TAENG International Journal of Computer Science

Study of Electricity Data Processing Based on
KNN Interpolation and Wavelet Soft-Threshold
Denoising Methods

Kexin Xie, Jun Wang, Chengzhi Liu, and Yan Wang

Abstract—This paper addresses the challenges of missing data
and noise in three-phase power system signals. A KNN-based
imputation method that combines horizontal and vertical in-
terpolation accurately reconstructs missing values. Meanwhile,
wavelet soft-thresholding effectively suppresses noise, resulting
in a high SNR and low RMSE. Correlation analysis reveals
strong linear relationships among the three-phase currents,
confirming the consistency and reliability of the pre-processed
data. These results provide a solid foundation for improving
power system monitoring and signal analysis. Future work will
focus on optimizing and extending these techniques.

Index Terms—soft-threshold wavelet denoising, correlation
analysis, KNN-based imputation method, horizontal and verti-
cal interpolation.

I. INTRODUCTION

OWER systems are fundamental to modern society,

and their stable operation is essential for sustaining
socio-economic activities and ensuring public welfare. The
operation and maintenance of these systems depend on
accurate and complete data, which is vital for stability
assessment, fault diagnosis, and operational decision-making.
However, in practical data acquisition, electricity data signals
frequently suffer from missing data and noise contamina-
tion due to sensor malfunctions, communication failures,
and environmental disturbances. These data quality issues
severely compromise analytical accuracy and the reliability
of predictive models.

To address these challenges, advanced data preprocessing
is necessary, with particular attention to two key aspects:
missing data imputation and noise reduction. Missing values,
often caused by unpredictable factors, disrupt the conti-
nuity and temporal coherence of time-series data. Various
imputation techniques have been proposed, from traditional
statistical interpolation (e.g., mean, median, mode imputa-
tion [1]) to more sophisticated models such as multiple
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imputation [2], chained equations [3], and autoregressive
moving average models for multivariate time series [4].
For time-series datasets exhibiting periodicity, researchers
have explored mixture factor analysis and multiscale CNN-
based frameworks to better capture temporal dependencies
[5], [6]. Deep learning methods, including transformer-based
models, have shown strong performance in reconstructing
complex missing patterns [7]. Additionally, techniques like
full information multiple imputation for linear regression
models with missing response variables offer a statistically
rigorous approach to handling uncertainty [8]. These meth-
ods increasingly emphasize optimization and adaptability to
specific application scenarios [5], [9]. Traditional approaches,
such as simple deletion or mean imputation, are inadequate,
as they fail to preserve the inherent structure and temporal
dynamics of power system data.

Similarly, noise in signals introduces fluctuations that
obscure meaningful patterns and hinder subsequent analy-
sis. Researchers have developed various denoising methods,
including Fourier and wavelet transforms, adaptive filter-
ing, and machine learning-based approaches. For example,
Fourier clustering with adversarial mechanisms [10], frac-
tional Fourier transforms [11], and adaptive Fourier decom-
position based on energy distribution [12] have been shown
to be effective in various domains. Wavelet transform tech-
niques have proven highly flexible for denoising, with soft
and hard thresholding methods, featuring improved threshold
functions, widely applied in signal and image denoising
to increase signal-to-noise ratio (SNR) and reduce root
mean square error (RMSE) [13], [14]. Modified thresholding
strategies have addressed limitations such as discontinuities
and fixed deviations, yielding superior results in applications
ranging from signal processing to underwater target detection
[15], [16].

In machine learning-based denoising, random forests and
their variants have shown robustness in noisy data classifi-
cation tasks [17], [18]. Similarly, adaptive Kalman filtering
has been applied to denoising, where iterative parameter
updates enable adaptation to non-stationary noise [19]. Hy-
brid frameworks that integrate wavelet thresholding with
adaptive mechanisms have improved power system stability
under noisy conditions by identifying low-frequency oscil-
lations [20], and wavelet packet decomposition combined
with random forests has enhanced fault diagnosis in rotating
machinery [21].

These developments highlight the importance of optimiza-
tion and domain-specific adaptation in mitigating the impact
of noise [22], [23]. In this paper, we adopt the wavelet soft-
thresholding method, which enhances denoising performance
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through improved threshold functions, optimized wavelet
basis selection, and adaptive thresholding strategies. This ap-
proach effectively suppresses noise while preserving critical
signal features.

