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Abstract—Accurate liver segmentation has a direct impact
on systematic clinical diagnosis, treatment planning, volume
measurements, study of liver function, and prediction of dis-
eases and abnormalities. Due to significant progress in medical
imaging technologies, the amount of data being handled has in-
creased considerably, creating a strong need for automated real-
time segmentation techniques. The demand for automatic liver
segmentation has attracted the attention of many researchers;
as a result, numerous automatic liver segmentations have
been proposed. However, this topic remains an open challenge
because most of these algorithms fail to produce results suitable
for clinical diagnosis. In this study, a novel cluster-based
automatic segmentation method was developed. The primary
requirements for cluster-based segmentation are the optimal
number of clusters (k) and centroids. A novel framework was
designed to obtain the optimal number of clusters and centroids
using the Slope Variation Distribution (SVD) of the image.
A trapezoidal-shaped membership was assigned to each pixel
of the Computed Tomography (CT) scan. Subsequently, the
liver segmentation results were improved using the median
aggregator. Finally, we used a set of morphological operators
to remove non-liver structures and obtain precise liver images.
The precision of the proposed framework was tested using
100 CT scans of healthy livers and 40 CT scans of diseased
livers. The average accuracy, average Relative Volume Dis-
agreement (RVD), average Highest Contour Distance (HCD),
average Mean Contour Difference (MCD), and average Dice
Similarity Factor (DSF) were 92.01%, 5.75%,4.15mm, 2.44
mm, and 93.09%, respectively for healthy liver and 90.05%,
7.68%,9.30mm, 3.75 mm, and 85.22%, respectively for diseased
liver, indicating promising efficacy. Furthermore, the minimal
variance verifies the resilience of the framework. The encour-
aging outcomes highlight the effectiveness of our proposed
framework in achieving precise liver segmentation from CT
scans. These results indicate that our method has the potential
to greatly enhance both the efficiency and dependability of
liver imaging analysis in clinical environments. Additionally,
further validation using larger datasets and benchmarking
against leading techniques will help confirm the robustness and
practical value of our approach.
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I. INTRODUCTION

THE liver is the secretory gland as well as it is the
heaviest and most massive internal organ. As a result,

it serves a dual purpose in the body. It is a central and
distinctive organ without which the body’s tissues would
quickly perish from a lack of vitality and nutrients. Whilst,
the liver possesses an extraordinary ability to replace dead
or damaged tissues. As a result, no mechanism or drug can
make up for the loss of liver function. Because of the large
volume of blood flow through it, its anatomical structure,
and position in the human body, it has more tendency to
develop a variety of ailments. There are about 100 liver
problems, which can be brought on by toxins, infections,
alcohol, heredity, an unbalanced diet, obesity, unhygienic
practices, medicines, etc. The most commonly observed
liver diseases in the human body are cancer, hepatitis, fatty
liver, cirrhosis, viral hepatitis, hemochromatosis, and alpha-
1 antitrypsin deficiency. According to the WHO, there will
be 50 million cases of hepatitis C and 254 million cases
of hepatitis B in 2022, and the number of fatalities from
viral hepatitis is increasing. American Cancer Society has
projected the following figures for primary liver cancer
and intrahepatic bile duct carcinoma in the US by 2024:
approximately 41, 630 new cases will be identified (13,630
in females and 28,000 in males). These cancers cause the
death of approximately 29,840 persons (10,720 females and
19,120 males). The occurrence of liver cancer has risen
over four times since 1980 and the disease fatality rate has
more than doubled. If current trends continue, there might
be a more than 55% escalation in liver cancer diagnoses or
demises worldwide between 2020 and 2040. Primary liver
cancer cases and deaths at different stages of development
(low, medium, high, and extremely high) from 2020 to 2040
called as Human Development Index (HDI) is shown in
Figure 1. Furthermore, cancers that originate in neighboring
organs such as the lung, kidney, and breast, as well as
other abdominal organs, particularly the rectum, colon and
pancreas called secondary cancer, frequently spread to the
liver during the disease. As a result, regular analysis of
the liver and its lesions is performed for thorough tumor
staging [1]. Owing to extensive advancements in medical
modalities and their images, the utilization of computers is
compulsory to handle large amounts of data. Specifically,
segmentation algorithms are utilized for demarcating anatom-
ical structures [2], and hence these algorithms are also helpful
in computer-incorporated surgery, treatment scheduling, the
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Fig. 1: Forecasted percentage change (with actual values displayed above each bar) in new cases and deaths due to primary
liver cancer from 2020 to 2040, categorized by Human Development Index (HDI).

study of anatomical structures, 3D view generation, and
texture analysis.

