
 

 

Abstract—The oil temperature serves as a crucial indicator 

for assessing the thermal performance of power transformers. 

Accurately predicting its temporal variation trend is of great 

significance for evaluating the operational load capacity and 

enabling early detection of potential internal overheating faults. 

This paper proposes an effective oil temperature prediction 

method for transformers based on the attention mechanism and 

the gated recurrent unit (Attention-GRU) to tackle the 

problems of low accuracy and cumbersome feature selection 

process in oil temperature prediction. Firstly, this article 

conducts data processing on oil temperature data to reduce 

computational complexity. Secondly, this article utilizes the 

GRU to extract data features of oil temperature from 

transformers at the time scale for long-range predictive 

modeling. Thirdly, the attention mechanism is introduced to 

autonomously emphasize the data features that yields 

substantial effects on the results, replacing the complex and 

time-consuming data screening process and improving the 

prediction accuracy. Finally, model outputs prediction results. 

The experimental results demonstrate that in comparison with 

existing methods (see, e.g., RNN, LSTM, GRU, BiLSTM, and 

Transformer), our method has higher prediction accuracy of oil 

temperature from transformers, which helps to analyze the load 

capacity of transformers and detect potential faults. At the same 

time, this paper has also found that the attention mechanism 

can significantly reduce the dependence of existing methods on 

the feature selection process, and enhance prediction accuracy 

of oil temperature in transformers. 

 
Index Terms—transformer, oil temperature prediction, 

attention mechanism, gated recurrent unit, time series 

prediction 

 

I. INTRODUCTION 

s one of the most key power transmission and 

transformation equipment, transformers are widely used 

in power systems. The number of system operation accidents 

caused by transformer failures is also constantly increasing. 

Therefore, the research on condition monitoring and fault 
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diagnosis of transformers is significant to power systems. 

According to statistics, among all the fault types of 

transformers, overheating faults account for the largest 

proportion, and the rate at which the insulation life of 

transformers decreases will continue to accelerate with the 

increase in temperature. Further damage to the transformer 

will be caused and overheating even poses severe threats to 

the transformer's safe operation if overheating faults are not 

dealt with in a timely manner. A substantial quantity of 

insulating oil must be injected into power transformers to 

guarantee their insulation and heat dissipation performance. 

To some extent, the temperature of the insulating oil can 

indicate the operational status of the transformer [1]-[2]. The 

implementation of accurate prediction of oil temperature is 

central to identifying potential transformer faults, performing 

transformer operation and maintenance, and realizing early 

warning of transformer failures.  

At present, driven by accelerated technological progress, 

especially in AI and deep learning domains, prediction 

models utilizing deep learning are widely applied in various 

industries (e.g., crack length [3], flight control systems [4], 

tax revenue [5], and prices [6]) and many researchers have 

also applied it to transformer oil temperature prediction. In 

[7], the ambient temperature, the active power, and reactive 

power corresponding to input data, were selected as the input 

features, and the Long Short Term Memory (LSTM) network 

was adopted to achieve prediction of the top oil temperature. 

Reference [8] took into account the factor of three-phase 

imbalance, decomposed the load factor into three phases, and 

constructed an LSTM prediction model. Compared with the 

method of differential calculation using the heat transfer 

differential equation, the proposed method was more in line 

with the actual operating conditions of the transformer. 

Reference [9] put forward a multi-step prediction model of 

the gated recurrent unit (GRU) network based on 

multi-output strategy. By changing the structural 

hyperparameters and training hyperparameters of the model 

to study the coupling relationship among the 

hyperparameters, the multi-objective grey wolf optimization 

algorithm was used to optimize hyperparameters with 

different prediction result tendencies. Reference [10] used 

ensemble empirical mode decomposition and wavelet 

packets to decompose the concentration signal into several 

sub-signals, and then applied the CNN-GRU model to predict 

the concentration signal. Reference [11] combined the 

Radam optimizer and the gated recurrent unit and proposed 

an improved GRU prediction model for the gas concentration 

in transformer oil. The experimental results showed that for 

the LSTM neural network model, the improved GRU model 

could better predict the changing trend of the dissolved gas 
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concentration in transformer oil. Reference [12] predicted the 

