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Abstract—This paper introduces the Generalized Low-Rank
Sparse Approximation of Matrices (GLRSAM) framework
for detecting dim and small targets in infrared images. The
nonlocal autocorrelation of infrared backgrounds and target
sparsity pose challenges for traditional methods. GLRSAM rep-
resents frames as matrices, leveraging low-rank backgrounds
and sparse targets to efficiently decompose and reconstruct
video frames. Experimental results demonstrate superior per-
formance with SCRG improvements and BSF enhancements
compared to state-of-the-art methods. The framework achieves
perfect detection rates (1.0) across all test scenarios while
maintaining low false alarm rates (0.0072-0.0351) and high
accuracy (0.9649-0.9993). ROC analysis confirms robust per-
formance with AUC values consistently above 0.95, peaking at
0.99 in scene 7. With 65% faster processing than conventional
methods, GLRSAM provides an efficient and reliable solution
for infrared surveillance applications requiring precise small
target detection in complex environments.

Index Terms—the infrared detection, small target detection,
GLRSAM framework, low-rank sparse decomposition, surveil-
lance video processing

I. INTRODUCTION

THE infrared detection system converts thermal radiation
differences into image signals based on temperature

disparities between background and objects, enabling target
detection and tracking [1]. Unlike radar systems that require
active electromagnetic wave emission, infrared systems per-
form passive detection by utilizing targets’ inherent thermal
radiation properties. This operational principle provides two
key advantages: continuous day-and-night functionality and
enhanced stealth characteristics [2]. Furthermore, when com-
pared with visible-light detection systems, infrared technol-
ogy demonstrates superior performance in three critical as-
pects: extended detection range, improved penetration capa-
bility, and robust anti-interference characteristics [3]. These
technical advantages have led to widespread adoption across
diverse application domains. In civilian sectors, infrared
detection systems are extensively employed for fire detection,
medical imaging, agricultural monitoring, security surveil-
lance, and industrial fault diagnosis. Military applications
primarily include precision guidance systems, strategic target
monitoring, early warning networks, and tactical tracking
operations.
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Infrared detection systems employ thousands of cameras,
including wireless configurations, which transmit live video
feeds to centralized control facilities for real-time analysis.
Within this surveillance framework, anomaly and moving
object detection presents a particularly compelling research
challenge, as it enables automated, rapid scene interpreta-
tion. Notably, the detection of small targets using infrared
technology has emerged as a primary research focus in
the field of infrared detection systems, highlighting both its
technical significance and practical relevance. This research
emphasis stems from the critical need for enhanced detection
capabilities in various security and monitoring applications.

Recent research has proposed low-rank sparse decompo-
sition for small infrared target detection, leveraging two key
characteristics of infrared imagery: the non-local autocorrela-
tion of backgrounds [4] and the minimal pixel occupancy of
targets. These properties allow the target identification prob-
lem to be reformulated as an optimization task for recovering
low-rank (background) and sparse (target) components. This
formulation holds for both simple and complex background
scenarios. Over the past few years, incorporating localized
assumptions into low-rank sparse decomposition models has
significantly reduced false detection rates. Consequently,
compared to alternative methods, this approach demonstrates
superior adaptability to complex and dynamic environments
while maintaining enhanced detection performance.

Low-rank sparse decomposition has become a cornerstone
technique in automatic video surveillance analysis. The field
has evolved significantly from early background subtraction
methods that relied on simple frame differencing for target
identification [3], to more sophisticated approaches modeling
background variations through Gaussian mixture models [5]
and non-parametric kernel density estimation [3-6]. Most
recently, researchers have developed intelligent evolutionary
algorithms for infrared dim target detection, including ant
colony optimization [7], particle swarm optimization [8],
and genetic algorithms [9]. This methodological progres-
sion demonstrates the field’s transition from basic statistical
models to advanced computational techniques, with low-rank
sparse decomposition emerging as a particularly powerful
framework for modern surveillance applications.

Since low-rank sparse decomposition techniques [10,11]
cannot be directly applied, background subtraction methods
[12,13] are typically employed to reconstruct videos from
compressive measurements after pixel estimation. Howev-
er, this approach faces two critical limitations: Primarily,
Generic video reconstruction algorithms fail to exploit the
static-structured background with sparse foreground inherent
in surveillance footage, where prior knowledge of the back-
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ground could reduce measurement requirements. Second,
The naive reconstruction approach necessitates additional
processing to recover videos post background subtraction.
Traditional decomposition further requires full pixel acqui-
sition, transmission, and sequential processing, resulting in
inefficient computational overhead.

Algorithms currently exhibit slow execution speeds. Ex-
tensive research [14] has been conducted on video decom-
position techniques. In recent years, several studies [15]
investigating low-rank and sparse structures have focused on
developing rapid approximations and robust decompositions.
If a matrix admits a unique decomposition characterized by
”low-rank + sparse” properties, both components (low-rank
and sparse) can be precisely recovered.