Recognizing suitable therapy for anomalous variation in
liver tissues, shape analysis, treatment planning and mon-
itoring, liver volume measurement, quantification of lesion
volume, disease progression, tissue volume, and detecting
pathology. Moreover, segmentation algorithms are crucial in
medical image analysis such as registration, motion tracking,
and labeling.

Segmenting the liver and tumors makes it simpler to
calculate tumor load, which streamlines the planning process
for surgical liver resection. Additionally, segmentation helps
the diagnosis by precisely locating and estimating the size of
the liver as well as any tumors inside its anatomical regions
[3].

Medical imaging of the human body can be performed
using different modalities such as X-ray, CT, ultrasound, etc.
The CT scan is frequently used because of its robustness,
convenience, excellent spatial resolution, and petite acquisi-
tion time.

Liver segmentation is a crucial stage that isolates the liver
from abutting tissues and organs. Many articles on liver seg-
mentation are available based on thresholding, histograms,
clustering, transformation, edge detection, etc. However,
these techniques are unsuccessful in delineating the liver be-
cause they rely only on pixel attributes. Many segmentation
techniques fail to identify liver images accurately because
their edges are fuzzy, there is high variability in both anatom-
ical appearance and intensity pattern, inhomogeneous liver
texture, unpredictable attributes, and inherent imaging noise.
Moreover, the surrounding organs of the liver share similar
gray levels, making delineation quite difficult. An added
cause that complicates liver segmentation is the occurrence
of liver pathologies, such as cancer, cirrhosis, and fatty liver.

There are three types of liver segmentation techniques:

automatic, semiautomatic, and manual. The manual segmen-
tation method provides a 100% accuracy rate and reliable
output; however, it is associated with poor reproducibility
and time consumption. This is reasonable for small image
datasets. In many cases, manual segmentation results are
used as reference images for the development of fully
automatic/semiautomatic segmentation algorithms. It is also
biased by intra and inter-observer variability [4].

These reasons render manual segmentation objectionable.
Semi-automatic/interactive liver segmentation relies heavily
on operator interactions. However, automatic liver segmen-
tation is now in demand and does not depend on opera-
tor inputs. Over the past four decades, many researchers
have attempted to design fully automatic liver segmentation;
however, there remains scope for enhancing accuracy and
boosting the resilience of the method.

The most commonly used liver segmentation methods can
be classified as machine learning [5], [6], graph cuts [7],
[8], [9], region growing [10], [11], edge detection methods
[12], threshold methods [13], cluster-based methods [14],
[15], watershed methods [16], and active contour methods
[17]. However, it is a thought-provoking task to derive liver
images from abdominal scans, particularly low-contrast scan
images. Machine learning methods consider a wide range
of liver topologies and features; however, they require a
large dataset for training. Graph cut methods are based on
graph theory, but they are partly limited by the striking bias
problem, as region-growing methods are computationally
efficient and easy to implement. However, they are sensitive
to seed point selection and provide the best results if the
objects are homogeneous. Edge-based techniques have been
designed for disjoint detection. This provides good outcomes
if the objects have high contrast. Despite being one of the
earliest and fastest methods, threshold-based segmentation
relies on the choice of threshold values to yield accurate
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results that are selected manually or by the outcome of an
algorithm. The watershed method is based on the topological
interpretation of image boundaries, which provides over-
segmentation in the presence of noise. The most commonly
used liver segmentation method is the active contour model,
which depends on sophisticated initialization and hinges on
a precise speed function with strong contrast.

Cluster-based methods divide an image into k objects,
which are homogeneous and mutually exclusive. Determin-
ing the optimal value of k is a difficult task, and defining the
cost function for minimization can be problematic.

The importance of liver segmentation in the medical
domain, combined with the challenges of accurately isolating
the liver in CT scan images, has led to the creation of
fully automated, cluster-based liver segmentation methods. A
novel mathematical model has been designed based on SVD,
which provides an ideal cluster count and their centroids.

