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Abstract—Gait pattern classification is a comprehensive

technique applied in the fields of medical diagnosis,
rehabilitation training and human perception. In this paper, we
designed a gait phase detection system with six inertial
measurement units (IMUs) fixed on the the lower limbs and
four force-sensitive resistors (FSRs) embedded in the shoe
insole. The sensor data are collected through a wireless sensor
system in three walking statuses, such as walking on flat ground,
upstairs and downstairs. Then, a hybrid neural network is
proposed which combine the advantages of residual networks
(ResNet) and long short-term memory (LSTM) to segment the
gait phases. The data are first processed through the ResNet to
extract the deep features and then analyzed by the LSTM
network to fully exploit the sequential trait of gait cycles. Data
normalization and sliding window methods are adopted to fit in
the ResNet to improve the convergence speed of training. Seven
groups of experiments are conducted to analyze the influence of
different parts of IMUs on overall accuracy. The model
performed best when all six IMUs and four FSRs are utilized,
with an average accuracy of 93.67%, which is higher than
another hybrid neural network and other traditional
algorithms.

Index Terms—Gait pattern classification, IMU, FSR, ResNet,
LSTM.

I. INTRODUCTION
alking is a basic activity in human's daily life. As a
systematic and comprehensive means in kinesiology,

gait analysis is an important component in intelligent
surveillance, physical condition monitoring, rehabilitation
therapy and intelligent prosthetic leg design. Gait analysis
also plays a key role in hot fields like exercise guidance and
identity verification. [1-7]
Existing methods for gait data collection can be

categorized into direct and indirect approaches. Direct
methods involve the use of physical sensors, such as force
plates, inertial measurement units (IMUs) and force-sensitive
resistors (FSRs), which capture biomechanical signals like
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ground reaction forces or lower limb kinematics [8, 9]. The
indirect approach includes unintrusive sensors, such as video
camera [10], infrared camera [11], ultrasound imaging device
[12, 13], light detection and ranging device [14, 15]. Based
on the two approaches, multiple well-developed systems
have been developed such as 3D force plates [16], infrared
camera systems, systematic data processors and computers.
To achieve a balance between structural simplicity, real-time
monitoring capability and high sampling rates, we selected
IMUs and FSR as the primary input sensors for our proposed
model. This choice ensures efficient gait data acquisition
while maintaining portability and practical applicability in
real-world settings.
With the advancement of artificial neural networks and

their powerful predictive capabilities, recent research has
predominantly adopted deep learning architectures as the
backbone of gait analysis models [17, 18]. Zhou Zirui et al.
uses convolutional neural networks (CNNs) as backbone and
gait silhouette as input to classify early scoliosis. The
sensitivity score of their model achieved 99.0% compared to
90.6% of conventional scoliosis screening techniques [19].
Zhang Ziyuan et al. disentangle appearance, canonical and
pose features from RGB imagery by adopting long short-term
memory (LSTM) network as backbone and achieved state of
the art performance at multiple public datasets [20]. Zheng
Jinkai et al. proposed the 3D skinned multi-person linear
model of the human body. The model utilized CNN and
3D-spatial-transformation network to fuse 3D skinned
multi-person linear model and silhouette into the gait feature
[21]. Xin Chen et al. proposed a multi-gait recognition model
to address the challenge of gait interference when people
walking together. The model combined a latent conditional
random field model and support vector machine to extract
gait feature of single people from multi-walking RGB
imagery [22]. Shaochen Xu et al. proposed an efficient
real-time detection method to detect three gait phases based
on a bidirectional long short-term memory network. The
model accept data of a single IMU which attached to the
shank and achieved 97.40% of average recognition accuracy
[23]. More recently, a number of hybrid neural network
model have achieved comparable good results in various
fields by combining CNN, LSTM and other models such as
residual networks (ResNet) [24] and graph neural networks.
Xinyu Wu et al. proposed a graph convolutional network
model for gait phase classification. The intention of their
design was to control a lower extremity exoskeleton by
collecting angle and force data from goniometers and FSRs.
The model delivered a significantly high prediction accuracy
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at 96.12% and better robustness on gait phase classification
[25].
Despite all the achievements it has made, the CNN model