oil temperature trend of a certain ±800 kV converter station 

based on the LSTM and verified the practicability of the 

method through oil temperature early warning. Reference [13] 

considers the spatial coupling characteristics existing 

between neighboring nodes and the impact of the external 

environment on the load, and adds Transformer to the 

prediction model to reduce prediction error of transformer 

load prediction. Reference [14] used the particle swarm 

optimization algorithm to further optimize relevant 

hyperparameters of the Bi-directional LSTM (BiLSTM). It 

advanced diagnostic prediction precision and robustness of 

the model. However, the randomly generated 

hyperparameters of the BiLSTM network increased the 

instability of the model and it tended to fall into local optima. 

Reference [15] applied LSTM to the prediction of the trend of 

the dissolved gas concentration. The above methods provided 

ideas for oil temperature prediction by adding influencing 

factors related to oil temperature such as load and weather 

conditions. However, there are numerous available 

influencing factors for the top oil temperature. The 

acquisition cost and acquisition cycle need to be considered. 

This paper uses the recurrent neural network (RNN) series 

[16], considering temperature prediction is essentially a 

prediction based on time series. The traditional RNN has 

problems such as vanishing gradients, exploding gradients, 

and at the same time, its ability to process data feature 

information with a long distance is relatively weak [17]. The 

LSTM and the GRU networks originate from the RNN. The 

LSTM uses three gate structures to remember effective 

information and discard useless interfering information [18]. 

The GRU reduces structural complexity relative to LSTM 

networks, but its performance is relatively better. The 

attention mechanism can well model sequence data with 

variable lengths, further enhance its ability to capture 

long-range dependent information, and effectively improve 

accuracy while reducing the depth of hierarchy [19]. 

Based on the above analysis, this paper chooses a 

prediction method combining the GRU and the attention 

mechanism (Attention-GRU) to achieve higher prediction 

accuracy of the oil temperature of transformers. The main 

contributions are as follows:  

(1) Aiming at the problems that oil temperature is affected 

by multiple factors and traditional models show difficulty for 

adapting to the prediction and require a manual feature 

selection process, this paper introduces an attention 

mechanism with self-learning ability to focus on important 

time features. This mechanism enables the GRU to 

adaptively get the focus weights of different input data, 

thereby boosting the model's predictive accuracy. 

(2) This paper verifies the effectiveness of this method on 

two datasets, namely ETTh1 and ETTh2. The results show 

that contrasting with the existing prediction models (RNN, 

LSTM, BiLSTM, GRU, and Transformer), Attention-GRU is 

more suitable for complex data input in practical scenarios 

and is conducive to achieving accurate prediction of oil 

temperature. 

(3) Aiming at the problem of low prediction accuracy in 

feature learning process of existing methods, this paper 

verifies through ablation experiments on ETTh1 dataset and 

ETTh2 dataset that the attention mechanism can significantly 

boost forecasting precision of the method. The experimental 

results show that this mechanism adaptively allocates focus 

weights and solves the above-mentioned problems. 

The other parts of the paper are arranged as follows. The 

modeling process of oil temperature prediction is introduced 

in detail in Section II. Section III presents the experimental 

results and analysis, which confirm the effectiveness of the 

attention mechanism and Attention-GRU. Section IV 

provides the conclusions. 

II. ATTENTION-GRU PREDICTIVE MODELING OF OIL 

TEMPERATURE FROM THE TRANSFORMER  

This section will introduce the Attention-GRU model from 

three parts: the GRU, the attention mechanism, and 

Attention-GRU. This paper theoretically analyzes the 

importance of the attention mechanism. 

A. The GRU for temporal feature information extraction 

The GRU was first proposed in 2014 [20]. Fig. 1 shows the 

schematic diagram of the GRU model. As shown in Fig. 1, tr  

is the reset gate, tx  is the input at time t, tu  is the update 

gate, th  is the output at time t, and 1th −  is the hidden state at 

the previous moment of t. 

