Extraction Transformer blocks for global attention Transformer blocks for global attention Max-SA for global interaction 
Hierarchical Structure CTE layers for down sampling Sequential stacking of CNN and 

Transformer Vertical stacking of Max-SA and MBConv 
Positional Encoding None Relative attention as CPE Relative self-attention with Conditional 

Position Encoding (CPE) 
Attention Mechanism Convolutional Transformer Blocks 

(CTBs) Transformer attention with CPE Grid Attention (sparse global) 
Multi-Scale Feature 
Extraction 

Local edges and global region 
hierarchies Fine textures and broad spatial layouts Grid-based details and scene-wide patterns 

Strengths Combines local and global features Effective with limited data, better 
generalization Balanced local and global processing 
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Fig. 1. VQA architecture with pretrained hybrid image and text encoders fused through stacked cross-attention 

 
The third configuration uses frozen GPT-2 with CoAtNet 

producing a 49×1536 sequence, applying sequence-based 
fusion with text embedding repeated 49 times and a 512D 
classifier.  

The VQA model fuses  image embeddings and  text 
embeddings using two stacked cross-attention layers, where 
image features iteratively attend to text features. A linear 
projection aligns text embeddings to the image space and 
refine multimodal representations. This enhances reasoning 
for answer prediction by capturing complex inter-modal 
dependencies through two-layer iterative attention. The 
classifier maps fused embeddings to the answer space. Fig.1 

depicts proposed VQA architecture unified by a stacked 
cross-attention mechanism. 

B. Image Captioning 
An image captioning framework as shown in Fig. 2 pairs 

the same hybrid transformer-based image encoder with a 
LLaMa-3-inspired Transformer decoder to generate text 
descriptions from images on the Flickr8k dataset. The image 
encoder processes 224×224-pixel inputs, with the 
classification head removed to extract raw feature 
embeddings. These high-dimensional outputs are projected to 
a 768D space to align with the input of the decoder.

 

 
Fig. 2. Proposed Image Captioning framework integrating a pretrained hybrid transformer-based image encoder with a LLaMa-3-inspired Transformer 

decoder 
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Encoder weights remain frozen, and training optimizes the 
projection layer and decoder. The decoder, a single-layer 
Transformer, maps vocabulary indices to 768D using a token 
embedding layer. It applies two causal self-attention 
mechanisms: one processes the token sequence 
incrementally, and the other attends to image features. A 
feed-forward network with three linear projections and SiLU 
activation follows. Grouped Query Attention (GQA) uses 32 
query heads and 8 key/value heads (24D per head), with 
Rotary Positional Embeddings (RoPE) and Root Mean 
Square Normalization. During inference, a key-value cache 
improves efficiency. A spaCy-based tokenizer builds a 
vocabulary with a frequency threshold of 1, includes special 
tokens, and later pads sequences to 30 tokens. 

V. DATASET, METRICS, SETTINGS, RESULTS 

A.   Datasets 
We use three generic datasets: DAQUAR, CLEVR, and 

VizWiz, and two domain-specific datasets: PathVQA and 
SuperCLEVR3D for VQA. For captioning we employ a 
single generic dataset Flickr 8k. Table 2 explains dataset 
characteristics, including total images, QA pairs, captions, 
subset sizes, train/test splits, and ratios for VQA and 
captioning in our comparative study. 

B. Evaluation Metrics 
To evaluate the performance of our VQA approach, we use 

three metrics Accuracy, F1 and Wu-Palmer similarity 
(WUPS)[24] score as they align well with task-specific 
evaluation standards.  They capture different aspects of model 
effectiveness that a single metric might miss. 
Accuracy measures how well the model provides correct 
answers based on the visual input. Accuracy in VQA systems 
is calculated as in Equation 1. 

																					𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑚𝑖𝑛(*
+
, 1)                    (1) 

When evaluating, full credit is awarded if the predicted 
answer matches at least three of ten annotator responses, 
with 𝑥 representing the count of such matches. 
     WUPS metric evaluates the semantic difference between 
predicted answers and ground truth answers. 
 It is computed as  shown in Equation 2. 