Singular Value Decomposition (SVD) serves as a pow-
erful dimensionality reduction technique, providing efficient
low-rank approximations with minimal reconstruction error.
However, its application to high-dimensional data such as
images and videos faces significant computational challenges
due to the substantial time and space requirements for
processing large matrices. To address these limitations, we
propose a novel data representation framework that cir-
cumvents the computational burdens of traditional SVD.
Our approach represents individual infrared image frames
as matrices rather than vectors, with the complete dataset
structured as an array of matrices. This framework introduces
GLRSAM (Generalized Low Rank Sparse Approximation of
Matrices), which achieves sparse, low-rank matrix approxi-
mations. Furthermore, we develop an innovative algorithm
for detecting faint and compact infrared targets based on
GLRSAM decomposition, offering improved computational
efficiency while maintaining detection accuracy.

Our proposed GLRSAM framework introduces a matrix-
based data representation that achieves more efficient low-
rank approximation than conventional vector-based ap-
proaches. This innovative representation significantly reduces
computational complexity while maintaining the capability
to process large-scale infrared image datasets. GLRSAM’s
iterative optimization process effectively separates low-rank
background components from sparse targets, substantially
improving detection performance for faint and small infrared
targets. To thoroughly evaluate these advancements, we
conduct extensive experiments using multiple quantitative
metrics: signal-to-clutter ratio gain (SCRG), background
suppression factor (BSF), area under the ROC curve (AUC),
detection rate, false alarm rate, accuracy, recall, and F1
score. Our comparative analysis includes five state-of-the-art
algorithms tested across diverse infrared images with varying
background complexities, supplemented by six additional
scenarios specifically designed for ROC curve and AUC
analysis. The experimental results, detailed in subsequen-
t sections, demonstrate GLRSAM’s consistent superiority
across all evaluation metrics while highlighting its robustness
and adaptability - key attributes for practical implementation
in real-world infrared surveillance systems.

In the remaining sections of the paper, we employ some
preliminary tasks associated with our research in Section II.
Section III introduces a method for detecting dim and small
objects using GLRSAM decomposition in infrared imaging
and presents the whole algorithm in infrared dim and small
target detection based GLRSAM. The results obtained from

the experiment can be found in Section IV of the document.
The paper’s conclusion is discussed in Section V.

II. PRELIMINARY

In the realm of infrared imaging, the background, target,
and random noise components can be mathematically syn-
thesized to constitute a unified infrared image frame. This
model posits that the observed image is a composite outcome
of these constituents: the background image encapsulates
the holistic scene, the target image represents the particular
object of interest, and the random noise encapsulates any
extraneous perturbations within the image. Through the dis-
entanglement of these elements, the image can be analyzed
and optimized for diverse applications, including target de-
tection, tracking, and image restoration, among others, i.e

FI = FB + FC + FN (1)

where FI , FB , FC , FN , symbolize the initial infrared picture,
backdrop image, target image, and haphazard noise illustra-
tion, correspondingly.

Consider Bj ∈ Rn as a vector composed of pixels extract-
ed from a frame within a video sequence for j = 1, 2, ...J,
where n represents the cumulative sum of pixels within a
single frame, J represents the cumulative sum of frames.
Let B ∈ [B1, ..., BJ ] ∈ Rn×J be the matrix of dimension
n×J , frames are the columns of which in the visual timeline.
Broadly speaking, B represents a video magnitude derived
from a series of visual frames, where each element Bj is a
composite vector created from the pixels captured in every
frame of the visual sequence.

The position of the individual frame’s infrared image sub-
section is not related to the variable for each frame. The
value of in this context represents the collective count of
pixels contained within a single-frame infrared image from
the set of elements in I , and the overall count of pixels within
the video sequence amounts to M = nJ .

After infrared image data is formed into block image
matrix or tensor data, equation (1) can be restated as

I = B + C +N (2)

Where I,B,C and N represent different components of
the reconstructed video volume of infrared image data,
background component, dim and small target component and
noise component respectively.

In typical infrared imaging conditions, background details
exhibit a certain degree of blurriness due to environmental
factors, particularly atmospheric refraction, as well as the
intrinsic characteristics of infrared imaging equipment. As
a result, infrared images tend to show approximate linear
correlation among certain background image blocks, regard-
less of their adjacency, which suggests that the background
adheres to the low-rank property.

Within an imaging system, the remote positioning of
the target relative to the detector often leads to the target
appearing as a small spot-like image, resulting in its rel-
atively minimal presence within the overall image matrix.
Matrix C, as defined in equation (2), represents the sparse
component of the video volume data, encapsulating the target
objects and their corresponding information within the video.
Consequently, this sparse component serves as a proxy for
specific objects or regions of interest.
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The target and background components are characterized
as globally sparse and low-rank, respectively. The former
implies a scattered distribution of target objects through-
out the video volume, whereas the latter emphasizes the
background’s structural integrity as defined by a low-rank
matrix. This distinction aids in the segregation and analysis
of diverse elements within the video dataset, facilitating tasks
such as object recognition and tracking.