While traditional preprocessing methods such as simple
mean interpolation and Fourier-based denoising offer basic
handling of missing and noisy data, they often fail to address
the nonlinear and non-stationary characteristics of real-world
power system signals. To overcome these limitations, in
this paper we propose a hybrid interpolation framework
that integrates horizontal (within-day) and vertical (cross-
day) interpolation to capture both short-term and periodic
temporal patterns. A weighted K-nearest neighbors (KNN)
algorithm dynamically adjusts the weights of neighboring
points to better reflect the true data distribution. The final
imputation values are optimized by combining horizontal
and vertical estimates through weighted averaging, enhanc-
ing continuity and structural integrity. For denoising, the
proposed method employs wavelet soft-thresholding with
adaptive refinements to suppress interference while retaining
key signal characteristics. This integrated approach avoids
information loss common in deletion-based or crude impu-
tation strategies, enhances signal clarity and accuracy, and
provides a reliable foundation for predictive modeling and
power system optimization. Its modular and generalizable
design makes it broadly applicable to diverse time-series
domains.

II. MISSING DATA IMPUTATION

To ensure data continuity and modeling accuracy, address-
ing missing values is a critical step in power system data
preprocessing. We adopt a multidimensional interpolation
strategy that leverages both horizontal and vertical temporal
structures. Specifically, we integrate the KNN algorithm [24]
with a weighted averaging scheme to improve imputation
precision while preserving the underlying dynamics of the
data.

A. Correlation-driven Justification

To support the proposed interpolation strategy, we per-
formed a correlation analysis on the three-phase current
signals. The Pearson correlation coefficients among I, I,
and I. are summarized in Table I. All coefficients exceed
0.98, indicating strong positive linear relationships. This
interdependence confirms the structural consistency of the
signals and supports the use of cross-phase information in
the imputation process.

TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN THREE-PHASE
CURRENTS.
Io I, I.
I, 1.0000 09920 0.9825
I, 09920 1.0000 0.9825
I. 09825 09825 1.0000

These results also suggest that missing values in one phase
may be reliably estimated using the data from the other two,
thus providing a solid basis for future expansion into cross-
phase imputation schemes.

B. Multidimensional KNN-Based Interpolation

Building on the aforementioned correlation analysis, we
design a multidimensional KNN-based interpolation strat-
egy that leverages both short-term and long-term temporal
structures to reconstruct missing values in three-phase cur-
rent signals. Specifically, this method combines horizontal
interpolation and vertical interpolation to ensure accurate
estimation.

The use of KNN enables flexible adaptation to local data
characteristics, while distance-based weighting ensures that
closer observations exert greater influence on the imputation
result. The overall interpolation process consists of the fol-
lowing steps:

Step 1 Identification of missing values: Analyze the time
series dataset to detect and localize missing values.

Step 2 Nearest neighbor selection: For each missing data
point, compute the Manhattan distances to its K = 5 nearest
neighbors. The Manhattan distance between ¢; and ¢; is given
by

dij = [ti — t].

Step 3 Weighted mean estimation: Estimate the missing
value §; using the values of its K nearest neighbors y; (j =
1,2,---, K), weighted by their distances d;;, i..,

 Yia(yi/di)

L X (/dy)
This weighting scheme assigns higher influence to closer
neighbors, ensuring that the imputed value is more repre-
sentative of the surrounding data points.

Step 4 Multidimensional interpolation: Perform interpola-
tion in two dimensions: horizontally (within the same day)
to obtain g;, and vertically (at the same time across different
days) to obtain y;. The final imputed value is computed as
the average, so we have

Yiinal = Ui + Ui
final 9 .
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Fig. 1. Example of missing data imputation.

This multidimensional interpolation framework effectively
maintains the temporal continuity of the data while leverag-
ing both intra-day and inter-day correlations. As illustrated
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in Fig. 1, the comparison between original and imputed data
confirms the superior performance of the proposed method.
By employing this strategy, the accuracy and robustness of
missing data estimation are significantly enhanced, providing
a reliable foundation for downstream model training and
predictive analytics.