 

 
Fig. 1.  The schematic diagram of GRU 

 

The working principle of the GRU neural network is as 

follows: 

 ( )1t r t r tr W h W x −= +  (1) 

 ( )1t z t z tu W h W x −= +  (2) 

 ( )1tanht t z t x th r W h W x−
 = +    (3) 

 ( )1 1t t t t th u h u h−= + −  (4) 

 tanh
x x

x x

e e

e e

−

−

−
=

+
 (5) 

where rW , zW , hW  , and xW  are respectively trainable 

weights,  represents Hadamard multiplication, and   is 

the sigmoid function.  

The reset gate modulates historical information flow into 

the candidate set: lower values suppress prior-state 

integration. Conversely, the update gate governs 
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previous-state retention in the current state, where higher 

values preserve more historical information. 

The GRU model computes the weights of input data in a 

time-series manner and generates the output results when the 

GRU network processes time series data. The prediction error 

is obtained after comparing and calculating the output results 

with the target data. During the next learning process, the 

prediction error is input into the GRU network to update the 

weights in the GRU network through the backpropagation of 

the prediction error toward higher forecasting accuracy. 

B. The attention mechanism for focusing on key information 

The human brain's signal processing mechanism will focus 

on some target areas in the current state and reduce or ignore 

the attention to other areas. Based on the human attention 

research, experts have put forward the attention mechanism. 

Essentially, it optimizes information resource allocation [21]. 

Now the attention mechanism has found extensive 

applications in many fields of deep learning. By weighting 

input data, the attention mechanism enables models to focus 

on information with higher importance for current outputs, 

thereby enhancing model performance. Initially applied in 

Natural Language Processing (NLP), attention mechanisms 

are now widely used in various time-series processing tasks. 

In the field of data prediction, it addresses several limitations 

in traditional neural networks, such as the decline in system 

performance as the input length increases, computational 

inefficiency arising from suboptimal input ordering, and 

inadequate feature extraction and enhancement capabilities 

[22].  

The attention mechanism includes multiple types and 

variants, among which the self-attention mechanism is one 

type of them. It connects different positions of a single 

sequence, completes the calculation of sequence weight 

values, represents relevance by calculating the similarity 

between vectors, and assigns high weight values to key 

information to enhance its influence on the results [23]. The 

structural schematic diagram of self-attention mechanism is 

shown in Fig. 2. 

 

softmax

'

tX
tX

qW

kW

hQ

hK

hA

fW

hV

 
Fig. 2.  The Structure diagram of self-attention mechanism 
 

where tX  is the model input, qW , kW , and fW  represent 

weight respectively, hQ , hK , hA , and hV  contain all points 

as query, key, value, and attention score, respectively, 
'

tX  is 

the output result,   represents the matrix multiplication, 

and   represents the element wise matrix addition. 

The self-attention mechanism focuses on the internal 

relationships of the input data. The main process of 

self-attention is as follows: 

  Step 1 According to the input data, corresponding vectors 

iQ , iK  and iV  for each position point of each sample will 

be generated, where iK  and iV  are a pair of key-value pairs. 

And then the similarity ,i je  by iQ  and the jk  of the j point 

will be calculated according to equation (6): 

 ( )( ),

T T T

i j i j i q K je Q K X W W X= =  (6) 

where 
T

iX and jX  are feature vectors respectively, W  is 

the weight, and different subscripts correspond to different 

weights, and N  is the product of the height and width of the 

input data. 

Step 2 It generates attention scores ,i j  by using the 

softmax function, according to equation (7): 

  ,

,

,

1

exp
, , 1, 2, ,

exp

i j

i j N

i k

k

e
i j N

e



=

= 


 (7) 

Step 3 All attention scores can form a matrix or relevant 

structure, and to obtain the weighted vectors then multiply 

the attention scores by the value of each sample, according to 

equation (8). Finally, the characteristics of each point can be 

obtained. 