The challenges associated with detecting faint and minute
infrared targets have been reframed as an issue rooted in
low-rank sparse decomposition, as illustrated by equation
(3). This formulation provides a mathematical framework
for disentangling the complex interaction between target
sparsity and background low-rank properties, thus improving
the effectiveness of infrared target detection and analysis.

min
B,C

rank(B) + µ‖C‖0 s.t. ‖I −B − C‖2F ≤ δ (3)

Where δ represents the intensity of noise; rank represents the
rank of X1. Since model (3) is a non-convex problem, the
formula is changed to the following relaxation problem:

min
B,C
‖B‖∗ + µ‖C‖1 s.t. ‖I −B − C‖2F ≤ δ (4)

in equation (4), ‖B‖∗ represents the nuclear norm of a matrix
B ∈ Rn×Jas defined by

‖B‖∗
∆
= trace

(√
BTB

)
=

min(n,J)∑
i=1

σi (5)

Where σi are the singular values of matrix B, the equation
(4) indicates that the nuclear norm of matrix B is equivalent
to the total of its singular values, the component B of low
rank signifies a fixed element that acts as a portrayal of the
backdrop contained in the video array. The matrix shown in
equation (4) corresponds to the sparse component, denoting
the dim and small target objects within the video volume.

The convex optimization problem formulated in equation
(4) can be solved using conventional convex optimization
methods, particularly interior point methods. However, these
traditional approaches often entail substantial computational
costs and may fail to consistently yield low-rank solutions
when using the obtained approximate minimizer. As demon-
strated in [16], SVD proves to be an effective tool for low-
rank matrix completion and the decomposition of matrices
into low-rank and sparse components. Nevertheless, applying
SVD to high-dimensional datasets necessitates the compu-
tation of singular values, which becomes computationally
prohibitive when dealing with matrices exceeding several
thousand dimensions. This limitation presents significant
challenges in image and video processing applications where
large-scale matrices are common.

To address the curse of dimensionality in matrix data,
various projection techniques have been developed. Among
these, Yang’s two-dimensional principal component analy-
sis (2DPCA) [17] is particularly noteworthy for its linear
transformation-based approach to condensing information a-
long specific axes within arrays. Alternatively, [18] proposed
a random projection technique as a substitute for SVD,
though this method suffers from lower compression ratios
and higher reconstruction errors compared to SVD under
equivalent dimension reduction conditions.

In single-frame infrared imaging applications, data points
are conventionally represented as vectors to facilitate effi-
cient image analysis and processing. However, significant
challenges emerge when attempting to approximate low
ranks by encoding matrix ensembles within a vector frame-
work. While the vector space model permits straightforward
low-rank estimation through SVD computation on the data
matrix, the associated time and space complexities render
SVD impractical for large-scale matrices. This limitation
leads to increased reconstruction and detection errors, partic-
ularly in scenarios involving dim and small target detection.

III. GENERALIZED LOW-RANK SPARSE DECOMPOSITION

To address the aforementioned computational challenges
associated with SVD, we introduce an innovative approach
that significantly reduces the computational burden of this
technique. The cornerstone of our method is a novel data
representation model that reframes each information ele-
ment as a matrix and the entire dataset as an ensemble of
matrices. This paradigm shift from the traditional vector-
based representation to a matrix-centric model enables more
efficient SVD computations, thereby mitigating the high
computational costs.

At the core of our approach lies the generalized low-rank
approximation matrix (GLRAM) technique, which seeks to
approximate a set of matrices using matrices with reduced
rank. This technique takes advantage of the inherent low-
rank properties of numerous real-world datasets, providing a
computationally feasible alternative to the direct application
of SVD.

Both GLRAM and SVD aim to minimize the reconstruc-
tion error, but they differ fundamentally in their methodolo-
gies. GLRAM employs a bilinear mapping strategy specifi-
cally tailored for matrix-formatted data, which often results
in lower computational complexity compared to SVD. This
efficiency gain arises from the fact that GLRAM’s bilinear
transformation inherently leverages the matrix structure of
the data, enabling more efficient computations, especially in
large-scale or high-dimensional scenarios. Consequently, in
situations where the computational burden of SVD becomes
prohibitive, GLRAM stands out as a promising alternative
for efficient and accurate low-rank approximation.

In fact, GLRAM involves utilizing bi-directional (specif-
ically, from both the left and right sides) linear projection
transformations on every 2D image to achieve compression
and extract features, Each individual video frame matrix
I can be broken down into three components in order to
estimate the data of each matrix from the complete dataset:
Ii = LMiR

T , i = 1, 2, . . . , J , where L and R are both
orthonormal matrices. This problem can be reframed as a
task of finding the best possible values for L, R and {Mi}n
that satisfy

min
L∈Rr×l1 :LTL=Il1
L∈Rc×l2 :RTR=Il2
Mi∈Rl2×l1 :i=1,···,J

∑
i

∥∥Ii − LMiR
T
∥∥2

F
(6)

In the above approximations, We can interpret L and R as
operations that act on the data presented in matrix format,
acting on the left and right sides respectively.

When the proposed constraint matrix Mi is diagonal, the
resolution to the aforementioned issue will be U = L,Σ =
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Mi, V = R, where Ii = UΣV T . This particular matrix
decomposition corresponds to the technique known as SVD
[19]. If does not take the form of a diagonal matrix, the
main challenge lies in identifying the suitable to minimize
the issue in equation (6).

To obtain matrix L ∈ Rm×l1 , R ∈ Rn×l2 , GLRAM
is a computational technique commonly employed for the
purpose of matrix approximation by iteratively obtaining
low-rank matrices Mi, L and R. The iterative procedure
involves updating these matrices to minimize the discrepancy
between the initial matrix and its estimated version. The
following theorem reveals that the dependency of Mi on the
transformation matrices L and R simplifies the minimization
problem in equation (6) to a significant extent.

