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Abstract—This paper focuses on deriving a solution for the q-
fractional differential equation(q-FDE) using the q-operational
matrix based on q-Legendre polynomials. The q-fractional
derivative is defined in the Caputo sense. We determine and
employ an operational matrix of q-Legendre polynomials for
q-fractional order derivatives, integrating it with the spectral
tau method to transform q-FDEs into algebraic equations.
Additionally, we showcase the application of this method by
solving the q-fractional Bagley-Torvik equation through the
spectral tau method, highlighting the versatility of the proposed
approach.

Index Terms—q-Legendre polynomials, Caputo q-fractional
derivative, operational matrix, q-fractional differential equa-
tions, collocation method, Tau method.

I. INTRODUCTION

THE Fractional calculus and q-calculus extend the con-
ventional ideas of integration and differentiation from

integer orders to arbitrary orders. In q-calculus, the primary
focus is on the properties of q-special functions, which
extend classical special functions by incorporating a param-
eter known as the base q. These frameworks broaden the
scope of mathematical analysis, enabling the exploration of
functions and properties that deviate from the traditional
integer-order calculus. Specifically, q-calculus delves into the
behaviors exhibited by q-special functions, which vary based
on the chosen parameter, leading to a nuanced understanding
of mathematical structures beyond the classical realm. In
1910 Jackson[8], [9], [10] introduced the concept of q-
calculus. Works are being done on this subject from a
very long time and it has several applications. Fractional
calculus is well known for their applications in many fields
such as physics, aerodynamics, capacitor theory, chemistry,
biology, control theory, probability and statistics. We can
observe many works on fractional derivatives and fractional
differential equations(FDEs)[15], [16]. These works help
us to understand about fractional calculus and they also

Manuscript received 2024/10/04; revised 2025/07/07.
B. Madhavi is an Associate Professor of Basic Engineering

Department, DVR & Dr. HS MIC College of Technology,
Andhra Pradesh, Kanchikacherla-521180, Andhra Pradesh, India.
(email:mkorrapati8@gmail.com).

G. Suresh Kumar is an Associate Professor of the Department of
Engineering Mathematics, College of Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram-522 302, Guntur, Andhra Pradesh,
India (email: drgsk006@kluniversity.in).

S. Nagalakshmi is an Associate Professor of Basic Engineering
Department, DVR & Dr. HS MIC College of Technology,
Andhra Pradesh, Kanchikacherla-521180, Andhra Pradesh, India.
(email:nagalakshmisoma@gmail.com).

G. Anusha is an Assistant Professor of the Department of Mathematics,
Vaagdevi College of Engineering, Bollikunta, Warangal Urban-506005,
Telangana State, India (email: anushagottimukkula1984@gmail.com).

introduce the theory of fractional derivative and FDEs. The
q-fractional calculus is an advanced mathematical framework
that extends the principles of conventional fractional calculus
by introducing a parameter q. This extension offers a more
comprehensive and flexible approach to fractional differen-
tiation and integration, facilitating the exploration of novel
mathematical properties and solutions. Al-Salam [2] and
Agarwal [1] pioneered the concept and elaborated on various
types of q-fractional integral and derivatives operators. The
basic concept can be found in[4]. Extensive investigation into
this subject has attracted considerable attention from multiple
authors, resulting in a significant body of research dedicated
to the examination of q-FDEs and their applications [20],
[18], [17]. Due to the absence of exact solutions for most
fractional differential equations(FDEs), it becomes necessary
to explore approximate and numerical techniques. Numerous
researchers have addressed this challenge by proposing var-
ious numerical and approximate methods for solving FDEs.
Examples include the variational iteration method(VAM),
homotopy perturbation method(HPM), Adomain’s decom-
position method(ADM), homotopy analysis method(HAM),
operational matrix method using collocation, and finite dif-
ference method. In contrast, in the realm of q-calculus, the
available methods are relatively limited. In recent years,
significant advancements have been made in developing
operational matrices tailored for orthogonal polynomials,
aiming to facilitate the derivation of numerical solutions. The
significance of orthogonal polynomials extends to both pure
and applied mathematics, as well as numerous realms within
numerical analysis. Specifically, in the context of spectral
methods, these polynomials play a crucial role. Through
the operational matrix method, it becomes feasible to trans-
form a FDE into a system of algebraic equations, utilizing
operational matrices and orthogonal polynomials to obtain
an approximate solution. Operational matrices are derived
through the approximation of integrals involving orthogonal
polynomials. This approach offers a concise orthogonal se-
ries for numerically integrating differential equations. Under
the operational matrix method, Saadatmandi and Dehghan
[19] expanded upon the use of Legendre polynomials, Ab-
delkawy and Taha [5] developed the Laguerre polynomials,
and Bhrawy and Alofi [6] introduced new shifted Chebyshev
polynomials for fractional integration in the R–Liouville
sense within the context of FDEs. These approaches apply
to both linear and nonlinear cases, and the authors further
explored their applications in spectral techniques.