 ( )  ,

1

, , 1,2, ,
N

i i j v j

j

Z W X i j N
=

=   (8) 

Step 4 The characteristics form z , which represents 

matrices. The weighted vectors encode the effective 

information of the training samples. Finally, all the weighted 

vectors are integrated to the input information to derive the 

output with the global information according to the equation 

(9): 

  ' , 1,2, ,t f tX W Z X t N= +   (9) 

The attention mechanism can strengthen the key 

information and weaken irrelevant information, so as to 

enhance prediction accuracy of algorithms. 

C. The Attention-GRU for predictive modeling 

Relative to the LSTM, the GRU performs better in smaller 

datasets and can better address the problem of gradient 

explosion or vanishing in long sequence training [24]. 

Attention mechanism will enable the network to achieve 

higher efficiency and higher accuracy in information 

processing. This paper proposes that Attention-GRU can 

improve the prediction accuracy by discovering deep 

relationships between input data through attention 

mechanisms. 

Fig. 3 shows the network of Attention-GRU. The attention 

mechanism weights and calculates the hidden-layer vector 

expressions output by the GRU. The weight indicates the 

importance of features at each time point. The structure is 

composed of an input layer, a GRU layer, an Attention layer, 

and an output layer. The input is the vector representation of 

each group of data, 1x , 2x , , ix . The corresponding 

outputs 1k , 2k , , ik  will be obtained after vectors are 

calculated by the GRU model. Then, The attention 

mechanism is incorporated into the hidden layer in order to 

compute the attention probability distribution values 
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1c , 2c , , ic  of each input. The equations are as follows: 

 i i ic f k=  (10) 

 ( )tani i i iia cw h W b= +  (11) 

 
( )

1

exp i

i i

jj

s
a

a
=

=


 (12) 

where if  is the weight value of each vector, ia  represents 

the hidden layer state vector at time I, ik  is the output value 

after the GRU model calculation, iw and iW  represent 

respectively the weight coefficient matrices of the i vector, 

and ib  is the offset corresponding to the i vector. 

The feature vector can be calculated through the above 

equations. Finally, the softmax function normalizes output 

layer logits into probability distributions correspondingly to 

evaluate its influence on the output. 

 

 
Fig. 3.  The structure of Attention-GRU 

 

D. Prediction process 

Fig. 4 shows the prediction process figure based on the 

Attention-GRU model. The steps are as follows: 

 

 
Fig. 4.  The Prediction flow chart 

 

Step 1 Model obtains input data of the oil temperature, 

searches for missing values, and processes time-related data. 

Then it distinguishes characteristic parameters and selects the 

target parameter oil temperature of the transformer. The 

features in the sample cannot be directly passed down when 

they are input into the model because the absolute values 

have a large range of variation. Instead, these feature values 

are processed and then used as the vectors to be passed. The 

purpose of data processing is to ensure that there are no 

special samples in the input samples of the network, and to 

ensure that the range of eigenvalues is between 0 and 1, so 

that the convergence of the network is not compromised and 

the speed of processing the data is increased. This paper uses 

the Min-Max normalization to pre-process the sample data, 

and the equation is as follows: 

 
min

max min

X X
X

X X

−
=

−
 (13) 

where X  is the normalized sample data, X  is the original 

sample data, minX  is the minimum data of sample, and 

maxX  is the maximum data of sample. 

Step 2 We utilize the sliding window processing technique 

to generate sample data for model training input based on the 

pre-processed oil temperature data. We divide 0.8 and 0.2 of 

the dataset into the training set and the test set. 

Step 3 To refine oil temperature prediction accuracy and 

highlight the effectiveness of characteristic indicators, the 

attention mechanism is incorporated into the GRU model. 

The Attention-GRU model and its hyperparameters are 

constructed. The entire model is trained using the training set, 

and the evaluation indicators between true results and 

predicted results are calculated. The optimal model 

parameters are determined through multiple experiments. 

Step 4 After determining the ideal model, the test samples 

will be predicted. After inverse normalization, model obtains 

the oil temperature values with physical significance at the 

corresponding moments. Model compares them with the true 

results and calculate the error evaluation indicators to verify 

the fitting and generalization capacity. 