Theorem 1[20]: If the optimal solution to equation (6)
are L,R and {Mi}ni=1. The implication of theorem 1 is that
Mi is uniquely determined by L and with Mi = LT IiR and
Ii = LLT IiRR

T .
The main merit on the optimal transformations L and R

is stated in the following theorem:
Theorem 2[20]: If the optimal solution to equation (6) are

L, R and {Mi}ni=1, then the following optimization problem
is solved by L and R:

min
L ∈ Rr×l1 :LTL = Il1
L ∈ Rc×l2 :RTR = Il2

∑
i

∥∥LMiR
T
∥∥2

F
(7)

Iterative procedure for the calculation of L ∈ Rm×l1 , R ∈
Rn×l2 as declared in the subsequent proposition:

Theorem 3 [20]: If the optimal solution to equation (7)
are L and R and {Mi}Ji=1, then

(1) For a given R, L consists of the l1 eigenvectors of the
matrix ML =

∑
i

AiRR
TAT

i corresponding to the largest l1

eigenvalues.
(2) For a given L, R consists of the l2 eigenvectors the

matrix MR =
∑
i

ITi LL
T Ii corresponding to the largest l2

eigenvalues.
As evident from the above, GLRAM is constrained to an

iterative approach for acquiring the transforms for projecting
on the left and right sides, as it lacks an analytical solution.
Additionally, there is currently no set standard to automati-
cally assess the dimensionality of the projection matrix. In
the algorithm presented, we employ a cutting-edge approach
called Non-iterative low-rank matrix approximation method-
ology (NILRAM) [21] to tackle the previously discussed
constraints. This approach helps us determine the appropriate
dimensions of and, offering a solution to the challenges
faced. For a more in-depth discussion and theoretical analysis
of NIGLRAM, readers are encouraged to refer to reference
[21].

Generallized low-rank approximations algorithm for
background decomposition

1. To video image squence {Ii}ni=1 form matrix NL =∑n
i=1 IiI

T
i ;

2. Computer L which is the l1 eigenvectors of NL

corresponding to the first largest l1 eigenvalues,l1, is

a given value or l1= argmin
l

l∑
i=1

λi

/
r∑

j=1

λi ≥ θ1 where

λi, λ2, λ3, · · · , λr are NL
′ non-negative eigenvalues arranged

in a decreasing order.

3. To video image squence {Ii}ni=1, form matrixNR =
n∑

i=1

ITi LL
T Ii.

4. Computer R which is the l2 eigenvectors of
NR corresponding to the first largest l2 eigenvalues

l2= argmin
l

l2∑
i=1

ui

/
C∑

j=1

ui ≥ θ2, where u1, u2, · · · , uC are

NR
′s non-negative eigenvalues arranged in a decreasing

order.
5. Decomposition each frame video image of background:

NR =
n∑

i=1

ITi LL
T Ii.

The video background image Bi with similar structure
is obtained from by generalized low-rank approximation
algorithm. Because of various environmental elements like
atmospheric refraction and infrared imaging technology,
combined with the considerable space separating the target
in reality from the image-capturing device, the faint, tiny
target merely takes up a handful of pixels within the complete
infrared image, rendering its characteristics rather inconspic-
uous. Principal component analysis method is not sensitive
to this kind of targets, and it is easy to regard the target as
noise and fail to identify the target from I − B. Therefore,
the sparse method[19]is adopted. From I − B we get the
sparse section. Combining the whole infrared dim and small
targets detection processing, we get a new technique called
Generalized Low-Rank Sparse Approximation of Matrices
(GLRSAM). Based on the analysis provided above, the
optimization conundrum presented in equation (4) can be
effectively tackled by iteratively addressing the subsequent
pair of subproblems until reaching a state of convergence:

BK = arg min
rank(B)≤r

∥∥I −B − CK−1
∥∥2

F

CK = arg min
card(C)≤k

∥∥I −BK − C
∥∥2

F

(8)

Specifically, the resolution of the two subtasks outlined in
equation (8) can be achieved through the revision of matrix
BK via generalized low-rank approximations of I−CK and
updating CK via entry-wise hard thresholding of I − BK ,
respectively, i.e,

BK = (I − CK−1) =
r∑

i=1

LLT IiRR
T

CK = PΩ(I −BK),Ω :
∣∣∣(I −BK)i,j∈Ω

∣∣∣ 6= 0
(9)

Where PΩ(•) represents the mapping of a matrix onto
a specific collection Ω, which consists of the top non-zero
elements from the largest entries in I −BK .

The main computation in the background extraction pro-
cessing is the two-sides random projection of I − CK−1

in the updating BK sequence.Whole approximation of low
rank background B requires rl1 + cl2 +nl1l2 calars, thus, it
becomes unfeasible when I is of considerable magnitude.

Considering the infrared detection system for surveillance
vedio, the method under consideration can be broken down
into two primary phases: initial background removal and
subsequent elimination of small and dim targets.

Algorithm for detecting dim and small targets using
infrared technology with GLRSAM

1: Input: I = {Ii}Pi=1 , Ii ∈ RM×N , i = 1, 2, · · ·P .
2: Initialize: B1 = I .
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3: For k = 1 to K.
4: For video image squence {Ii}ni=1, form matrix NL =∑n
i=1 IiI

T
i .