Several semi-analytical methods have been developed for
q-FDEs. In 2013, Wu and Baleanu[23] introduced the VAM,
followed by Pin Lyu and Seakweng Von’s[12] finite differ-
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ence method in 2019. In 2021, B. Madhavi and G. Suresh
Kumar[13], [14] used Laguerre polynomials in an operational
matrix method, and in 2023, they developed the HPM. Ying
Sheng and Tie Zhang[21] also made advancements in q-
calculus and q-FDEs. This work focuses on solving q-FDEs
using the q-Legendre operational matrix method (LEOM),
expanding its application to q-fractional calculus. The paper
is structured as follows: In Section 2, we delve into the
essential definitions of q-fractional integrals and derivatives,
laying the groundwork for the study. Section 3 takes a
closer look at q-Legendre polynomials and constructs the
operational matrix for the q-fractional derivative. Section
4 brings the theoretical framework to life, showcasing key
results alongside illustrative numerical examples. Finally, the
concluding section wraps up with a concise summary of the
insights gained from the research.

A. Preliminaries
Definition 1.[2] Let ∆ > 0, The R-Liouville definition of

q-fractional integral of h(ω) is defined as

J∆
q h(ω) =

1

Γq(∆)

∫ ω

0

(ω − qt)∆−1h(t)dq(t), (1)

J0
q h(ω) = h(ω).

Definition 2.[2] Let ∆ > 0, The Caputo definition q-
fractional integral of h(ω) is defined as

D∆
q h(ω) = J (m−µ)Dmh(ω),

= Γq(m−∆)

∫ ω

0

(ω − qt)m−µ−1
dmq
dωm

q

h(t)dqt,

(2)

(m − 1) < ∆ < m,ω > 0, where D∆ is the differential
operator of order ∆ and satisfies the following

D∆C = 0, (C is a constant). (3)

D∆
q ω

α =


0, for α ∈ η0 and α < ⌈∆⌉

Γq(α+ 1)

Γq(α+ 1−∆)
ωα−∆, for α ∈ η0 and α ≥ ⌈∆⌉

or α /∈ η and α > ⌊∆⌋.
(4)

Here ⌈∆⌉ refers to the ceiling function, and ⌊∆⌋ repre-
sents the floor functions. Furthermore, η represents the set
{1, 2, ....} and η0 represents the set {0, 1, 2, ...}. The linearity
property is

D∆
q

(
λh(ω) + δg(ω)

)
= λD∆

q h(ω) + δD∆
q g(ω). (5)

Whereλ and δ are constants.
q-Legendre Polynomials[22]: The z′th degree of q-Legendre
polynomials, defined within the interval Λ ≡ (0,∞q) are
expressed as follows:

pz,q(ω) =
z∑

v=0

(−1)z+v (z + v)q! q
−vz+

v(v+1)
2

(z − v)q! (vq!)2
ωv,

z = 0, 1, . . . . (6)

The orthogonality condition[3] is∫ 1

0

pm,q(ω)pn,q(ω)dqω =
(1− q)qn

1− q2n+1
δmn.

II. GENERALIZED q-LEOM OF q-FRACTIONAL
CALCULUS

Let us consider h(ω)∈ L2
W (Λ), then h(ω) can be

elegantly represented using q-Legendre polynomial

h(ω) =
∞∑
s=0

csps(ω), (7)

where cs =
∫ ∞

0

h(ω)ps(ω) dω, s = 0, 1, 2, . . . .