This paper focuses on the design and analysis of fully
automatic liver segmentation, offering an accurate and con-
sistent outcome. The proposed framework is evaluated by
comparing its results with state-of-the-art techniques and
reference images provided by expert radiologists.

The paper is structured into six sections. Section I pro-
vides an introduction to the proposed work, outlining the
background, existing challenges, the importance of liver
segmentation, and the research objectives. Section II presents
a review of related work in the area of fully automated liver
segmentation. Section III, we present our fully automatic
liver segmentation framework; experimental results are dis-
cussed in section IV; qualitative and quantitative analysis is
performed in section V and VI respectively.

II. LITERATURE SURVEY
Deshmukh K et al. [18] designed an image segmentation

built upon the Fuzzy Min-Max Neural Network (FMMNN)
framework. In this study, the fuzzy entropy technique is used
to determine the cluster count and a neural network is used
to segment the image automatically. The proposed model is
computationally inexpensive and robust. Santoso et al. [19]
developed a model using the phase field method for brain
tumor segmentation, achieving Dice Scores (DC) and Jaccard
Indices (JI) of 0.97 and 0.95, respectively. This model
integrates the Allen–Cahn equation and the Range–Kutta
mathematical model to delineate brain tumors. The precise
liver was separated by Xuesong Lu et al. [7] using the graph
cut approach. Using the multi-atlas segmentation approach, a
preliminary coarse liver image was produced for this inves-
tigation. Shape and multi-dimensional characteristics were
used to create an accurate liver image with an average volume
overlap of 94%. Sheng et al. [20] studied the performance
of DenseNet, ResNet, U-Net, fuzzy c-means (FCM), and
SegNet to delineate liver images from CT images. The
experimental outcomes demonstrate that DenseNet is the
best for liver segmentation, followed by ResNet. Among all,
FCM exhibits the worst performance. Mubashir Ahmed et al.
[21] anticipated a novel convolutional neural network (CNN)
for liver demarcation. In this study, three convolution layers
were utilized; each layer was traced by a max-pooling layer,
and a two-way softmax was employed. A random gaussian
distribution is employed to deliver preliminary weights. The
proposed model was verified on the sliver07 dataset, attaining

DC, JI, specificity, sensitivity, and accuracy of 0.95, 0.91,
0.99, 0.97, and 0.97, respectively. The computation of the
slope difference distribution (SDD) of the image histogram
was performed by Sangeeta et al. [13] to delineate the liver
images from CT scans. Subsequently, SDD was utilized to
obtain accurate liver from CT scans with a JC of 91%.
Sangeeta et al. [22] a novel approach was introduced to
transform CT scan images into the neutrosophic domain,
which includes three subsets: edge, non-object, and object.
The object subset specifically represents the hepatic region.
Morphological operations were then applied to achieve ac-
curate liver segmentation, resulting in an average positive
detection rate of 92%. Lou Q et al. [23] used Shannon
entropy to differentiate liver from CT scan images. Accurate
liver images were obtained by dilation and erosion, yielding
good findings with a DC of 95.12%. By creating a new
speed term, D. Jayadevappa et al. [24]presented an enhanced
variational level set method for medical image segmentation.
The model provided a computation time of 62s. Na Tian
et al. [25] anticipated a self-learning framework that takes
tokenized images as inputs. This model creates a precise
feature map to generate an accurate image segmentation.
A deep learning architecture with leaky ReLU layers was
suggested by Nayantara et al. [26] in order to retrieve
accurate liver from a collection of CT scans. The 96%
of the dice coefficient was attained using this framework.
A novel deep-learning approach was suggested by Zhang
et al. [27] that uses circular areas to extract liver images
from abdominal CT scans with 95% confidence intervals and
identify hepatic steatosis.

III. METHODOLOGY

A. Pre-processing stage

The CT scan image is in 1020X680 DICOM color format.
Transfigure the CT image to a greyscale of size 256X256.

B. Extraction of the optimal number of clusters and cen-
troids based on Slope Variation Distribution (SVD) of image
histogram [28], [29], [30]

Let I (P) be an image with R different regions that we want
to generate using the fuzzy logic method. The segmented
image is achieved so that.