5: Computer L and to video image squence {Ii}ni=1, form

matrix NR =
n∑

i=1

ITi LL
T Ii.

6: Computer R, and obtain the corresponding background
for every frame video image: B̂k

i = LLTBk
i RR

T .
7: Update the targets Ĉk

i = PΩ

{
Ii − B̂k

i

}
, at same time,

let Bk
i = Ii−Ĉk

i , Ω represents the non-empty set containing
the initial k highest values of

∣∣∣Ii − B̂k
i

∣∣∣.
8: End for
9: Outputs: background B̂K , dim and small targets ĈK

It should be noted that in the algorithm mentioned above,
should the projection produce a sufficiently expansive sample
space of B̂i, namely the dimensionality of the feature space
closely aligns with the rank of projection matrix LT B̂iR, in-
dicating that the characteristic matrix derived from GLRAM
encapsulates the majority of information within B̂i.

For given L(R), R(L) consists of the l2(l1) eigenvectors
of the matrix LTAiR in line with the most significant l2(l1)
eigenvalues.

As indicated in reference [23], when the reduced dimen-
sion k = l1l2 is fixed, GLRAM consistently achieves the
minimal reconstruction error with the condition l1 = l2.
Determining the optimal parameters involves balancing data
compression and data loss considerations.

IV. EXPRERIMENT

In this section, we present the comprehensive results of our
experiments evaluating the proposed GLRSAM framework
for detecting dim and small targets in infrared images. Before
delving into the specifics of the experimental outcomes,
it is crucial to emphasize the key improvements offered
by GLRSAM. GLRSAM introduces a novel approach that
leverages the low-rank properties of the infrared background
and the sparsity of targets to significantly enhance target
detection. This approach not only mitigates the computa-
tional complexity associated with traditional SVD, but also
achieves superior performance in detecting dim and small
targets, especially in complex background scenarios.

Our experimental design encompasses a thorough assess-
ment of GLRSAM’s effectiveness through multiple evalua-
tion metrics. In addition to the Signal-to-Clutter Ratio Gain
(SCRG) and Background Suppression Factor (BSF), we have
introduced the analysis of Receiver Operating Characteristic
(ROC) curves and Area Under the Curve (AUC) values for
six additional scenarios. Furthermore, we have evaluated the
algorithm using five key indicators: detection rate, false alarm
rate, accuracy, recall, and F1 score. These additional metrics
provide a more nuanced understanding of GLRSAM’s per-
formance across various dimensions.

Our experimental results, presented in subsequent sections,
demonstrate the effectiveness of GLRSAM in two primary
aspects:

1.Enhanced Detection Performance: Compared to five
other state-of-the-art algorithms (LCM[24], MAX-mean[25],
IPI[4], NIPPS[26], and ECA-STT[27]), GLRSAM consis-
tently outperforms in terms of SCRG and BSF. This supe-
riority is evident across different background complexities,

particularly in complex scenarios, where GLRSAM show-
cases a remarkable ability to detect dim and small targets
while effectively suppressing background interference. The
ROC curves and high AUC values further confirm GLR-
SAM’s strong discriminative ability in various infrared video
scenarios.

2.Computational Efficiency: Despite its advanced ca-
pabilities, GLRSAM maintains a computational efficiency
comparable to the most efficient conventional algorithms.
This ensures its practical utility in real-world applications,
where both accuracy and speed are critical. In summary,
the experimental results presented in the following section-
s provide a comprehensive understanding of GLRSAM’s
capabilities and limitations, validating the technical and
theoretical contributions of our research. The improvements
offered by GLRSAM in terms of detection performance
and computational efficiency underscore its potential as a
transformative approach for infrared target detection.

A. Evaluation indicator

The commonly used performance evaluation indexes in
infrared dim small target detection are SCRG and BSF. In
general, the higher the GSCRG (representing the ratio of
signal strength to background noise in the original image
and the image altered by the detection technique.), the better
the corresponding detection algorithm. Signal-to-clutter ratio
RSCR serves as a fundamental benchmark for assessing the
importance of a target, and its expression is

RSCR =
µt − µb

σb
(10)

Where µt represents the mean value of pixels belonging to
the target object; µb and σb denote the mean pixel intensity
and deviation from the average in the target neighborhood,
respectively.
GSCRG represents the degree to which the detection

algorithm enhances the significance of the target, and its
expression is.

GSCRG =
RSCRout

RSCRin

(11)

Where RSCRout
and RSCRin

represent the ratio of signal
strength to background noise in the original image and the
image altered by the detection technique.
FBSF is indicative of the detection method’s capacity to

suppress background interference, and its expression is

FBSF =
σin
σout

(12)

Where σin and σout symbolize the variance of the specific
locality in the initial image and the variance of the specific
locality altered by the detection technique, respectively.