Let’s start by considering the first (η + 1) terms of the
q-Legendre polynomials. The following observations can be
noted:

h(ω) =

η∑
s=0

csps(ω) = CTϕ(ω). (8)

Here, C represents the q-Legendre coefficient vector, while
ϕ(ω) stands for the q-Legendre vector, both defined as
follows:

CT = [c0, c1, . . . , cη], ϕ(ω) = [p0, p1, . . . , pη]
T . (9)

Now, we can express the q-fractional derivative of the vector
ϕ(ω) in the following form:

dqϕ(ω)

dωq
= D1

qϕ(ω), (10)

here, the operational matrix D1
q , a square matrix with dimen-

sions of (η + 1)× (η + 1), is defined as

D1
q =



0 0 0 . . . 0 0
2q 0 0 . . . 0 0

0
3q2q
q 0 . . . 0 0

2q 0
5q2q
q . . . 0 0

...
...

. . .
...

...
...

2q 0
3q2q
q . . . 0 0

0
3q2q
q 0 . . . 0 0


From (10), it is clear that

dµqϕ(ω)

dωµ
q

= (D(1)
q )µϕ(ω), (11)

where, the notation (D1
q) represents matrix powers, where

µ ∈ N .
Hence

D(µ)
q = (D(1)

q )µ, µ = 1, 2, 3, . . . . (12)

Lemma 1. Let pz(ω) represents a q-Legendre polynomial,
then

D∆
q pz(ω) = 0, z = 0, 1, . . . , α < ⌈∆⌉ − 1,∆ > 0. (13)

Proof.. Using (4) and (5) in (6), the lemma can be easily
demonstrated.
Theorem 1. Suppose ϕ(ω) be a q-Legendre vector defined
for ∆ > 0, then

D∆
q ϕ(ω) = D(∆)

q ϕ(ω), (14)
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here, D∆
q represents the operational matrix for q-fractional

derivatives of order ∆ in (η + 1) dimensions, defined as:

0 0 . . . 0
0 0 . . . 0

ξ∆,q(⌈∆⌉, 0, v) ξ∆,q(⌈∆⌉, 1, v) . . . ξ∆,q(⌈∆⌉, η, v)
...

...
. . .

...
ξ∆,q(z, 0, v) ξ∆,q(z, 1, v]) . . . ξ∆,q(z, η, v)

...
...

. . .
...

ξ∆,q(η, 0, v) ξ∆,q(η, 1, v) . . . ξ∆,q(η, η, v)


where

ξ∆,q(z, s, v) =
1− q2s+1

(1− q)qs

z∑
v=⌈∆⌉

s∑
l=0

(−1)z+v+s+l

(z − v)q! vq!

(z + v)q!(s+ l)q!q
zv+

v(v+1)
2 +sl+

l(l+1)
2

Γq(−z +∆+ 1) (s− l)! (lq!)2 (v + l −∆+ 1)
, (15)

furthermore, the initial ⌈∆⌉ rows of D∆
q are entirely com-

posed of zeros.
Proof. From the equations (4), (5) and (8), we have

D∆
q pz(ω) =

z∑
v=0

(−1)z+v (z + v)q! q
−zv+

v(v+1)
2

(z − v)q (v!)2
D∆ωv,

=

z∑
v=⌈∆⌉

(−1)z+v (z + v)q! q
zv+

v(v + 1)

2

(z − v)q! Γq(v −∆+ 1)! vq!
ωv−∆,

z = 0, 1, . . .
(16)

Now, applying ωv−∆ by η + 1 terms of q-Legendre series,
we obtain

ω(v−∆) =

η∑
s=0

bv,s ps(ω), (17)

where bv,s is given from (8) with

bv,s =
1− q2s+1

(1− q)qs

∫ 1

0

ωv−∆ ps(ω) dqω

=
1− q2s+1

(1− q)qs

s∑
l=0

(−1)s+l s+ lq! sq! q
sl+

l(l+1)
2

(s− l)q!(lq!)2

∫ 1

0

ωv+l−∆dqω

=
1− q2s+1

(1− q)qs

s∑
l=0

(−1)s+l (s+ l)q! sq! q
sl+

l(l+1)
2

(s− l)q! (lq!)2 (v + l −∆− 1)q
. (18)