𝑊𝑈𝑃𝑆(𝐴, 𝑇) = 	 !
"!
∑ min 0

∏ max#∈%"𝑊𝑈𝑃(𝑎, 𝑡)&∈'" ,
∏ max&∈'"𝑊𝑈𝑃(𝑎, 𝑡)#∈%"

6"!
()!        (2) 

 

Here, 𝐴 signifies the set of predicted answers, 𝑁,	denotes the 
total number of questions, 𝑇 indicates the set of target 
answers, 𝐴% 	and 𝑇% correspond to the predicted and target sets 
for the 𝑖th question, and 𝑊𝑈𝑃(𝑎, 𝑡) measures the semantic 
similarity between predicted answer 𝑎 and ground truth 
answer 𝑡. 

The F1 score is a harmonic mean of precision and recall 
which evaluates answer accuracy by comparing predicted and 
ground truth answers. Precision is the fraction of correct 
elements in the prediction, while recall is the fraction of 
correct elements relative to the ground truth, typically based 
on exact or semantic matches. For evaluating caption quality, 
we employ ROUGE [25] metric which systematically 
compares generated captions against human-written 
references. 

C. Experimental Settings 
For VQA, input data consisting of image-question-answer 

triples are pre-processed for model compatibility. Questions 
are tokenized with encoder-specific tokenizers, padded to 24 
tokens, and truncated if needed: GPT-2 uses an end-of-
sequence token, RoBERTa adds padding dynamically, and 
BERT includes an explicit padding token. Answers are 
cleaned by removing spaces and selecting the first entry if 
multiple are provided, then mapped to numerical labels via a 
vocabulary index. Images for CvT are resized to 224×224 
pixels using bilinear interpolation, normalized to a range of 0 
to 1, and transposed to channel-first format; MaxViT and 
CoAtNet use pretrained library transformations. Pytorch is 
used and training employs the Hugging Face Trainer API in 
two setups. The high-throughput setup applies to 7 models 
with a batch size of 32, 8 data loader workers, AdamW with 
a learning rate of 1×10⁻⁴, a linear warmup over 10% of steps, 
fp16 precision, and early stopping with a patience of 3 and 
threshold of 0.001. The low-throughput setup applies to 2 
frozen-encoder models with a batch size of 16, 4 workers, and 
the same optimization settings. Experiments run on a single 
CUDA-enabled GPU.  

For Captioning, the framework operates in PyTorch 
Lightning with a GPU accelerator and a fixed random seed. 
The decoder uses a dropout rate of 0.27 and two worker 
threads with persistent workers. Training runs for only four 
epochs with a batch size of 64, AdamW with a learning rate 
of 3.1×10⁻⁴, a MultiStepLR scheduler with a decay factor of 
0.69 at epoch square root milestones, and gradient clipping at 
3.77. ROUGE score assesses caption quality. 

 
TABLE II 

OVERVIEW OF DATASETS FOR VQA AND IMAGE CAPTIONING COMPARATIVE ANALYSIS 
VQA Datasets 

Dataset Total 
Images 

Total QA 
Pairs 

Images in 
Subset 

QA Pairs 
in Subset 

Images 
(Train/Test) 

QA Pairs 
(Train/Test) 

QA-to-
Image 
Ratio 

Mean QA per 
Image 

(Train/Test) 
DAQUAR [11]   1,447 12,468 1,447 12,468 1,012 / 435 8,714 / 3,754 8.62 8.61 / 8.63 
VizWiz [59] 39,704 32,842 13,816 11,447 9,671 / 4,145 8,033 / 3,414 0.83 0.83 / 0.82 

CLEVR [60] 100,000 999,968 2,800 27,999 1,959 / 841 19,589 / 8,410 10.00 10.00 / 
10.00 

SuperCLEVR3D[61] 30,000 993,864 3,176 28,560 2,223 / 953 19,989 / 8,571 33.13 8.99 / 8.99 
PathVQA [62] 4,288 32,632 3,754 28,573 2,627 / 1,127 20,046 / 8,527 7.61 7.63 / 7.57 

Image Captioning Datasets 

Dataset Total 
Images  Total 

Captions  Images 
(Train/Test) 

Captions 
(Train/Test) 

Captions to 
Image 
Ratio 

Mean Captions 
per Image 

(Train/Test) 
Flickr8k [63] 8091  40,460  6000/1000 30,000/5000 5.00 5.00/5.00 
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TABLE III 