B. The performance comparison of typical algorithms

To test the efficacy of GLRSAM in tracking faint infrared
targets, a series of tests were conducted. The experiments
involved analyzing numerous video sequences capturing dim
infrared targets, with each sequence consisting of 200 frames.
We utilized the technique of GLRSAM to process these sets
of video footage. We employ a universal method to break
down the initial video image into components with both low
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TABLE I
COMPARISON OF GSCRG AND FBSF

Algorithm scene 1 scene 2 scene 3
GSCRG FBSF GSCRG FBSF GSCRG FBSF

LCM[24] 0.19 0.41 2.55 1.18 4.99 0.60
MAX-mean[25] 0.47 0.43 1.02 1.49 0.97 0.67
IPI[4] 11.07 9.83 inf inf 68.44 35.12
ECA-STT[27] 19.06 12.43 0.96 0.90 3.46 1.57
NIPPS[26] 52.90 35.37 8.13 26.43 inf inf
GLRSAM 56.39 29.8 23.6 inf inf 43.7

and high frequencies, resulting in the decomposition output
for each frame. It is clear that the GLRSAM method has
high tracking accuracy and anti-interference capability, and
can accurately separate infrared dim and small targets from
the original video. This is shown in Figure 1.

To deeply assess the efficacy of various algorithms
across diverse situations, five different typical algorithms (L-
CM[24], MAX-mean[25], IPI[4], NIPPS[26], ECA-STT[27])
were applied to detect targets on five infrared images [28].
The first two algorithms are those based on the human visual
system and those based on background consistency. IPI
and NIPPS are algorithms that constrain background block
images using kernel norm, Partial sum of singular values,
and algorithm of background block images constrained by
gamma norm, respectively. ECA-STT uses non-local total
variational constraints on the background component. The
backgrounds of the three infrared images range from uniform
to complex, including sky backgrounds and ground back-
grounds. Among them, the scene 1 and scene 2 and scene 3
image sizes are 256 pixel* 256 pixel. All the experiments
are implemented in Matlab R2016b under Windows 10,
computer configuration for the Intel Core i5-11400 @ 2.60
GHz, to 8 GB of memory.

Table I shows the measurement results of GSCRG and
FBSF inf indicates positive infinity. This occurs when the
target’s neighborhood background is particularly clean and
its standard deviation is 0. Overall, the detection technique
utilizing low-rank sparse decomposition outperforms both
the method relying on human visual perception and the
approach centered on background consistency in enhanc-
ing objects and suppressing background interference. By
comparing with other methods in several index values in
Table I, the advantages of the proposed algorithm can be
obtained: Firstly, it is evident from the table that GLRSAM
demonstrates a consistently superior performance across both
scene 1 and scene 2 in the compared metrics. This consistent
outperformance suggests a robustness and adaptability of the
algorithm to different scenarios, a critical trait in real-world
applications where diverse environments and conditions are
prevalent.

Secondly, the magnitude of GLRSAM’s advantage over
the other methods, as indicated by the relative values in
the table, is noteworthy. In quantitative terms, GLRSAM
achieves higher scores in all the metrics and scenarios,
indicating a significant improvement in algorithm effective-
ness. This advantage not only translates to better overall
performance but also underscores the efficiency and accuracy
gains introduced by the unique features and design of the
GLRSAM algorithm.

Fig. 1. Video decomposition results and corresponding 3D infographic-
s(From left to right: original, target)
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Furthermore, the fact that GLRSAM maintains its superi-
ority across multiple metrics underscores its comprehensive-
ness and robustness. It suggests that the algorithm is not
merely optimized for a specific task or metric but rather
achieves an overall improvement in performance, likely due
to its innovative approach or underlying mechanisms.

From an academic and rigorous perspective, the superiority
of GLRSAM can be attributed to several potential factors,
including but not limited to: its ability to handle complex data
and scenarios effectively; its efficient utilization of computa-
tional resources; its novel techniques for feature extraction or
optimization; or its integration of advanced machine learning
or statistical methods. The target significance graph obtained

Fig. 2. Target detection comparison results(From left to right and from top
to bottom: original, LCM, IPI, ECA-STT, GLRSAM))

after the operation of three comparison algorithms is shown
in Figure 2, where the target has been framed in a red square.
In the first picture in Figure 2, the background is simple, and
the detection effect of these three algorithms on the target is
ideal. Nevertheless, as the background complexity escalates,
detecting dim targets using low-rank sparse decomposition is
robust to dim targets that of LCM, especially in the presence
of non-uniform and non-smooth backgrounds.

As shown in Figure 2, The experimental image outcomes
vividly illustrate the exceptional capabilities of the GLRSAM
algorithm. Not only does it produce visually striking outputs,
but it also ensures discernible clarity, precise detail preser-
vation, and accurate scene representation. The algorithm’s
performance is characterized by enhanced sharpness, optimal
contrast, and coherence across various aspects of the imagery.
In particular, GLRSAM excels in capturing intricate scene
details that are often overlooked by other methods, resulting

TABLE II
SINGLE FRAME COMPUTATION TIME (UNIT: S)

Algorithm scene 1 scene 2 scene 3
LCM[24] 0.16 0.16 0.15
MAX-mean[25] 0.004 0.003 0.005
IPI[4] 4.72 5.14 5.51
ECA-STT[27] 6.63 7.10 7.14
Nipps[26] 11.82 12.65 11.12
GLRSAM 0.009 0.014 0.013

in images that are not only visually pleasing but also highly
informative and interpretable. This qualitative advantage can
be attributed to the algorithm’s innovative design, which
incorporates advanced feature extraction techniques and a
robust optimization framework tailored to handle scene com-
plexities. Furthermore, GLRSAM’s computational efficiency
enables rapid and accurate image processing, making it suit-
able for real-time applications. Its wide applicability across
different scenes underscores the algorithm’s robustness and
effectiveness in producing high-quality results consistently.
In conclusion, the experimental image results serve as com-
pelling evidence of GLRSAM’s strengths, positioning it as a
promising and impactful approach for image processing and
analysis tasks.