III. NOISE SUPPRESSION VIA WAVELET
SOFT-THRESHOLDING

To address noise interference and enhance signal fidelity,
we adopt a soft-threshold wavelet denoising algorithm as our
primary preprocessing tool. This method is well-suited for
power signals, as it selectively attenuates noise while pre-
serving critical waveform features essential for downstream
analysis.

A. Soft-threshold wavelet denoising

The soft-threshold wavelet denoising method is particu-
larly effective for preprocessing power data, as it suppresses
small-amplitude noise while retaining significant signal com-
ponents embedded in the wavelet coefficients. The denoising
procedure involves the following steps:

Step 1 Wavelet decomposition: By selecting the wavelet
basis and setting the decomposition level to 3, we apply
the wavelet transform to obtain the wavelet coefficients w;y,
where j denotes the decomposition level and %k denotes the
coefficient index.

Step 2 Soft-threshold processing: A soft-threshold func-
tion is applied to the wavelet coefficients to suppress noise.
The thresholded coefficients ;) are computed as

) sen(wie)(Jwik] = A), - |wik] = A,
Wik =
0, |wj7k| < )\,

where sgn(w;y,) is the sign function, and A is a predefined
threshold that determines the level of denoising.

Step 3 Wavelet reconstruction: The processed wavelet
coefficients 10, are subjected to an inverse wavelet transform
to reconstruct the denoised power data. The SNR and the
RMSE are used to evaluate the performance of the denoising
algorithm.

B. Analysis of denoising results

To evaluate the performance of soft-threshold wavelet
denoising, we compared it with several other denoising
techniques applied to the three-phase current data. These
techniques included Fourier denoising [25], Kalman filter
denoising [26], and random forest denoising [27]. In the
comparative analysis, each method was evaluated based on
its ability to increase SNR and reduce RMSE.

Fig. 2 shows the experimental results of the denoising
methods. It can be seen that the wavelet soft-threshold
denoising method outperforms the other three techniques
(Fourier, Kalman filter, and random forest) for all three
phase currents (I,, Ip, and 1.), achieving the highest SNR
and the lowest RMSE. This demonstrates that wavelet soft-
thresholding effectively preserves the essential features of
the signal while efficiently removing noise. These findings
underscore the effectiveness of wavelet soft-thresholding as
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Fig. 2. Comparison of denoising methods for I, Ip, and 1.

a robust denoising tool for power system signals, particularly
in scenarios with pronounced high-frequency interference.
In addition, Fig. 3 presents a visual comparison between
the original and denoised waveforms of the three-phase
current signals. The blue curves represent the raw signals,
which exhibit significant fluctuations and high-frequency
noise. In contrast, the orange curves correspond to the de-
noised signals, displaying smoother and more stable profiles.
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This comparison clearly demonstrates the effectiveness of the
proposed method in suppressing noise while preserving the
essential structural characteristics of the signals.

IV. CONCLUSION

This paper presented an integrated framework for ad-
dressing two critical data quality issues in power system
signals: missing data imputation and noise suppression. By
employing a KNN-based interpolation strategy that inte-
grates both horizontal (within-day) and vertical (cross-day)
temporal correlations, the method effectively reconstructed
missing values and preserved the temporal structure of the
data. The integration of these two interpolation dimensions
significantly enhanced imputation accuracy and continuity,
providing a solid foundation for downstream signal analysis.

In terms of noise reduction, the wavelet soft-thresholding
method demonstrated superior performance across various
evaluation metrics, achieving higher SNR and lower RMSE
compared to Fourier, Kalman filter, and random forest-based
methods. This validates its effectiveness in retaining key
signal features while suppressing high-frequency noise.

Overall, this study verified the effectiveness of combining
data-driven interpolation and wavelet-based denoising for
enhancing the quality of power system time-series data.
Future work may explore hybrid models that integrate multi-
phase information for imputation. Pursuing these directions
is expected to significantly advance high-fidelity signal re-
construction, real-time monitoring accuracy, and intelligent
control strategies in modern power systems.
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Fig. 3. Comparison between original (blue) and denoised (orange) three-phase current signals using wavelet soft-thresholding.
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