EVALUATION OF HYBRID TRANSFORMERS FOR VQA ON DAQUAR, VIZWIZ, CLEVR, PATHVQA AND SUPERCLEVR3D 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Visual Question Answering 
The evaluation of ViT, CvT, CoAtNet, and MaxViT of Table 
3 highlights their distinct architectural designs and 
performance across multiple datasets. ViT, built entirely on a 
transformer structure, extracts feature globally by dividing 
images into 16×16 patches. This approach lacks sensitivity to 
local details and spatial relationships, as reflected in its lower 
scores: 17.7% accuracy on DAQUAR and 43.17% on 
CLEVR. CvT combines convolutional layers with 
transformers, creating a hierarchical, region-focused feature 
extraction process. With a 384D embedding and 133.73M 
parameters when paired with BERT, it balances efficiency  

 
and capability, achieving 23.13% accuracy on DAQUAR. 
MaxViT uses a multi-axis attention mechanism, processing 
features in a layered grid and block structure, with a 1152D 
(frozen) or 768D (trainable) embeddings. This design 
supports strong spatial and relational understanding, shown 
by 27.83% accuracy on DAQUAR and 53.85% on PathVQA. 
CoAtNet integrates deep convolutional and attention layers, 
operating with a 1536D (frozen) or 768D (trainable) 
embeddings. It delivers the highest performance of 29.65% 
accuracy on DAQUAR and 56.15% on PathVQA due to its 
ability to handle both broad and specific tasks effectively.  
CvT improves on ViT by incorporating regional focus, aiding 
object detection with moderate success, though its lighter 
structure restricts it in complex scenarios. 

 

 
Fig. 3. Heatmap of Model Performance Across Five Datasets with Clustering 

Model Dataset  
 
Param-
eters 
 
 

Image Text DAQUAR    CLEVR VizWiz PathVQA SuperCLEVR3D 
Acc
% 

WU
PS 
@9 

F1 Acc
% 

WU
PS 
@9 

F1 Acc
% 

WU
PS 
@9 

F1 Acc
% 

WU
PS 
@9 

F1 Acc
% 

WU
PS 
@9 

F1 

ViT  17.7 23.2 7.79 43.2 46.5 29.6 65.6 66.5 65.6 45.1 46.6 42.9 29.9 33.8 21.2 210.15M 

CvT 23.1 28.0 14.4 42.9 46.3 30.3 63.1 63.9 63.1 46.7 47.2 44.5 29.8 34.3 17.1 133.73M 

MaxViT 27.8 32.6 23.2 43.8 47.1 31.8 67.6 68.5 67.6 53.8 54.6 50.3 30.6 34.9 22.6 244.42M 

CoAtNet 29.6 34.4 25.8 44.3 47.5 34.2 67.2 67.9 66.8 56.1 57.0 52.0 29.9 34.3 17.7 290.34M 

ViT  16.5 22.4 7.33 41.6 45.1 34.5 57.4 58.4 56.7 44.9 45.4 40.3 28.4 33.0 16.3 225.31M 

CvT 21.1 26.1 12.6 42.2 45.5 34.5 54.4 55.4 38.8 39.7 40.3 37.9 27.8 31.6 18.8 148.89M 

MaxViT 26.2 31.3 20.9 43.5 46.7 34.3 64.1 64.9 63.5 44.1 44.8 39.7 34.1 38.2 32.5 259.57M 

CoAtNet 29.5 36.5 27.6 43.5 46.7 32.3 60.0 60.9 58.8 45.2 45.8 40.7 29.4 33.6 20.4 305.51M 

ViT  8.13 13.5 2.97 28.6 31.5 21.6 53.8 37.6 54.9 29.6 30.3 19.3 14.8 18.3 4.17 225.10M 

CvT 10.7 14.8 2.95 27.7 30.4 20.7 53.8 54.9 37.6 29.6 30.3 19.4 14.5 19.1 5.12 148.68M 

MaxViT  12.7 17.9 6.70 28.3 31.2 21.9 63.5 64.5 60.4 36.0 37.5 24.0 16.5 20.0 6.11 16.050M 