has demonstrated optimal performance primarily in
appearance-based gait analysis methods, such as Gait Energy
Image (GEI) and Gait Entropy Image (GEnI) [26]. As an
advanced variant of CNN, ResNet introduces a skipping
connection mechanism to mitigate the vanishing gradient
problem and enable deeper architectures. However, when the
network depth increases significantly, ResNet requires
extensive training time—often spanning several weeks—due
to the high computational complexity. Additionally, its
effective receptive field tends to be smaller than theoretically
expected, which may limit its ability to capture long-term
dependencies in gait analysis. This issue becomes
particularly evident when modeling complex temporal
relationships across gait phases. As another commonly used
neural network, LSTM is particularly effective for processing
time-series data due to its ability to capture long-term
dependencies. Compared to traditional recurrent neural
networks, LSTM exhibits higher computational complexity
due to the introduction of gate mechanisms (input, forget and
output gates) and long-term memory cells. Furthermore,
LSTM networks typically require large-scale datasets for
training to prevent overfitting, as insufficient data can lead to
poor generalization. These limitations highlight the need for
hybrid architectures that can leverage the strengths of both
spatial and temporal modeling.
In order to avoid the flaws mentioned above, we combined

the LSTM network, which is designed for processing
sequential data, with ResNet, which focuses on addressing
gradient vanishing and gradient explosion. This approach
leverages ResNet's ability to extract deep features from
multiple IMUs and FSRs sensors for gait segmentation while
also addressing the issue of ResNet's limited receptive field.
By integrating temporal modeling through LSTM, the hybrid
architecture improves the network’s ability to learn
sequential dependencies critical for accurate gait phase
classification. We developed a custom-designed wireless
sensor platform to collect force and angle data for gait
analysis. The collected data were subsequently partitioned
into training and validation datasets to ensure robust model
evaluation and reduce overfitting. To assess the model's
performance, we conducted seven experimental trials using
six IMUs, exploring various configurations. Each
configuration tested different IMU placements to examine
their individual and combined contributions. In addition, the
effectiveness of FSRs was evaluated by analyzing force and
angle data separately, allowing for a comparative assessment
of their contributions to gait segmentation. This systematic
experimental design supports a deeper understanding of
sensor relevance and enhances model interpretability.

II. MATERIALS ANDMETHODS

A. Data Collection
Fifteen healthy men (aged 26 ± 2 years, weight 72 ± 10

kg, height 1.75 ± 0.08 m) completed the protocol. In the
experiment, participants were instructed to start walking
from a fixed standing position at one end of a 4-meter

walkway and climbing a 5-meter-long, 3.2-meter-high
stairway. Each trial began from the same initial stance to
ensure consistency across measurements. All participant
were familiarized with the procedure before the actual
experiment start. Participants completed several types of
walking movements at a self-selected speed.

Fig. 1. Overall data collecting process and equipment.

Two sets of data were collected on each end of the path.
The data collecting system are shown in Figure 1. The system
is composed of four IMUs sensor and two flexible FSRs. Two
types of data are then transferred to a computer by a wireless
transmitter.

B. Data Preprocessing
In order to reduce computational complexity and improve

model performance, the raw data collected by the wireless
sensor system underwent a preprocessing stage. Ensuring
consistent data dimensions was necessary for compatibility
with the residual network, especially since ResNet expects
fixed-size input tensors. Additionally, data normalization was
applied to prevent features with larger numerical ranges from
dominating others, thereby improving the stability and
convergence rate of the training process. Noise filtering was
also incorporated to remove potential signal artifacts caused
by sensor drift or mechanical disturbances. Following these
preprocessing steps, the computational cost of training the
neural network was significantly reduced, leading to
improved gait recognition accuracy. In this study, the raw
data were segmented based on different gait phases using the
sliding window method, with each sliding window
containing 40 samples. The normalization process can be
mathematically expressed as follows:

  min
max min min

max min

i
i

x xx x x y
x x


  


(1)

where xi is the number of sampled data from input data
series. xmaxand xmin are the peak and trough point respectively.
ymax and ymin are the upper and lower edge of the normalized
data. In this paper we set ymaxand ymin as 1 and -1 respectively.
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Fig. 2. Data collection. Stair descent (a); Stair ascent (b).