III. EXPERIMENTATIONS AND ANALYSIS 

In this study, this paper proposes an Attention-GRU 

prediction method for predicting oil temperature of 

transformers. To comprehensively verify the effectiveness of 

this model, experimental comparisons will be carried out 

between it and several common algorithm models, and the 

effectiveness of adding the Attention Mechanism will be 

proved through ablation experiments. 

A. Experimental Dataset 

A substantial number of operation state monitoring 

quantities exist for power transformers. These parameters 

play a crucial role in comprehensively assessing the working 

condition of power transformers. Some state quantities have a 

relatively strong correlation with the oil temperature and can 

accurately reflect the changes in the top-layer oil temperature 

of the transformers. The Zhou team collected real data over 

two years and established a power transformer dataset 

(ETDataset) for researching and predicting the oil 

temperature of transformers [25]. This dataset consists of 

three parts in total: ETT-small, ETT-large, and ETT-full. 

This paper uses the ETT-small dataset for experiments. It 

collects data every hour from two transformers in two 

substations to form ETTh1 and ETTh2 datasets. Each dataset 
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contains 17,421 pieces of data, and each data is composed of 

eight features. The meanings of each feature are shown in 

Table Ⅰ . The Attention-GRU model utilizes six distinct 

types of external power supply load characteristics as the 

input elements for the network, with the oil temperature 

serving as the output variable.  

 
TABLE I 

THE EXPERIMENTAL FEATURE MEANING TABLE 

Field Description 

DATE The Recorded Date 
HUFL High Useful Load 

HULL High Useless Load 

MUFL Middle Useful Load 
MULL Middle Useless Load 

LUFL Low Useful Load 

LULL Low Useless Load 
OT Oil Temperature 

 

"DATE" represents the date and time when the oil 

temperature is recorded. "HUFL" stands for the highest 

useful load, generally referring to the highest load of the 

transformer when it is working under load. "HULL" 

represents the highest useless load, generally referring to the 

highest load of the transformer when it is not working under 

load. "MUFL" stands for the intermediate useful load, 

generally referring to the intermediate value of the 

transformer load when it is working under load. "MULL" 

represents the intermediate useful load, generally referring to 

the intermediate value of the transformer load when it is not 

working under load. "LUFL" stands for the lowest useful 

load, generally referring to the lowest load of the transformer 

when it is working under load. "LULL" represents the lowest 

useful load, generally referring to the highest load of the 

transformer when it is not working under load. "OT" 

represents the transformer oil temperature detected. 

B. Experimental Details 

The experiment in this paper is to build a deep learning 

environment on a computer with AMD Ryzen7 5800H 

central processing unit and NVIDIA GeForce RTX 3060 

laptop graphics processing unit, as shown in Table II. The 

batch size is 32. The learning rate is 0.01 The Adam 

algorithm is used as the optimizer. The epoch is 300 and the 

prediction length is 12. 

 
TABLE II 

THE DEEP LEARNING ENVIRONMENT CONFIGURATION 

Environment Configuration 

Anaconda 3.0 

CUDA 11.5 
cuDNN 8.2.4 

Python 3.9 

Tensorflow 1.11.0 
Keras 2.2.4 

Numpy 1.19.5 

Pandas 1.3.5 
Sklearn 1.0.2 

C. Evaluation Indicators 

The modeling compares true value 
iy  and predicted value 

ˆ
iy  on the training set and test set obtained from same dataset 

in the same division way. To compare prediction accuracy of 

Attention-GRU model with that of other models, this paper 

uses the mean squared error, the mean absolute error, and the 

R-Square to evaluate the prediction results among various 

methods. 

1) The mean square error (MSE) 

 ( )
2

1

1
ˆ

n

i ii
MSE y y

n =
= −  (14) 

where this value range of the MSE is  )0,+ . It represents 

the average squared error between predicted and actual 

values across all data points. The smaller this value is, the 

closer the predicted values are to the true values, that is, the 

better the prediction effect of the model is.  

2) The mean absolute error (MAE) 

 
1

1
ˆ

n

i ii
MAE y y

n =
= −  (15) 

where this value range of the MAE is  )0,+ . It is the 

average value of the absolute errors and reflects the actual 

situation of the prediction value errors. The smaller this value 

is, the closer the predicted values are to the true values, that is, 

the better the prediction accuracy of the model is. 