CoAtNet  12.6 18.1 6.48 30.4 33.5 15.7 53.8 54.9 37.6 36.9 38.4 23.7 16.3 20.0 6.03 64.047M 
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MaxViT performs well in spatial and relational tasks, 

especially in 3D contexts like SuperCLEVR3D achieving 
34.10% accuracy with RoBERTa but requires more 
computational resources. CoAtNet stands out, excelling in 
crowded scenes in DAQUAR proving its effectiveness on 
limited data, precise reasoning on CLEVR, and specialized 
domains like PathVQA, though it demands significant 
resources and is less tailored for 3D tasks. Performance data 
show CoAtNet and MaxViT leading, with CoAtNet slightly 
ahead while CvT offers a practical middle ground and ViT 
trails due to its lack of layered structure.    Figure 3 displays 
a heatmap of twelve model scores across five datasets with 
dendrograms indicating clustering of similar models and 
metrics. This heatmap shows how twelve VQA models 
perform on all five datasets. Colors show the scores: yellow 
is high with 68.45, purple is low value with 2.97. We 
clustered similar models and metrics to group them The rows 
and columns near each other are alike. The dendrograms on 
the top and left show how we grouped them: short branches 
mean high similarity. For example, MaxViT-BERT shines in 
VizWiz (yellow), while ViT-GPT2 struggles in DAQUAR 
(purple), and clustering helps us see these trends 

Our top-performing models, CoAtNet+BERT and 
CoAtNet+RoBERTa, achieve an impressive accuracy of 
29.65% and a WUPS of 36.55%, outshining state-of-the-art 
(SOTA) methods like SAN and Att-LSTM. These results 
highlight their superior precision and semantic grasp, 
rivalling even Bayesian and DPPnet approaches. They also 

come remarkably close to MTAN. Table 4 details accuracy, 
WUPS, and F1 scores for hybrid transformers and 
benchmarks on DAQUAR, showing top performance. 

The CoAtNet + BERT and MaxViT + BERT models, 
achieving CLEVR accuracies of 44.33% and 43.85%, 
underperformed compared to SOTA methods such as NS- 
VQA (99.8%) due to training on only 2.8% of the dataset of 
about 2,800 images. The limited CLEVR subset restricted the 
ability of model to capture the complexity of dataset, while 
the single GPU constrained training efficiency. Their WUPS 
scores of 47.52% and 47.10% indicate robust semantic 
comprehension despite these constraints. With access to the 
full dataset and enhanced computational resources, these 
models are expected to attain SOTA-level performance. 
Table 5 provides performance scores of hybrid transformers 
compared to SOTA on CLEVR, with training limits. 

On VizWiz, the proposed MaxViT+BERT model achieves 
67.69% accuracy and CoAtNet+BERT reaches 67.18%, yet 
they exhibit reduced performance relative to BERT-RG, 
which attains 79.85% accuracy, potentially due to its 
integration of dual image encoders, ResNet and VGG, for 
enriched feature extraction. 

Our end-to-end trained approach outperforms pretrained  
VLMs like CLIP, achieving stronger predictive capability 
and WUPS. This highlights the advantage of our unified, 
task-adaptive design over static pretrained representations. 
Table 6 lists the scores of hybrid transformers and SOTA 
VQA models on VizWiz. 

 
TABLE IV 

EVALUATION RESULTS OF HYBRID TRANSFORMERS AND EXISTING STATE OF THE ART VQA MODELS ON DAQUAR 

 
TABLE V  

EVALUATION RESULTS OF HYBRID TRANSFORMERS AND EXISTING STATE OF THE ART VQA MODELS ON CLEVR 

 
TABLE VI 

EVALUATION RESULTS OF HYBRID TRANSFORMERS AND EXISTING STATE OF THE ART VQA MODELS ON VIZWIZ 

 

Model Visual 
Representation 

Feature 
Relationship 

Fusion Language 
Representation 

Acc. WUPS F1 

Ask YourNeurons [30] ResNet-152 Grid based Global Summation LSTM,GloVe embedding 21.67 27.99 - 
Bayesian Answer [65] ResNet Spatial and Global Bayesian network Skip-thought Vectors 28.96 34.74 - 
DPPnet [28] VGG-16 Global Dynamic parameter Skip-thought vector, GRU 28.98 34.80 - 
SAN [66] VGGNet Local and spatial Stacked attention CNN/LSTM 29.30 35.1 - 
Multi-objective [23] Faster R-CNN Spatial and Semantic Element multiplication Word2Vec, LSTM 29.20 35.34 - 
Att-LSTM [9] Attributes Global Concatenation Doc2Vec, LSTM 29.23 35.37 - 
MTAN [67] ResNet Local and Spatial Multi-tier attention Supervised Embedding GRU 33.53 40.28 - 
Deep Walk [12] VGG ConvNet Semantic and Spatial Concatenation Deep Walk Embedding 40.56 50.09 - 
Cross-Attention [13] ViT Global Concatenation BERT 28.0 33.0 - 
Transformer [14] ViT/Swin Global Concatenation BERT/RoBERTa - 35.1 - 
CoAtNet-RoBERTa CoAtNet Hierarchical and 