Adding (16)-(18), we get

D∆
q pz(ω) =
z∑

v=⌈∆⌉

η∑
s=0

(−1)z+v(z + v)q! q
zv+

v(v+1)
2

(z − v)q! Γq(v −∆+ 1)!vq!
bz,s ps(ω)

= ζ∆,q(i, s, v) ps(ω) z = ⌈∆⌉, . . . , η, (19)

where

ξ∆,q(z, s, v) =
1− q2s+1

(1− q)qs

z∑
v=⌈∆⌉

s∑
l=0

(−1)z+v+s+l

(z − v)q! vq!

(z + v)q!(s+ l)q!q
zv+

v(v+1)
2 +sl+

l(l+1)
2

Γq(−z +∆+ 1) (s− l)! (lq!)2 (v + l −∆+ 1)
, (20)

from (20), it can be compactly represented in vector form

D∆
q Lz(ω)

=

[
ξ∆,q(z, 0)ξ∆,q(z, 1)ξ∆,q(z, 2), . . . , ξ∆,q(z, η)

]
ϕ(ω).

(21)

Referring to Lemma 1, we can express it as follows:

D∆
q pz(ω) =

[
0, 0, . . . , 0, 0

]
ϕ(ω), z = 0, 1, 2, . . . ⌈∆⌉ − 1.

(22)
By combining (21) and (22), we can derive the expected
result.

III. APPLICATIONS OF q-LEOM FOR q- FDES

The q-LEOM methodology involves representing the
unknown function as a series expansion using q-Laguerre
polynomials as the basis functions. These polynomials are
a special class of orthogonal functions in q-calculus, and
they possess unique properties that make them well-suited
for solving fractional differential equations.

A. Linear Multi-term q- FDEs

Linear Multi-term q-FDEs are a class of FDE that involve
multiple fractional derivatives of different orders. The Caputo
fractional derivative is a commonly used definition in this
equation. Let’s explore the elegance of the following linear
Caputo q-FDEs:

D∆
q h(ω) =

v∑
j=1

γvD
αjh(ω) + γ(v+1)h(ω) + g(ω),

λ ∈ (0,∞q), (23)

subject to the initial conditions

hz(0) = dz, z = 0, 1, . . . µ− 1. (24)

In order to solve the linear Caputo q-FDE (23) subject to
the given conditions (24), we approximate the functions h(ω)
and g(ω) by q-Legendre polynomials as follows:

h(ω) =

η∑
z=0

czpz(ω) = CTϕ(ω), (25)

g(ω) =

η∑
z=0

gzpz(ω) = GTϕ(ω). (26)

Here, the vector G = [g0, g1, g2, .., gη]
T is known, while the

vector C = [c0, c1, c2, .., cη]
T is unknown vector.

By considering the theorem we have,
take on (15) and (25), we get

D∆
q h(ω) = CTD∆

q ϕ(ω);C
TD(∆)

q ϕ(ω), (27)

Dαs
q h(ω) = CTDαs

q ϕ(ω), s = 1, 2, . . . , v. (28)

Take on (24)-(27), the residual ℜη(ω) for (23) can be
composed as,

ℜη(ω) =

[
CTD∆

q −CT
v∑

s=1

γsD
αs
q −γ(v+1)C

T −GT

]
ϕ(ω).

(29)
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Using the conventional tau method [7], we can produce a set
of η − n + 1 linear equations by employing the following
procedure:

< ℜη(ω), ps(ω) >

=

∫ 1

0

ℜη(ω)ps(ω) = 0, s = 0, 1, 2, . . . , η −m. (30)

and furthermore substituting (14) and (25) in (24), we get

hν(0) = CTDν
qϕ(ω) = dν ν = 0, 1, 2, . . . , µ− 1. (31)

By employing (30) and (31), we can create two sets of linear
equations: one with (η−µ+1) equations and the other with
m equations. Solving these linear equations enables us to find
the values of the unknown coefficient vector C. Furthermore,
we can use the expression h(ω) from (6) to compute the
solution needed for the current problem. h(ω) given in (9)
can be calculated, which gives the required solution.