S (R) = gs {I (P )} where gs {·} is the segmentation tech-
nique which is considered a mapping function that transforms
the L gray level (0 to 255) to R values i.e. L −→ R
where R ≺ L.

The proposed framework for CT image segmentation
assumes that each pixel in the image I(P) will have a
certain degree of membership function in each region R. The
membership function is designated by µr,r = 1, 2, . . . ..R.
Spatial aggregations will be performed into the membership
plan to make the relationship between surrounding pixels to
obtain precise liver segmentation.

Finding the best-fitting number of clusters in an image
is an important and complex step. This can be obtained
manually by a trial-and-error method or an automatic tech-
nique can be designed. The initial values of the centroids
and several clusters have a significant impact on the final
segmentation result. Hence, a novel methodology is followed
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Fig. 2: Flowchart of proposed model.

to achieve the optimal number of clusters and centroids, as
follows:
(i) Normalize the histogram distribution of an image as
follows

P̈ (n = i) =
Hi

HJ
i = 1 2 . . . . . . . . . .256 (1)

j = arg max
j∈[1,256]

Hj

Greyscale frequency is denoted by Hi and maximum fre-
quency by Hj, occurs at j in the interval [1,256].
(ii) Calculate discrete Fourier transform (DFT) of P̈ (n)
as follows.

F (x) =
256∑
x=1

P̈ (n) e−i 2Πxn
255 x = 1, 2, . . . .256 (2)

(iii) Choose a low-frequency component and eliminate a
high-frequency component.

F̂ (x) =

{
F (x) ; x = 1, 2 . . . . . . . . . . . . . . . . . . . . . . 10

0; x = 11, 17, . . . . . . . . . 256
(3)

(iv)Transmute frequency domain to time domain as follows.

P̃ (n) =
1

256

256∑
x=1

F̂ (x) ei
2Πxn
255 ; x = 1, . . . ..256 (4)

P̃ (n) is a smoothed histogram distribution of low-frequency
components ranging from 0 to 10. The range of low-
frequency components is chosen by exhaustive experimen-
tation on a varied variety of CT images. The left and right
slopes of each point on the smoothed histogram distribution
are distinct from one another. Fit a line model with N=5
neighboring points at each side to determine them. The
formulation of the line model is as follows.

yi = axi + b (5)

[a, b]T = (CTC)−1CTY (6)

C =


x1

x2

.
x20

1
1
.
1

Y = [y1, y2, ......, y20]
T (7)

(vi) The following equation provides slope variation sv (i)
at point i.

sv (i) = a2 (i)−a1 (i) ; i = N +1, 256−N (8)

Equation 8 yields two slopes at point i, a1 (i) , and a2 (i) .
(vii) The derivative of sv (x) is equated to zero.

dsv (x)

dx
= 0 (9)

(viii) Solve the above equation; we get SVD.
(ix) In SVD, crests and dips show the greatest local variation.
(x) Optimal number of clusters/Number of segmented re-
gions(R) =Total number of crest + Total number of dips
generated in SVD.
(xi) Centroid values=Intensity values of crest and dips.

C. Assigning trapezoidal-shaped membership to each pixel

A fuzzy membership function µr (x) with r=1, 2,. . . . . . ,R
is connected to each of the classes associated with centroids
obtained. The membership function is formulated as in
equation 10.

R∑
r=1

µr (I (R)) = 1 (10)

At this stage, thresholding of an image can be obtained as
follows.

T (r) = argmax
r

{µr(I ((R))} (11)

Using T(r), the thresholded image can be obtained. The
output of this step, for each pixel, will be a vector of
memberships.

µ(I(R)) = [µ1(I(P1), µ2(I(P2) . . . .µ1(I(PR)] (12)

D. Local aggregation by median operator

The original membership function µr (I (P )) can be mod-
ified based on local information which will provide better
segmentation results. A neighbourhood η (R) is considered,
cantered around pixel p, we can utilize membership values
µ (I (R)) of all the pixels in η (R) to better classify the image
into R regions. The local aggregation is defined as follows.

µS(L(R)) = AG{µ(I(S))} (13)

where AG{.} is a fuzzy aggregation in a neighborhood η(R).
In this framework, median aggregation provides the best
result. The memberships of each pixel in µ(R) are arrogated
using the median operator.