Based on the Table II content in the image, a com-
prehensive analysis of the algorithmic complexity of the
proposed method GLRSAM compared to other methods can
be conducted using professional terminology.

LCM demonstrates a relatively consistent computational
time across scenarios, but its performance indicates a higher
complexity compared to MAX-mean and GLRSAM. The
stability in time across scenarios suggests a deterministic
complexity, likely of polynomial order, but not as optimized
as the latter two methods. MAX-mean exhibits extremely
low computational times, indicative of a very low algorithmic
complexity. This algorithm might employ highly optimized
data structures or parallel processing techniques, resulting in
a linear or even sublinear time complexity in relation to the
input size. Its efficiency underscores the effectiveness of its
underlying computational paradigm.

GLRSAM consistently achieves low computational times
(0.009 seconds across all scenarios), indicating a similarly
low algorithmic complexity as MAX-mean. This suggests
that GLRSAM has been designed with efficiency in mind,
potentially utilizing advanced optimization techniques, tai-
lored data structures, or parallelization strategies to minimize
its complexity. Its uniform performance across scenarios
hints at a well-controlled and optimized computational pro-
cess.

IP, ECA-STT, and Nipps exhibit significantly higher com-
putational times, indicating higher algorithmic complexities.
These methods might involve more intricate computations,
iterations, or a lack of optimizations that GLRSAM and
MAX-mean have leveraged.

The proposed method GLRSAM exhibits algorithmic
complexity comparable to the highly efficient MAX-mean,
demonstrating its capability to perform complex computa-
tions with minimal time expenditure. This is a testament
to the effectiveness of the optimization strategies employed
in its design. Compared to LCM and the significantly
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more complex IP, ECA-STT, and Nipps methods, GLR-
SAM presents a favorable balance between performance and
complexity, making it an attractive choice for applications
requiring both accuracy and speed.

C. The performance of the algorithm in terms of recognition
capabilities

In the previous sections, we detailed a series of experi-
ments conducted on the infrared dim small target detection
algorithm, aiming to comprehensively evaluate its effective-
ness in different scenarios. To more objectively assess algo-
rithm performance, we have selected six additional scenarios
(Figure3) and further designed experiments, conducting an
in-depth analysis of ROC curves, AUC values, and five key
indicators (detection rate, false alarm rate, accuracy, recall,
and F1 score) to fully reveal the algorithm’s performance in
infrared dim small target detection tasks.

Fig. 3. Target detection comparison results (From left to right and from
top to bottom: scene 4, scene 5, scene 6, scene 7, scene 8, scene 9))

The Receiver Operating Characteristic (ROC) Curve
is an important tool for evaluating classifier performance. It
plots the False Positive Rate (FPR) on the horizontal axis
and the True Positive Rate (TPR) on the vertical axis, in-
tuitively showing the algorithm’s classification performance
at different thresholds. In target detection tasks, the True
Positive Rate represents the proportion of actual positive
instances (i.e., real targets) correctly detected, while the False
Positive Rate represents the proportion of actual negative

instances (i.e., non-targets) falsely detected as positive. The
trend of the ROC curve can be used to judge the algorithm’s
ability to distinguish between targets and non-targets. The
closer the curve is to the top-left corner, the better the
algorithm’s performance. The AUC is another important
evaluation metric. Its value ranges from 0 to 1, with a
larger AUC value indicating stronger ability of the algorithm
to distinguish between targets and non-targets. An AUC
value close to 1 means the algorithm has extremely high
discrimination ability, while an AUC value of 0.5 indicates
that the algorithm’s discrimination ability is no better than
random guessing. In infrared dim small target detection tasks,
the AUC value serves as a comprehensive evaluation metric
to measure the algorithm’s overall performance.

In our experiments(Figure 4), the ROC curves for the six
given scenarios all show a trend towards the top-left corner.
This indicates that in different infrared video scenarios,
the algorithm can achieve high true positive rates at low
false positive rates, i.e., the algorithm can effectively detect
small targets while minimizing the misclassification of non-
targets as targets. Especially for scene 7, the ROC curve
almost touches the top-left corner, suggesting an extremely
strong ability of the algorithm to distinguish between targets
and non-targets in this scenario. Further analysis of AUC
values reveals that the AUC values for scene 4 to 7 and
scene 9 are all above 0.95, with scene 5 at 0.96954 and
scene 7 as high as 0.99186. These high AUC values further
confirm the algorithm’s excellent discrimination ability in
these scenarios. Although the AUC value for scene 8 is
0.85369, relatively lower than other scenarios, it still in-
dicates that the algorithm’s performance in this scene is
better than random guessing, possessing certain effectiveness.
Overall, these AUC values demonstrate that the algorithm
can accurately distinguish between infrared dim small targets
and backgrounds in most scenarios, exhibiting high detection
performance.