B. Non-Linear Multi-term q- FDEs

We begin by studying the following non-linear q- FDEs

D∆
q h(ω) = ψ(ω, h(ω), Dα1

q h(ω), . . . , Dαv
q h(ω)),

inΛ = (0,∞), (32)

with initial conditions

hz(0) = dz, z = 0, 1, . . . , µ− 1, (33)

with initial conditions (24), Ψ can be non linear.
Aiming to use the q- Legendre polynomials in the non-
linear cases problems, we initially inexact h(ω), D∆h(ω)
and Dαsh(ω) for s = 1, 2, ..., µ − 1 as (25), (27) and (23)
respectively. Substituting all these (33), finally we get

CTD∆
q ϕ(ω) = Ψ(ω,CTϕ(ω), CTDα1

q , ...., Dαv
q ), (34)

and furthermore substituting (11)and (25) in (24), we get

hz(0) = CTDz
q = dz, z = 0, 1, 2, . . . , µ− 1. (35)

To get the solutions h(ω), we first collocate (33) at
(η − µ + 1) points, looking for acceptable collocation
points. For this, we employ the first (η−µ+1) q-Legendre
roots pη+1(ω). These equations, when combined with
(35), yield (η + 1) nonlinear equations that may be solved
using Newton’s iterative approach. In this approach, the
approximated answer h(ω) may be obtained.

IV. NUMERICAL RESULTS

EXAMPLE.1: Applications in the context of the Bagley-
Torvik equation.

Consider the Bagely-Torvik equation

D2
qh(ω) +D

3
2
q h(ω) + h(ω) = 1 + ω,

h(0) = 1, h,(0) = 1. (36)

The exact solution to the provided problem is denoted as
h(ω) = 1+ω. However, when we apply the method detailed
in the preceding section with η = 2, the obtained solution

deviates from this exact result, resulting in an approximation
as follows:

h(ω) = c0p0(ω) + c1p1(ω) + c2p2(ω) + c3p3 = CTϕ(ω).
(37)

Here, we have

D1
q =

 0 0 0
2q 0 0

0
3q2q
q 0

 , D2
q =

 0 0 0
0 0 0

3q2q
2

q 0 0

 ,

G =

1 + 1
2q

1
2q

0

 , D
3
2
q =

 0 0 0
0 0 0
D0 D1 D2

 ,

where
D0 = 1

q

[
4q !

2q !Γq(
3
2 )(

3
2 )q

]
,

D1 = 1+q+q2

q2

[
−4q !

2q !Γq(
3
2 )(

3
2 )q

+
4q !

Γq(
3
2 )(

5
2 )q

]
,

D2 = 1+···+q4

q2

[
4q !

q2q !Γq(
3
2 )(

3
2 )q

− 4q !3q !

q2Γq(
5
2 )(

5
2 )q

+

4q !
2

q22q !2Γq(
3
2 )(

7
2 )q

]
Therefore, using (30), we obtain

c0 + c2

[
3q2q

2

q
+

4q!

q2q!Γ(
3
2 )(

3
2 )q

]
= 1 +

1

2q
(38)

Also by using (31), we have

2qc1 +
4q!

2q

2

− 3q!q + 4q!2
2
qc2 = 1 (39)

c0 − c1 + c2 = 1 (40)

By solving above (38)-(40), we get

c0 = 1 +
1

2q
, c1 =

1

2q
, c2 = 0

Thus we can write

h(ω) =
(
1 + 1

2q
1
2q

0
) 

1
2qω − 1

4q!

22qq
ω2 − 3q

q ω + 1

 = 1+ω

EXAMPLE.2:Now, we consider the non linear initial value
problem

D3
qh(ω) +D

5
2
q h(ω) + h2(ω) = ω4,

h(0) = h′(0) = 0, h′′(0) = 2. (41)

The exact solution to the provided problem is denoted as
h(ω) = ω2

q . However, when we apply the method detailed
in the preceding section with η = 3, the obtained solution
deviates from this exact result, resulting in an approximation
as follows:

h(ω) = c0p0(ω) + c1p1(ω) + c2p2(ω) + c3p3 = CTϕ(ω),
(42)

Where

D1
q =


0 0 0 0
2q 0 0 0

0
3q2q
q 0 0

2q 0
5q2q
q2 0

 .