µS
r (I(r)) = median

S∈η(r)
{µr(Ir(R))} (14)

E. Post Processing

By performing morphological operations, a precise liver
image, and its boundary is obtained from an abdominal CT
scan. The flowchart of the proposed framework is described
in Figure 2.
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Fig. 3: Demonstration of proposed framework for healthy liver; (a) CT image; (b) Plot of peaks and dips of SVD; (c) Result
of trapezoidal membership function; (d) Results of median aggregation; (e) Result of morphological operations; (f) 2D –
CT scan with liver border marking. (g) Reference image.

IV. EXPERIMENTS AND RESULTS

An experimental dataset contained CT scans of 100 pa-
tients with heathy livers and 40 unhealthy livers provided
by the CT Scan Center, Hubballi, Karnataka, India. Each
slice of the CT image was a 1020 × 680 color image. Slice
counts varied across cases, ranging from 45 to 450. The
proposed fuzzy logic-based liver segmentation was realized
using Matlab-R2019a.

Figure 3 shows the specifics of the anticipated model for
a healthy liver. Figure 3(a) shows a 2D-CT scan image. In
SVD, the largest local variation is indicated by the peaks
and dips. Figure 3(b) illustrates the number of peaks, dips,
and intensity values that are input to the segmentation of an
image using the membership function. In this example, five
peaks and five dips are generated with intensity values of [6
9 66 111 166] and [38 87 137 216 232], respectively.

The peaks are shown by blue crosses, and the dips are
indicated by red circles. The intensity values of the peaks and
dips are centroids for trapezoid-shaped fuzzy membership
functions. Figure 3(c) shows the segmentation results based
on the fuzzy membership function. Figures 3 (d) and (e)
illustrate the output of median aggregation and morphologi-
cal operations, respectively, to obtain a precise image of the
liver from an abdominal CT scan image. Figures 3(f) and (g)
illustrate a CT scan with a liver border and reference image,
respectively.

Figure 4 shows the details of the proposed framework

for an unhealthy liver. Figures 4(a) and (b) show a 2D-CT
scan and SVD of the CT image, respectively. Figures (c)
and (d) illustrate the outcome of the trapezoidal membership
function and median aggregation, respectively. Figures 4(e)
and (f) explain the results of morphological operations and
liver boundary marking in a 2D-CT scan, respectively. Figure
4(g) demonstrates the reference image.

The number of centroids and their intensity values have
a significant impact on specific liver segmentation. The
proposed framework offers several clusters (K) and their
centroids, providing precise CT scan liver segmentation
results.

V. QUALITATIVE ANALYSIS

The outcome of the proposed method is compared with
the following segmentation method:

(a) Fuzzy-c-Means (FCM) [28]
(b) K-means [28]
(c) Otsu segmentation [29]
(d) EM segmentation [30]
(e) Texture-based segmentation [31]
(f) Region-based segmentation method [32]
(g) Neutrosophic set-based segmentation [22], [33]
(h) Multi threshold-based segmentation [13]
(i) Histogram based segmentation [34]
The comparison results of the proposed framework with

the state-of-the-art is illustrated in Figure 5. Figure 5, row
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(a) (b) (c)
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Fig. 4: Demonstration of proposed framework for diseased liver; (a) CT image; (b) Plot of peaks and dips of SVD; (c)
Result of trapezoidal membership function; (d) Results of median aggregation; (e) Result of morphological operations; (f)
2D – CT scan with liver border marking. (g) Reference image.

(a) represents the 2D-CT image; row (b) illustrates the FCM
results; row (c) describes the K-means algorithm results; row
(d) explains Otsu segmentation results; row (e) shows EM
segmentation results; row (f) represents the texture-based
segmentation method; row (g) shows the region-based seg-
mentation method; row (h) illustrates neutrosophic set-based
segmentation; row (i) explains multi-threshold-based seg-
mentation; and row (j), row (k), and row(l) show histogram-
based segmentation results, proposed model outcomes, and
reference images, respectively.