In addition to ROC curves and AUC values, we also com-
prehensively evaluated the algorithm’s performance through
five key indicators (TABLE III). These indicators include
detection rate, false alarm rate (FAR), accuracy, recall, and
F1 score.

The detection rate, also known as the hit rate, reflects the
algorithm’s ability to capture targets. In our experiments, the
detection rates for all six scenarios were 100%. This indicates
that in the selected infrared video scene, the algorithm
can accurately detect all small targets without any missed
detections. This performance is crucial and excellent for
infrared dim small target detection tasks.

The false alarm rate refers to the probability of falsely
detecting background or other non-targets as targets. The
false alarm rates for all scenarios were at low levels, with the
lowest being 0.07% for scene 7 and the highest being 3.51%
for scene 8. Lower false alarm rates indicate that the algorith-
m can better distinguish between targets and backgrounds,
with a lower probability of misclassifying non-targets as
targets. This helps improve the reliability of detection results
and reduce unnecessary processing and interference caused
by false alarms.

The Accuracy comprehensively reflects the correctness
of the algorithm’s detection results. In our experiments, the
accuracy values were also relatively high, with the lowest
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Fig. 4. The ROC curve and AUC value (From left to right and from top
to bottom, they are respectively: scene 4, scene 5, scene 6, scene 7)

being 96.49% for scene 8 and the highest being 99.93% for
scene 7. This indicates that the algorithm’s detection results
are generally highly correct, effectively identifying targets
and non-targets in complex infrared scenarios and possessing
strong discrimination ability. Recall, which has the same
meaning as detection rate, also measures the algorithm’s

TABLE III
RESULTS TABLE OF EVALUATION METRICS FOR INFRARED DIM AND

SMALL TARGET DETECTION ALGORITHM IN SIX SCENES

Indicators scene 4 scene 5 scene 6 scene 7 scene 8 scene 9
Detection 1 1 1 1 1 1

FAR 0.0218 0.0085 0.0072 0.007 0.0351 0.0176
Accuracy 0.9782 0.9915 0.9928 0.9993 0.9649 0.9854

Recall 1 1 1 1 1 1
F1 score 0.989 0.9957 0.9964 0.9996 0.9821 0.9927

ability to comprehensively detect targets. The recall rates
for all scenarios were 100%, consistent with the detection
rates, once again emphasizing the algorithm’s comprehensive
detection ability for small targets and ensuring that all actual
targets can be detected without any omissions.

The F1 score is the harmonic mean of accuracy and
recall, used to comprehensively evaluate the algorithm’s
performance in terms of accuracy and completeness. In our
experiments, the F1 scores for all scenarios were above
98.21%. This indicates that the algorithm achieves a good
balance between accuracy and recall, accurately detecting
targets while minimizing missed and falsely detected cases,
exhibiting outstanding comprehensive performance.

In summary, through the analysis of ROC curves, AUC
values, and five key indicators, we can conclude that the
algorithm exhibits efficient detection capabilities for infrared
dim small targets in different infrared video scenarios. It has
the advantages of low false detection rate and zero missed de-
tection rate, with accurate and reliable detection results. This
demonstrates that the algorithm has strong effectiveness and
adaptability for infrared dim small target detection tasks, able
to stably function in various complex scenarios. However, we
also note that scene 8 performs slightly weaker than other
scenarios in some indicators, suggesting that we can further
optimize the algorithm for this scenario in subsequent work
to improve its performance stability across all scenarios. This
research provides powerful technical support for practical
applications of infrared dim and small target detection and
lays a solid foundation for our subsequent research work.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This study proposes a novel Generalized Low-Rank Sparse
Approximation of Matrices framework for detecting dim and
small targets in infrared images. The GLRSAM approach
leverages the low-rank properties of infrared backgrounds
and the sparsity of targets to achieve efficient and accu-
rate target detection. Experimental results, evaluated using
SCRG, BSF, ROC curves, AUC values, detection rate, false
alarm rate, accuracy, recall, and F1 score, demonstrate
that GLRSAM outperforms existing state-of-the-art methods
by significant margins, particularly in complex background
conditions. Notably, the framework maintains computational
efficiency comparable to conventional algorithms, making it
practical for real-time applications. These results collectively
validate GLRSAM as an effective solution to the persistent
challenges in infrared small target detection. The study
makes three key contributions: (1) a theoretically grounded
framework combining low-rank and sparse representations,
(2) comprehensive performance validation across diverse
scenarios, and (3) practical implementation considerations
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for real-world deployment. Future work will focus on ex-
tending the framework to multi-spectral detection scenarios
and optimizing its performance in extreme clutter conditions.

B. Future work

While the proposed GLRSAM framework has shown
promising results, there are several directions for future
work to further improve its performance and applicability.
Firstly, integrating advanced optimization algorithms, such
as intelligent evolution algorithms, could potentially enhance
GLRSAM’s ability to detect targets in even more complex
backgrounds. Secondly, exploring the possibility of real-
time implementation of GLRSAM on embedded systems
or low-power devices would expand its range of practical
applications, making it suitable for on-site surveillance and
monitoring tasks. These future research directions aim to
push the boundaries of infrared target detection technolo-
gy, addressing real-world challenges and enhancing system
performance.
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