Each experiment is considered to be a continuous process
and two stages are included: the gait of level walking and the
gait of stair walking. For instance, in one type of experiment,
data were collected on two different gaits simultaneously:
level walking, the up-stair walking or down-stair walking.
The data collecting process is shown in Figure 2.

C. Data Labeling

Fig. 3. Four gait segments of three walking status. heel strike (HS), full
stance (ST), heel off (HO) and swing (SW).

Although the kinematic characteristics between walking
on level ground and stair ambulation differ considerably due
to variations in elevation, joint angles, and muscle activation
patterns, both scenarios share fundamental gait cycle
components. In this study, the gait cycle is segmented into
four distinct phases: heel strike (HS), full stance (ST), heel
off (HO), and swing (SW), as illustrated in Figure 3. These
phases serve as the basis for both temporal segmentation and
classification tasks in our model.

To label the dataset accurately, a rule-based segmentation
strategy was implemented based on force signals collected
from foot pressure sensors. The gait event detection criteria
are visualized in Figure 4 and defined as follows :
Rules for HS: As seen in Figure 4, the strike phase lasts

from the primary leg touches ground to the secondary leg
leaves ground, during which the heel force of primary foot
rises to peak and the force of ball for the secondary leg drops
to zero.
Rules for ST: As seen in Figure 4, heel force and ball force

of the primary leg drops to zero during stance phase. For the
secondary leg, the forces of both parts stay zero before it
reaches to ground. The end of stance phase can be identified
by a flat-zone detection rule.
Rules for HO: As seen in Figure 4, ball force of the

primary leg drops near to zero during heel off phase. The end
of heel off phase can be identified by a flat-zone detection
rule.
Rules for SW: As seen in Figure 4, both forces of two parts

stay near zero before another heel strike phase.

Fig. 4. Segmentation of four gait phases. The sample rate is set as 100Hz.

This segmentation method has been proven to be simple
and effective, as it provides a clear representation of gait
phases. In this study, the labeling criteria for the four gait
phases are primarily determined using a force threshold, as
illustrated in Figure 4.
For model training, each data point in the time series was

assigned a one-hot encoded label representing one of the four
gait phases. The output layer of our classification model is
configured to produce a probability vector of length four. In
this study, we select the label with the highest probability as
the predicted output, assigning a value of 1 to indicate
selection and 0 to indicate discard. Gait phase of HS, ST, HO
and SW are denoted as [1 0 0 0], [0 1 0 0], [0 0 1 0] and [0 0 0
1] respectively.

Fig. 5. Internal structure of LSTM unit.
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Fig. 6. The structure of ResNet-LSTM model

D. Structure of ResNet-LSTM Neural Network
As a variant of recurrent neural network, LSTM is

designed to address the vanishing and exploding gradient
problems encountered during the training of deep recurrent
models. Specifically, three gates and cell state mechanism are
introduced to properly process the long-term dependent
feature. The forget gate determines the extent to which
previous information should be discarded from the cell state.
The input gate regulates the incorporation of new information
into the cell state. The output gate determines how much of
the cell state contributes to the hidden state and ultimately
influences the network’s output. Through these gating
mechanism, LSTM effectively preserves long-range
dependencies while preventing the degradation of gradient
magnitudes, making them particularly well-suited for tasks
involving sequential data. The internal structure of LSTM
unit is shown in Figure 5. Each gate mechanism can be
mathematically expressed as follows:
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where it, ft and ot represent the activation of the input gate,
the forget gate and the output gate respectively. The update
formula and output of the whole unit ht are as follows:
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(3)

where xt represents input, ht represents state of the hidden
layer at time t, and w and b represent the trainable weight
matrix and bias term of LSTM unit respectively.
ResNet is an advanced deep convolutional neural network

to address the degradation problem encountered in very deep
networks. Traditional deep learning model such as AlexNet
[27], GoogleNet [28] are constructed with 8 layers and 22
layers respectively. Before the introduction of ResNet, the
most effective deep learning models typically contained
fewer than 30 layers, as deeper architectures often suffered
from vanishing or exploding gradients. To mitigate these
issues, ResNet incorporates shortcut connections within
feed-forward neural networks, allowing the input to bypass

one or more layers. This residual learning framework
effectively stabilizes gradient propagation without
introducing additional trainable parameters, thereby
facilitating the training of significantly deeper networks. The
internal structure of ResNet unit is shown in Figure 7.