Spatial 
Stacked Cross Attention RoBERTa 29.24 36.55 27.67 

Model Visual  
Representation 

Feature 
Relationship 

Fusion Language 
Representation 

Acc. WUPS F1 

LG-Capsule [21] ResNet-101 Global and Local Low-rank bilinear pooling GRU 97.9 - - 
RAMEN [22] Bottom-up- attention Spatial Early and late fusion  GRU 96.52 - - 
Formal logic [23] Scene graph to facts Logical reasoning Rule-based logic inference BART 99.16 - - 
NS-VQA [24] Mask R-CNN Hierarchical Hierarchical program LSTM 99.8 - - 
CoAtNet-BERT CoAtNet Hierarchical and Spatial Stacked Cross Attention BERT 44.33 47.52 34.19 
MaxViT-BERT MaxViT Hierarchical, grid-based Stacked Cross Attention BERT 43.85 47.10 31.88 

Model Visual 
Representation 

Feature 
Relationship 

Fusion Language 
Representation 

Acc. WUPS F1 

BERT-RG[25] ResNet + VGG Local and Spatial SAN BERT 79.85 - - 
MultiCLIPQA [26] CLIP Global Concatenation CLIP 61.49 - - 
MaxViT-BERT MaxViT Hierarchical, Grid-based Stacked Cross Attention BERT 67.69 68.45 67.66 
CoAtNet-BERT CoAtNet Hierarchical and Spatial Stacked Cross Attention BERT 67.18 67.95 66.82 
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TABLE VII 

EVALUATION RESULTS OF HYBRID TRANSFORMERS AND EXISTING STATE OF THE ART VQA MODELS ON PATHVQA 

 
TABLE VIII 

EVALUATION RESULTS OF HYBRID TRANSFORMERS AND EXISTING STATE OF THE ART VQA MODELS ON SUPERCLEVR3D 
 

 
 Our research, constrained by limited GPU memory and 

runtime, permitted only partial training by achieving a 
maximum accuracy of 56.15% with CoAtNet+BERT as in 
Table 7. The results are below the SOTA benchmark of 
67.05% on Medical VQA due to these computational 
limitations. Notably, this performance surpasses AMAM 
with 50.4% and MMQ with 48.8%, demonstrating 
competitive results despite reduced resources. Enhanced 
computational resources could further align our outcomes 
with leading SOTA approaches. 

The evaluation of our models trained on the SuperCLEVR-
3D dataset is shown in Table 8 reveals a significant 
performance gap compared to the SOTA PO3D-VQA, which 
achieves an accuracy of 75.64%, while our top-performing 
model, MaxViT+RoBERTa, records only 34.10% accuracy, 
with a WUPS score of 38.21 and an F1 score of 32.48. This 
study is significant as it examines the effectiveness of 
transformer-based architectures for 3D-aware VQA which  
provide critical insights into their applicability to complex 
spatial reasoning tasks.  

Our models are limited by the lack of explicit 3D scene 
parsing and symbolic reasoning capabilities, essential for 
addressing the questions in datasets on object parts, 3D poses, 
and occlusions. Trained on a restricted subset of 2,223 
images, our approaches exhibit reduced proficiency in 
capturing 3D spatial comprehension, depending instead on 
two-dimensional feature integration. This highlights the need 
for incorporating 3D-specific methodologies and expanding 
dataset size to improve performance. Our findings lay a 
groundwork for future advancements in robust 3D-aware 
VQA systems.  

B.   Image Captioning 
Our framework, pairing hybrid transformer encoders with 

the spaCy-LLaMa Tokenizer and a decoder inspired by 
LLaMa-3, achieves ROUGE scores of 40.13, 40.76, 44.08, 
and 47.70 on Flickr8k. CoAtNet-LLaMa, scoring 47.70, 
outperforms many SOTA approaches. Its hybrid convolution-
attention encoder extracts richer spatial features, while the 

LLaMa-inspired causal attention in the decoder ensures 
coherent captions. 