3) The R-Square (R2) 

 
( )

( )

2

2 1

2

1

ˆ
1

n

i ii

n

i ii

y y
R

y y

=

=

−
= −

−




 (16) 

where ˆ
iy  is the average of the actual values. This value range 

of the R2 is ( ),1− . It embodies the model's fitting quality. 

The larger this value, the better the model fitting ability. The 

R2 is closer to 1 indicates that the fit is more perfect and the 

prediction is better. 

D. Comparative Experiment 

To verify the effect of Attention-GRU, it was compared 

with other models on the ETTh1 dataset and the ETTh2 

dataset. Table III and Table IV show the comparison of 

predicted indicators between Attention-GRU and existing 

models on the ETTh1 dataset and ETTh2 dataset. The 

prediction error of RNN model is the largest, and it performs 

poorly in this experiment. The prediction error of 

Transformer model is the smallest relative to LSTM, GRU, 

and BiLSTM. But Attention-GRU has lower MAE and MSE 

values. On the ETTh1 dataset, the model presented in this 

paper yielded an MSE of 5.2664, an MAE of 1.6219, and 

attained an R² of 0.9251. On the ETTh2 dataset, the same 

model produced identical performance metrics, with an MSE 

of 13.5504, an MAE of 2.6049, and an R² of 0.9026. These 

results demonstrate superior performance compared to other 

models evaluated on both datasets. Specifically on dataset 

ETTh1, the MAE value of the Attention-GRU model 

decreased by 2.21%, the MSE decreased by 4.79%, and the 

R2 increased by 1.40% against those of the Transformer 

model. On dataset ETTh2, The MAE and MSE value of the 

Attention-GRU model decreased by 1.61% and 8.11% 

respectively, and the R2 value increased by 1.43% as opposed 

to the Transformer model. Compared with other models, the 

attention-GRU model exhibits significant improvement. Fig. 

5(a) and Fig. 5(b) visually illustrate the performance 

differences among various models on the ETTh1 dataset and 

the ETTh2 dataset across different evaluation metrics. The 
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MSE and MAE values of BiLSTM, Transformer, and 

Attention-GRU are relatively close to each other, indicating 

that these models achieve comparable and relatively high 

prediction accuracy. However, Attention-GRU demonstrates 

a higher R² score, suggesting superior fitting capability 

compared to BiLSTM and Transformer. In contrast, the 

remaining models exhibit larger MSE and MAE values, 

implying lower prediction accuracy and weaker fitting 

performance. 

The predictive performance of different models is 
evaluated by comparing their oil temperature 
forecasting curves against the ground truth 
measurements on the ETTh1 and ETTh2 test dataset, as 
showed in Fig. 6(a) and Fig. 6(b) respectively. Despite the 

significant fluctuations in oil temperature throughout the 

period, the predicted values of the models generally manage 

to closely track the trend of the actual values. However, there 

are notable discrepancies in some individual predictions 

made by certain models. The prediction results of the 

Attention-GRU model have a higher degree of fitting with the 

actual values. Especially in the peak and trough regions of the 

oil temperature curve, it is closer to the actual oil temperature 

values. Moreover, the prediction curve caused by the 

Attention-GRU model basically coincides with the measured 

curve, and this model can predict the future change trend of 

the oil temperature more accurately. However, oil 

temperature prediction ability of other models is relatively 

weak. Based on the above analysis, Attention-GRU model 
prediction results are in line with the trend of the oil 
temperature data. 

E. Ablation Experiment 

The results of the comparative experiments demonstrate 

that the RNN model fails to achieve a satisfactory level of 

alignment between predicted and true values, suggesting its 

relatively weak predictive performance. One possible reason 

is that the structure of RNN is relatively simple, which limits 

its modeling and representation capabilities when dealing 

with high-dimensional data with strong nonlinear 

characteristics. As a result, it struggles to fully capture 

complex patterns in the data. Additionally, RNN suffers from 

slow convergence, a time-consuming training process, and a 

tendency to get trapped in local optima. In the ablation 

experiment, this paper compared the difference of 

Attention-RNN with RNN on the ETTh1 dataset and ETTh2 

dataset to assess attention impact. 