Fig. 7. Basic residual leaning unit.

Fig. 8. The structure of 34 layer ResNet (a); Inner structure of residual unit
(b); First unit of the second, third and fourth blocks (c).

The ResNet-LSTM neural network model structure used
for gait recognition in this paper is demonstrated in Figure 6.
Our model consists of a 34-layer ResNet and a 2-layer LSTM
network. The ResNet architecture is divided into five main
components as shown in Figure 8: initial convolution layer is
a 7x7 convolutional layer with 64 filters and a stride of 2 is
used to unify the dimensions of the input data. residual blocks:
the model passes through four residual blocks, each with a
different number of convolutional kernels: 64, 128, 256 and
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512, progressively extracting deeper feature representations.
In the second, third and fourth blocks, the first unit includes a
pooling layer that adjusts the dimensions of the data. Global
average pooling is after the residual blocks, an average
pooling layer converts the extracted features into a
one-dimensional vector. Following the feature extraction
stage, the resulting feature vector is input into a two-layer
LSTM. By effectively capturing long-range dependencies in
time-series data, the LSTM part enhances the model’s
predictive accuracy, making it particularly suitable for gait
segmentation tasks.

E. Evaluation Method
In this paper, we employed accuracy, Micro-F1, and

Macro-F1 as evaluation metrics to assess the performance of
the ResNet-LSTM model. The Micro-F1 and Macro-F1
scores are particularly relevant for multi-class classification
tasks, as they provide a comprehensive measure of model
performance across different categories. Given the
imbalanced duration of the four gait phases, the Macro-F1
score is specifically computed to account for this discrepancy.
As shown in Figure 4, ST and SW phases last approximately
twice as long as the HS and HO phases, which can lead to
model bias toward the longer-duration classes if not properly
addressed. To mitigate the potential statistical bias
introduced by this imbalance, we first calculate the precision
and recall for each class individually based on their true
positive, false positive, and false negative rates. Meanwhile,
the F1-score for each class is determined, and the Macro-F1
score is obtained by averaging these individual F1-scores
equally, regardless of class size. This approach ensures that
the Macro-F1 score provides a balanced evaluation of model
performance across gait phases with both high and low
representation, effectively capturing variations in recall and
precision across all categories. Moreover, using both Macro-
and Micro-F1 scores allows for complementary insights into
how well the model performs on rare versus frequent phases.
The formula of accuracy, recall, and precision is as follows,
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where TP, TN, FP and FN represent true positive, true
negative, false positive and false negative respectively. The
formula of Macro-F1 is as follows.
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where k represents the number of classes and F1i represent
the F1 score of class i. The formula of Micro-F1 is as follows.
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where k represents the number of classes; li and mi

represent the true positive and positive number respectively
of class i.

III. EXPERIMENT AND RESULTS OF GAIT RECOGNITION
The partial walking data of subject 1 in three walking

status are shown in Figure 9. In this paper, PyCharm2023 was
used as the training software for the neural network model.
The hardware configuration includes i5-7300k, GTX1070ti
graphics card and 32 GB memory

A. The Training of ResNet-LSTM
The force and angle data collected by IMUs in Figure 9

were preprocessed through two methods: dimension
normalization and one-hot encoding. The IMUs were
attached to the lower limb on shank and thigh, which generate
four groups of raw data demonstrated in Figure 9. We
conducted two experiments using different combinations of
sensor types and locations. Additionally, a comparative
experiment was performed to evaluate gait recognition across
three different terrains. In each experiment, the dataset was
split at a 7:3 ratio, meaning 70% of the total data was
allocated for training and 30% for testing. The training
process employed cross-entropy as the loss function and
adaptive movement estimation algorithm (Adam) as the
optimizer. Training was considered complete when the
accuracy reached its peak for 10 consecutive iterations. The
corresponding learning curve is presented in Figure 10.

Fig. 9. IMUs data of left leg (primary leg). The sample rate is set as 100Hz.