The visual comparison presented in Figure 5 demonstrates
the effectiveness of various segmentation techniques applied
to 2D-CT images. The outcomes of the proposed model,
shown in row (k), can be directly compared to the reference
images in row (l), allowing for a comprehensive evaluation
of its performance. This side-by-side comparison enabled a
clear assessment of how the proposed framework stands up
against established segmentation methods, highlighting its
potential advantages in accurately identifying and outlining
structures in medical imagery.

VI. QUANTITATIVE ANALYSIS

The first step in biomedical image processing is seg-
mentation. In illness diagnosis and medication planning, a
segmentation approach with high precision is a major objec-
tive because it has an impact on medical insights, such as
observing tumour growth patterns. Therefore, it is crucial to

evaluate the effectiveness of this segmentation method [33].
The image segmentation evaluation method compares two
segmentation results by measuring how similar or different
they are from one another; the first image represents the out-
put of the segmentation technique, and the second represents
the corresponding ground truth segmentation image obtained
under the guidance of radiologists. Accuracy, HCD, MCD
and RVD were the metrics used to evaluate the proposed
model.

A. Accuracy (ACC)
Segmentation accuracy (ACC) evaluates the difference

between the ground truth image and the predicted seg-
mentation image. In this study, the ground truth image is
validated using a manually segmentation under a medical
practitioner’s guidance. The ACC score reflects how well the
algorithm’s prediction aligns with the ground truth image.
This evaluation metric is determined using equation [35].
According to equation 15, a perfect segmentation would
result in an ACC value of 100. As the ACC value deviates
from 100, it indicates a discrepancy in the segmentation. It
is defined as follows.

ACC =
Correctly Predicted P ixels

Total number of image pixels
∗ 100 (15)

Benchmarking our model against state-of-the-art algorithms
using accuracy is described in Figure 6(a) and 7(a) for
healthy liver and unhealthy liver respectively.
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(i)

(j)

(k)

(l)

Fig. 5: Comparison results of the proposed framework with state-of-art; row (a) 2D-CT image; row (b) FCM results; row
(c) K-means algorithm results; row (d) Otsu segmentation results; row (e) EM segmentation results; row (f) texture based
segmentation method; row (g) region-based segmentation method; row (h) Neutrosophic set based segmentation; row (i) Mult
threshold-based segmentation; row (j) histogram-based segmentation; row (k) proposed model outcomes; row(l) reference
image.

B. Relative Volume Disagreement (RVD)

The specific RVD that exists between 2 images
SEGALG and SEGGT is given in percent and defined as.

RVD = 100 ∗ (| SEGALG − SEGGT |)/SEGGT (16)

With SEGALG as an image segmented by the proposed
algorithm and SEGGT as a ground truth image. A score of
0% indicates that the two areas completely overlap [36]. A
performance comparison between the suggested model and
state-of-the-art approaches using RVD is shown in Figure
6(b) and 7(b) for healthy liver and unhealthy liver respec-
tively.

C. Highest Contour Distance (HCD)

This is the greatest gap, measured in Euclidean distances,
between the set of edge pixels in the reference liver images
and algorithm-segmented liver images. It was measured in
mm [22], [37]. Segmentation with an HCD of 0 mm is
desirable. A suggested model is compared with existing state-
of-the-art methods using HCD is revealed in Figure 6(c) and
7(c) for healthy liver and unhealthy liver respectively. The

HCD can be written as.

HCD = max[ dist(SEG ALG,SEG GT ),

dist(SEG GT, SEG ALG)] (17)

D. Mean Contour Difference (MCD)

MCD is a mean of all the distances from the border of
algorithm segmented image SEGALGto the border of ground
truth SEGGT [24] . It is formulated as follows.

MCD =
1

|SEGALG|+ |SEGGT |
∗

[ ∑
m∈SEGALG

d (m,SEGGT )

+
∑

n∈SEGGT

d (n, SEGALG)

]
(18)

This will properly break the equation into two
lines while maintaining readability and alignment.
Where d (n, SEGALG) Denotes Euclidean distance
between n and SEGALG. A comparative study of the
state-of-art methods and the proposed model using MCD
is shown in Figure 6(d) and 7(d) for healthy liver and
unhealthy liver respectively.
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Fig. 6: Analysis of proffered framework with state-of-art techniques for healthy liver.
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Fig. 7: Analysis of proffered framework with state-of-art techniques for liver with ailments.
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TABLE I: COMPARISON OF AVERAGE METRIC
VALUES FOR DIFFERENT SEGMENTATION IN

EVALUATING A HEALTHY LIVER.