As shown in Tables V and Tables VI, contrasting with the  

RNN model on the ETTh1 dataset, the MAE and MSE of 

Attention-RNN decreased by 17.46% and 21.95% 

respectively, and R2 increased by 4.74%. Contrasting with 

the RNN model on the ETTh2 dataset, the MAE and MSE of 

Attention-RNN decreased by 30.86% and 51.21% 

respectively, and R2 increased by 20.5%. Attention-RNN 

model has higher prediction accuracy than RNN model. 
As shown in Fig. 7, the predicted values of the 

Attention-RNN converge toward ground truth than the RNN 

after adding the attention mechanism. This result indicates 

that the attention mechanism focuses on the importance of 

data features, which will improve the predictive performance. 

 

TABLE III 

THE PERFORMANCE COMPARISON OF MODELS ON THE ETTH1 DATASET 

Models MAE MSE R2 

RNN 2.3715 10.7561 0.8320 

LSTM 1.8054 7.4328 0.8851 

GRU 1.7394 6.4016 0.8983 

BiLSTM 1.6639 5.5513 0.9138 

Transformer 1.6585 5.5316 0.9123 

Attention-GRU 1.6219 5.2664 0.9251 

 

TABLE IV 

THE PERFORMANCE COMPARISON OF MODELS ON THE ETTH2 DATASET 

Models MAE MSE R2 

RNN 4.5871 38.6155 0.7137 

LSTM 2.7159 15.6125 0.8846 

GRU 3.4901 23.5654 0.8235 

BiLSTM 2.7545 15.0237 0.8872 

Transformer 2.6476 14.7475 0.8899 

Attention-GRU 2.6049 13.5504 0.9026 

  
(a) On the ETTh1 dataset (b) On the ETTh2 dataset 

Fig. 5.  The comparison of evaluation indicators on different datasets 
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(a) On the ETTh1 dataset (b) On the ETTh2 dataset 

Fig. 6.  The comparison of prediction results between general regression models and Attention-GRU on different dataset 

 

  
(a) On the ETTh1 dataset (b) On the ETTh2 dataset 

Fig. 7.  The prediction results of models with the attention mechanism 

 

TABLE V 
THE ABLATION EXPERIMENT ON THE ETTH1 DATASET 

Models MAE MSE R2 

RNN 2.3715 10.7561 0.8320 

Attention-RNN 1.9584 8.3945 0.8715 

 

 

TABLE VI 
THE ABLATION EXPERIMENT ON THE ETTH2 DATASET 

Models MAE MSE R2 

RNN 4.5871 38.6155 0.7137 

Attention-RNN 3.1717 18.8415 0.8600 

IV. CONCLUSION 

This paper contributes to the prediction of transformer oil 

temperature. The proposed Attention-GRU incorporates the 

autonomous learning ability of the self-attention mechanism 

into the time characteristics of GRU. It makes up for the 

deficiency that ordinary recurrent neural networks cannot 

perform long-term learning and utilize context information. It 

enhances the adaptability of the model to complex data and 

improves the prediction accuracy of the model, reducing the 
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adverse impact of noisy data. Meanwhile, through 

experiments on the ETTh1 dataset and the ETTh2 dataset, it 

is proved that the Attention-GRU model proposed in this 

paper has higher accuracy than RNN, LSTM, GRU, BiLSTM, 

and Transformer models in different datasets. The MAE and 

MSE are lower than those of the in comparison with other 

models, and the R2 is higher than that of the in comparison 

with other models, indicating the good prediction 

performance of this model. It has guiding significance for 

controlling the operating state of transformers and ensuring 

the safe operation of transformers. On the other hand, how to 

effectively integrate resources and make full use of abundant 

meteorological data to create larger datasets with higher 

quality, longer time span, and richer features to further 

improve the prediction accuracy is a problem to be 

considered in the next step. 
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