IAENG International Journal of Computer Science

Volume 52, Issue 8, August 2025, Pages 2912-2921

 
______________________________________________________________________________________ 



Train accuracy

Val accuracy

Fig. 10. Training accuracy and validation accuracy during the training
process.

B. Experiment and Results
To evaluate the effectiveness of angle and force data in gait

recognition, we calculated the accuracy, macro-F1, and
micro-F1 scores based on the formulas described in Section II.
Table I presents a comparative analysis of force and angle
sensors, demonstrating that both modalities contribute
significantly to improving gait recognition accuracy. The
integration of these two sensor types offers complementary
information, with angle data providing dynamic movement
patterns and force data capturing contact characteristics with
the ground. Table II compares the performance of angle
sensors placed at three different lower limb locations,
revealing that placement on the thigh and shank provides the
most discriminative features due to the consistent motion
patterns and clearer joint rotation data at these sites. Table III
summarizes the results of seven contrast experiments across
four gait phases—HS, ST, HO, and SW—reporting accuracy,
macro-F1, and micro-F1 scores. Among all evaluated models,
ResNet-LSTM achieved the highest performance. The
precision scores of all four gait phases exceeded 90%, with
the SW phase reaching 97% in the seventh experimental
group, indicating excellent sensitivity to the swing motion
and effective sequence modeling by the LSTM module.
However, the model exhibited its lowest performance in the
third contrast experiment, where both precision and recall fell
below 80%, likely due to insufficient or redundant sensor
data, such as missing IMU channels or suboptimal
placement.

Fig. 11. Gait phase classification output. HS, ST, HO and SW denote heel
strike, full stance, heel off and swing respectively.

Fig. 12. Results of the presented ResNet-LSTM in 7 experiments.

TABLE I
ACCURACY, MACRO-F1 AND MICRO-F1 SCORE OF GAIT RECOGNITION

USING TWO TYPES OF SENSORS.
Data type Accuracy Macro-F1 Micro-F1

Force + Angle 92.47% 95.33% 94.73%
Force 86.86% 90.60% 87.26%
Angle 85.59% 82.97% 86.90%

In addition, the F1-score of HO and HS are the only ones
that fall below 80% across all evaluation metrics, suggesting
that these phases may be more ambiguous and brief, making
them harder to detect accurately. Comparing the results from
group 1 to group 3, the performance of ResNet-LSTM
improved significantly when all three IMUs were used as
inputs, supporting the importance of multi-sensor fusion.
From group 4 to group 7, the model achieved an average
F1-score of 91.81%, reflecting the stability and robustness of
the proposed framework under varied sensor configurations.
Figure 12 presents the average precision, recall, and
macro-F1 scores across seven groups, with group 7 showing
the best performance. The highest F1-score was observed in
group 7, reaching an average of 94.25%. The segmentation
output for group 7 is illustrated in Figure 11, demonstrating
high temporal alignment between predicted labels and
ground truth. Additionally, we conducted a comparative
experiment across three different terrains, with the results
summarized in Table IV. The accuracy for stair ascent was
3% lower than that for level ground and stair descent,
possibly due to greater biomechanical variability and altered
postural control when climbing stairs. The classification
performance was further analyzed using a confusion matrix,
as shown in Figure 13, which helped identify common
misclassification trends and assess model robustness phase
by phase.

TABLE II
THE GROUPS OF EXPERIMENTS DEPEND ON THE IMU POSITION

COMBINATION.
Grou
ps

Position Combination of IMUs
1 Left and right knee
2 Left and right hip
3 Left and right ankle
4 Left and right knee and hip
5 Left and right knee and ankle
6 Left and right hip and ankle
7 Left and right knee, hip and ankle
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TABLE III.
COMPARISON OF PRECISION, RECALL AND F1-SCORE OF DIFFERENT GROUPS.
Groups Gait Phases Precision (%) Recall (%) F1-score (%)