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 2951-2957

 
______________________________________________________________________________________ 



D2
q =


0 0 0 0
0 0 0 0

3q2q
2

q 0 0 0

0
5q3q2q

2

q3 0 0

 .

D3
q =


0 0 0 0
0 0 0 0
0 0 0 0

5q3q2q
3

q3 0 0 0

 . C =


c0
c1
c2
c3



D
5
2 q =


0 0 0 0
0 0 0 0
0 0 0 0

D
5
2
0,q D

5
2
1,q D

5
2
2,q D

5
2
3,q


Where D

5
2
0,q =

6q !

3q ! Γq
3
2 q

3
2 q

q3

D
5
2
1,q = (1−q)3

q

[
−6q !

3q ! Γq(
3
2 ) (

3
2 )q q3

− 6q ! 2q !

3q ! Γq(
3
2 ) (1q !)

2 ( 5
2 )q q4

]
D

5
2
2,q = (1−q)5

(1−q)q2

[
6q !

3q ! Γq(
3
2 ) (

3
2 )q q3

− 6q !

3q ! Γq(
3
2 ) (1q !)

2( 5
2 )q q4

−

6q ! 4q !

3q ! Γq(
3
2 ) (2q !)

2 ( 7
2 )q q4

]
D

5
2
3,q = (1−q)7

(1−q)q2

[
−6q !

3q ! Γq(
3
2 ) (

3
2 )q q3

+
6q ! 4q !

3q ! Γq(
3
2 ) (2q !)

2( 5
2 )q q5

−

6q ! 5q !

3q ! Γq(
3
2 ) (2q !)

2 ( 7
2 )q q6

+
6q ! 6q !

3q ! Γq(
3
2 ) (3q !)

2 ( 9
2 )q q6

]
Therefore, using (30), we obtain

CTD3
qh(ω)+C

TD
5
2
q h(ω)+ [CTh(ω)]2−h(ω)4 = 0. (43)

Also by using (31), we have

2qc1 +
3q!

q
c2 +

4q!

2q! q2
c3 = 0, (44)

4q!

2q!
c2 +

[
6q! 2

2
q

4q!
− 5q! +

6q!

3q! 2q!

]
c3 = 2, (45)

c0 − c1 + c2 + c3 = 0. (46)

By solving (44)-(46), we get

c0 =
−1

3q
+

1

2q
, c1 =

1

2qq
, c2 =

1

3q!
, c3 = 0

Thus, we can write h(ω) =

(
1

2q ! q
− 1

3q !
, 1

2q ! q
, 1

3q !
, 0

)


1
2q!ω − 1

4q!

22qq
ω2 − 3q

q ω + 1

6q!

32qq
3
ω3 − 5q !

2q !2q3
ω2+

4q !
2q !q2

ω − 1


= ω2

q .

Figures 1–5 of example 2 demonstrate the accuracy, con-
vergence, and stability of the proposed Legendre polynomial-
based operational matrix method. Figures 1–3 show a close
match between the approximate and exact solutions h(ω) =

Fig. 1. Comparison of h(ω) for q = 0.25 with Exact solution(Fixed
α = 2.5)

Fig. 2. Comparison of h(ω) for q = 0.5 with Exact solution(Fixed α =
2.5).

ω2

q
for q(0.25, 0.5,and0.75), confirming the method’s pre-

cision across different fractional scales. Figure 4 further
highlights this consistency across multiple q values, while
the 3D plot in Figure 5 illustrates the inverse relationship
between h(ω) and q over ω ∈ (0, 05) and q ∈ (0.25, 1).
When q = 1, the problem reduces to a classical FDE, and
the solution coincides with Example 4 in [19].

V. CONCLUSION

This paper presents a method for solving q-FDEs using the
operational matrix approach with q-Legendre polynomials.
We first derive q-LEOM. This technique is particularly
advantageous due to its computational efficiency and flexibil-
ity. The differentiation operational matrix typically contains
many zero elements, which not only speeds up computation
but also ensures high accuracy in the solutions.
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