IICG, scoring 61.35, surpasses all our models, likely 
because the multi-layer decoder outpaces our single-layer 
design. Simpler tokenization and limited depth of the decoder 
may restrain performance against such optimized SOTA 
approaches. Results reflect partial training for only 4 epochs, 
due to computational constraints, limiting direct comparison 
to fully optimized SOTA models. Table 9 summarizes the 
ROUGE scores achieved by the hybrid transformer-based 
image captioning framework on Flickr8k, detailing the 
impact of the frozen image encoder and LLaMa-3-inspired 
decoder configuration. Table 10 shows ROUGE scores of 
SOTA image captioning models on Flickr8k. 

VII. CONCLUSION 
This study establishes that hybrid transformers CvT, 

MaxViT and CoAtNet outperform the baseline ViT in vision-
language tasks. Across all datasets hybrid models capitalize 
hierarchical and spatial feature extraction to exceed uniform 
patch-based approach of ViT. Our findings emphasize the 
power of multiscale representations: CoAtNet performs best 
in open-ended and domain-specific tasks on PathVQA using 
deep convolutional-attention fusion, MaxViT excels in 
reasoning scenarios on VizWiz and SuperCLEVR3D with 
multi-axis attention, and CvT offers efficiency on VizWiz 
with fewer parameters. In captioning on Flickr8k, hybrid 
encoders with a LLaMa-3-inspired decoder achieve reliable 
performance, with CoAtNet. 

 
TABLE IX 

EVALUATION OF HYBRID TRANSFORMERS FOR IMAGE CAPTIONING  ON 
FLICKR8K 

Model Visual 
Representation 

Feature 
Relationship 

Fusion Language 
Representation 

Acc. WUPS F1 

AMAM [27] 2Q and W2Q 
Attention 

Spatial and Semantic 
 

Bilinear Attention 
Networks 

Glove, GRU 50.4 - - 

 MMQ [28] Meta Model Local and Spatial BAN, SAN LSTM 48.8 - - 
Open-ended VQA [29] ViT Global Causal Language Model GPT2-XL, BioMedLM, 

BioGPT 
63.6 - - 

Medical VQA[30] ViT Global Concatenation BERT 67.05 - - 
MaxViT-BERT MaxViT Hierarchical, grid-

based 
Stacked Cross Attention BERT 53.85 54.69 50.29 

CoAtNet-BERT CoAtNet Hierarchical and 
Spatial 

Stacked Cross Attention BERT 56.15 57.05 52.02 

Model Visual Representation Feature 
Relationship 

Fusion Language 
Representation 

Acc. WUPS F1 

PO3D-VQA[61] CNN + Render-and-
Compare (Neural Meshes) 

Probabilistic 
 

Probabilistic Scene 
Parsing 

LSTM (Seq-to-Seq Program) 75.64 - - 

MaxViT-RoBERTa MaxViT Hierarchical, 
grid-based 

Stacked Cross 
Attention 

RoBERTa 34.10 38.21 32.48 

MaxViT-BERT MaxViT Hierarchical, 
grid-based 

Stacked Cross 
Attention 

BERT 30.61 34.99 22.65 

Model Encoder Decoder ROUGE Parameter 

ViT-LLaMa ViT  
LLaMa-3 
Inspired 

40.13 103M 
CvT-LLaMa CvT 40.76 42.1 M 
MaxViT-LLaMa MaxViT 44.08 135M 
CoAtNet-LLaMa CoAtNet 47.70 180M 
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TABLE X 
PERFORMANCE EVALUATION OF STATE-OF-THE-ART IMAGE CAPTIONING MODELS USING ROUGE ON THE FLICKR8K 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The success of these models stems from their architectural 

innovation. This multiscale paradigm not only enhances 
performance across tasks but also reveals a critical insight: 
effective vision-language modeling hinges on capturing the 
full spectrum of visual information, from fine-grained details 
to scene-wide patterns. Given the partial training and limited 
dataset scope due to computational constraints, access to 
better computational resources would likely have enabled our 
hybrid models to surpass SOTA approaches, fully realizing 
their potential in both accuracy and generalizability. 
       Looking ahead, our research opens pathways to further 
refine vision-language systems by developing novel hybrid 
models that integrate CapsNet or ResNet with ViT. Such 
designs could amplify multiscale capabilities which include 
local textures from ResNet convolutions, hierarchical capsule 
from Capsule Network, and global context from the ViT. By 
emphasizing multiscale feature extraction, this study lays a 
foundation for advancing vision-language integration, with 
potential impacts in domains like medical imaging, 3D 
reasoning, and real-world scene understanding, where diverse 
scales of visual information are paramount. 
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