1

HS 84 77 85
ST 82 72 83
HO 71 75 73
SW 81 63 83

2

HS 87 85 75
ST 82 80 82
HO 75 76 75
SW 80 80 83

3

HS 85 81 86
ST 84 82 84
HO 75 76 76
SW 83 84 85

4

HS 88 89 90
ST 87 87 89
HO 85 84 86
SW 90 91 93

5

HS 93 93 94
ST 86 87 89
HO 85 85 88
SW 90 90 92

6

HS 88 87 91
ST 90 91 93
HO 87 88 90
SW 96 97 97

7

HS 90 91 93
ST 91 92 95
HO 93 93 94
SW 97 81 95

TABLE IV
RESULTS OF GAIT RECOGNITION FOR THREE TERRAINS.
Data type Accuracy Macro-F1 Micro-F1

Level ground 93.67% 93.62% 92.93%
Stair ascent 90.20% 87.50% 87.28%
Stair descent 93.54% 70.43% 75.47%

TABLE V
PERFORMANCE OF DIFFERENT ALGORITHMS FOR LEVEL WALKING

Algorithm Accuracy Precision F1-score
LSTM-DNN (2 phase) 91.80% 93.70% 94.03%

LSTM 89.10% 91.10% 90.53%
KNN 72.66% 74.67% 74.00%
SVM 74.33% 77.67% 75.57%

ResNet-LSTM (ours) 92.67% 93.85% 95.63%

Table V presents the performance comparison of five gait
analysis algorithms. The scores for four of these algorithms
correspond to gait detection during level-ground walking.
LSTM-DNN [29], apart from the other three algorithms,
detects only two gait phases (stance and swing phase),
offering a simplified classification approach that may not
generalize well to more detailed tasks. According to Table V,
the ResNet-LSTM algorithm achieved the highest gait phase
accuracy and F1-score, reaching 92.67% and 95.63%
respectively, demonstrating strong capability in handling
multi-phase gait segmentation. Additionally, both
ResNet-LSTM and LSTM demonstrate high gait phase
recognition performance, with both accuracy rates and
F1-scores exceeding 89%, highlighting their effectiveness in
capturing temporal dynamics from sensor data. In contrast,
the k-nearest neighbor classification (KNN) and support
vector machine (SVM) algorithms exhibit relatively low
recognition rates, with accuracy and F1-scores below 86%,
which indicates their limitations when applied to complex,
high-dimensional gait signals.

Fig. 13. Confusion matrix of sensor and terrain comparing experiment. Force
and angle sensors (a); Force sensors (b); Angle sensors(c); Level ground (d);
Stair ascent (e); Stair descent (f).

C. Experiment and Results Based on ResNet-LSTM-TPA
We have demonstrated the regulations of four gait phase in

Chapter II, Section C. Each gait phase is labeled according to
certain gait event; For example, heel strike starts at the
moment when primary leg touches ground. For the purpose
of gait phase segmentation, the model doesn’t need to pay
attention to whole time series but only to the key moment.
LSTM tends to treat all time steps equally when processing
variable-length sequences (or summarizes information solely
through the final hidden state), which may lead to the neglect
of critical time points within the sequence. Therefore, we
added a temporal attention (TPA) [30] layer after LSTM to
dynamically assign different levels of importance to the
hidden states at each time step, enabling the model to focus
more effectively on moments that are highly relevant to the
classification task.
As shown in Figure 14, the LSTM produces hidden states

at each time step, denoted as ℎ1, ℎ2, …, ℎ� . These hidden
states are passed to the attention module along with the final
hidden state ℎ� , which serves as the query vector � . Each
LSTM output ℎ� and the query � are independently projected
using learned weight matrices, then combined through a
non-linear activation function, typically tanh. The resulting
vectors are further projected using a learned attention vector
� to compute a scalar score ������ , representing the
relevance of each time step � to the final output. These scores
are then normalized using the softmax function to generate
attention weights. The attention weights
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Fig. 14. ResNet-LSTM-TPA model

are used to compute a weighted sum of all LSTM outputs,
resulting in a context vector that aggregates information from
the entire sequence while emphasizing the most informative
time steps. This context vector is then passed to subsequent
layers (typically a fully connected layer followed by a
softmax layer) for final classification or prediction.
Figure 15 shows the internal structure of TPA layer. The

TPA attention score at time step � can be denoted as:

1 2tanh( )T
t tscore v W h W q  (7)

where ℎ� represents he hidden state output from the LSTM
at time step t; � represents the query vector, in this paper we
choose the final hidden state as the query vector; �1 and �2
are learnable weight matrices. Both map to a common
attention space. �� is a learnable vector which is used to
project the combined representation to a scalar score.