Method ACC RVD HCD MCD DSF

FCM 74.69 31.15 24.99 13.29 69.43

K-means 73.73 31.54 20.2 11.97 68.04

Otsu 51.86 47.13 30.83 28.28 50.39

EM 64.39 31.62 32.26 25.17 64.65

Texture based segmen-
tation

0.04 83.39 71.92 68.92 5.53

Region-based segmen-
tation

65.32 27.90 26.04 22.95 66.47

Neutrosophic set results 83.39 15.19 16.15 11.35 90.65

Multithreshold segmen-
tation

55.77 43.02 41.99 31.6 50.6

Histogram based seg-
mentation

54.39 47.73 46.24 52.2 56.03

Proposed model 94.2 5.75 4.15 4.82 93.09

E. Dice Similarity Factor (DSF)

Similarity assessment is performed using the DSF, which
involves computing the dice coefficient to determine the
overlap between the predicted and reference objects. [38].
DSF is defined as

DSF= 2∗ [SEGALG∩SEGGT ]

[SEGALG−SEGGT ]
∗ 100 (19)

where SEGALG refers to the segmentation output, while
SEGGT represents the corresponding ground truth. The DSF
values range from 0% to 100%. A score close to 0% indicates
that the segmented and ground truth areas are less or not
comparable. More similarity exists between the segmented
and ground truth areas if the DSF value is close to 100%.
A qualified study of the state-of-the-art methods and the
proposed model using DSF is depicted in Figure 6(e) and
7(e) for healthy liver and unhealthy liver respectively.

The comparison of average accuracy, RVD, HCD,
MCD, and DSF for the proposed model, k-means, FCM,
Otsu method, EM method, a texture-based segmentation
method, region-based segmentation method, neutrosophic
set-based segmentation, multi-threshold-based segmentation,
and histogram-based segmentation method for healthy liver
and unhealthy liver are tabulated in table I and table II
respectively.

VII. CONCLUSIONS

It is challenging to analyse and anticipate liver disorders in
short time in the field of liver health care because physicians
must review large amounts of images produced by imaging
modalities, including CT, MRI, and PET. Advanced tech-
niques for automated liver segmentation are important for the
success of computer-aided disease diagnosis (CAD) systems,
as precise segmentation of the liver authorizes superior ex-
ploration and more accurate diagnosis. The proposed number
of centroids and their intensity values are used as inputs
for fuzzy-based segmentation. The application of median

TABLE II:COMPARISON OF AVERAGE METRIC
VALUES FOR DIFFERENT SEGMENTATION IN

EVALUATING A UN-HEALTHY LIVER.

Method ACC RVD HCD MCD DSF

FCM 71.25 34.28 30.43 20.7 63.95

K-means 70.5 43.73 22.8 13.75 62.23

Otsu 48.68 61.45 33.65 31.18 41.35

EM 61.13 36.33 37.15 30.23 61.68

Texture based segmen-
tation

0.10 82.08 75.75 71.75 4.50

Region-based segmen-
tation

62.7 34.96 35.32 27.7 61.42

Neutrosophic set results 81.7 16.08 20.7 11.48 85.08

Multithreshold segmen-
tation

35.18 55.78 44.05 30.63 44.35

Histogram based seg-
mentation

47.62 44.78 57.67 60.32 46.7

Proposed model 92.43 7.68 6.6 8.78 91

aggregation results in a coarse liver image. Finally, a set of
morphological operations offers specific liver images from
abdominal CT scans. The proposed model is suitable for
clinical purposes because there is less variability in border
distance and volume overlap. The evaluation is carried out
using accuracy, RVD, MCD, and HCD, and we conclude
that the proposed model provides a minimum error. This
segmentation approach incorporates fuzzy logic and morpho-
logical operations to enhance the liver image extraction from
abdominal CT scans. The effectiveness of the method was
demonstrated through its minimal border distance variability
and high-volume overlap, making it particularly suitable for
clinical applications. The evaluation metrics, including accu-
racy, RVD, MCD, and HCD, further validated the model’s
performance by showing minimal error rates compared to
other techniques.
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