Fig. 15. Internal structure of TPA layer

The data and training methodology remain unchanged and
are described in Chapter III, Section A. The learning curve
converged at epoch 35, and the validation set achieved an
accuracy of 93.33%. The primary attention weights from the
TPA mechanism were extracted and visualized as a plot.

Every line represents a batch of gait cycle. As shown in
Figure 16, a scatter plot of gait phase change points is placed
above the attention weight plot, aligned along the time axis.
The attention distribution exhibits three distinct peaks, each
of which corresponds to a gait phase transition. Notably, the
transition from Swing (SW) to Heel Strike (HS) consistently
occurs at the start of each gait cycle, and thus does not need to
be explicitly marked in the scatter plot. Nevertheless, the
attention weight plot still shows a high activation around this
transition, indicating that the model has implicitly learned to
attend to this critical event. This further demonstrates the
model's capability to focus on key temporal dynamics within
the gait cycle.

Fig. 16. Gait phase change scatter plot and attention weight
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TABLE VI
PERFORMANCE OF DIFFERENT ALGORITHMS FOR LEVEL WALKING

Algorithm Accuracy Precision F1-score
LSTM-DNN (2 phase) 91.80% 93.70% 94.03%

LSTM 89.10% 91.10% 90.53%
KNN 72.66% 74.67% 74.00%
SVM 74.33% 77.67% 75.57%

ResNet-LSTM (ours) 92.67% 93.85% 95.63%
ResNet-LSTM-TPA (ours) 93.33% 93.99% 95.80%

IV. DISCUSSION

In this paper, we propose a novel model that integrates
ResNet and LSTM to segment four gait phases across three
different terrains, including stair ascent, stair descent and
level walking. The proposed approach utilizes FSR and IMU
sensors as input to the ResNet-LSTM model. We conducted
seven experiments to evaluate the necessity of using three
IMUs positioned at different locations. The results presented
in Table II indicate that incorporating additional IMUs
improves precision, recall and macro-F1 scores. When more
than four IMUs were used in the final three experiments, the
majority of these metrics exceeded 85%. Notably, in the
seventh experiment, all three scores surpassed 90%, leading
to the conclusion that all six IMUs placed at different
positions contribute to improving gait phase segmentation
accuracy. Furthermore, the results of the group 7 experiment
demonstrated that the ResNet-LSTM model achieved strong
performance in gait recognition in gait recognition, with
accuracy, macro-F1 and micro-F1 of 92.67%, 95.33% and
94.73% respectively. The enhanced ResNet-LSTM-TPA
model achieved slightly better performance, reaching an
accuracy of 93.33%, indicating that the integration of the
TPA mechanism further improves the model's ability to
capture critical features for gait phase segmentation.

V. CONCLUSION
To sum up, the results of this study show that the proposed

ResNet-LSTMmodel achieved 92.47% accuracy in detecting
four gait phases across up-stair, down-stair and level ground
walking status. This result suggests that there are underlying
similarities in gait locomotion across these three walking
terrains. The input data for the model were collected using six
IMUs and four FSRs through a self-developed wearable
wireless sensor system. This paper conducted a contrast
experiment by combining different locations of IMUs into
seven groups. The results indicate that the proposed model
performed best when all six IMUs were used, achieving an
accuracy and macro-F1 of 92.67% and 95.63% respectively.
The innovation of this paper is that we integrated three most
common walking conditions for gait phase segmentation.
The accuracy of level ground, stair ascent and stair descent
walking achieved 93.67%, 90.20% and 93.54% respectively
with a slight drop for stair ascent. ResNet-LSTM-TPA
achieved slightly better performance, reaching an accuracy of
93.33%.
Regarding future trends, we expect an increase of overall

accuracy when adopting state of the art technique such as
transformer networks which targets data streaming and avoid
recursion decay such as the sliding window method that we
used in data preprocessing. Furthermore, given the strong

correlation between gait event detection and gait phase
segmentation, it may be worthwhile to explore adapting our
model for gait event detection, potentially enhancing its
applicability in real-world scenarios.
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