
 

  

ABSTRACT—Traffic accident risk prediction has significant 

implications for urban emergency response and traffic safety 

management. However, most existing prediction methods 

primarily focus on spatio-temporal characteristics within 

specific regions or time frames, often overlooking the complex 

interactions between global and local regions. To address this 

gap, we propose the Multi-Head Flow Attention Mechanism 

based Multi-Scale Spatio-Temporal Feature Map 

Convolutional Network Model (MFA-MSSTGCN). This model 

incorporates multi-scale spatio-temporal features of traffic 

accidents, considering both global and local scales. Firstly, the 

model uses a multi-view GCN to capture global spatial features. 

These are combined with a multi-head flow attention 

mechanism-based bidirectional gated recurrent unit (MFA-Bi 

GRU) to capture global temporal features. The multi-head 

attention mechanism dynamically selects important features 

while filtering out irrelevant information. This approach also 

avoids excessive computational complexity by employing a 

source competition and sink allocation mechanism. At the local 

scale, the model extracts spatial features from both the original 

grid data and high-resolution regions formed by aggregating 

neighboring areas. Temporal features are captured using gated 

temporal convolutions (gated-TCN). Additionally, We propose 

a sample-weighted loss function to tackle the zero-inflation 

problem arising from data sparsity. In the end, we carried out 

thorough testing on two datasets—NYC ， Chicago. The 

outcomes reveal that MFA-MSSTGCN surpasses current 

models in RMSE, MAP, Recall, highlighting its superior 

performance. 

 
Index Terms—traffic accidents; risk prediction; graph 

convolutional networks; attention mechanisms 

 

I. INTRODUCTION 

ith the cities grow and vehicle numbers rise, the 

likelihood of traffic accidents also increases. 

Predicting traffic accident risks is of significant practical 

value for enhancing traffic safety, reducing accidents, 

helping drivers choose optimal routes, and improving traffic 
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network planning. However, predicting traffic accidents is 

affected by numerous complex factors, both internal and 

external, exhibiting clear spatio-temporal characteristics. 

Furthermore, accident occurrence patterns show clear 

spatio-temporal characteristics. A major difficulty lies in 

thoroughly exploring the relationships between these factors 

and creating a scientifically sound predictive model. 

Traffic accident risk prediction involves various complex 

factors and requires the simultaneous consideration of 

spatio-temporal relationships between regions. Early studies 

primarily including HA [1], ARIMA [2], etc. However, 

these studies require significant computational resources and 

rely heavily on specialized parameter settings, which limit 

their prediction accuracy. As machine learning emerges in 

traffic prediction, researchers have turned to methods such 

as SVM [3] and KNN [4] to address these limitations, 

enabling better handling of complex data. Nonetheless, these 

models still depend on manual feature extraction, which 

restricts their performance when dealing with large-scale 

and complex spatio-temporal data. 

Recently, Deep Learning (DL) has gained popularity in 

traffic prediction, greatly improving the accuracy of 

spatio-temporal data forecasting. LSTM [5] and GRU[6], 

frequently integrated with other algorithms, are commonly 

applied to capture spatial and temporal patterns in traffic 

data [7] . Chang et al. [8] introduced the POA-BiGRU-CNN 

model for ship traffic prediction. This model employs 

adaptive hyper-parameter optimization through POA, 

enhancing both global search capability and convergence 

speed. Despite these advancements, these models still 

encounter gradient issues and weak generalization with long 

sequences and limited data, and they often show poor 

generalization when the available data is limited. To address 

these issues, researchers have introduced the Temporal 

Convolutional Network (TCN) [9][10], which captures 

medium- and long-term dependencies in data more 

effectively. 
Existing studies primarily focus on temporal correlations, 

often overlooking spatial features, which significantly limits 

prediction performance. Although Convolutional Neural 

Networks (CNN) [11] effectively extract spatio-temporal 

features through convolutional operations, they are generally 

more suited for Euclidean spatial data (e.g., images and 

videos) and face limitations when dealing with 

graph-structured data with dynamic nodes[12]. In contrast, 

Graph Convolutional Networks (GCN) [13], [14] excel in 

learning node features and capturing neighbor information 

through multi-layer graph convolution, enabling effective 

representation of graph nodes. 

Chen et al. [15] proposed Seq2Seq-TGCN, which 

effectively captures and predicts spatio-temporal traffic flow 
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patterns. This framework dynamically extracts and 

integrates spatio-temporal sequence data from strongly 

correlated road sections, thus facilitating robust traffic 

pattern modeling. Ye et al. [16] proposed DSTHGCN, 

which combines GCN with hypergraph co-convolution 

(HGCN) and introduces a dynamic pruning mechanism for 

hyperedge outliers (HOR). By suppressing noise and 

optimizing structure, DSTHGCN effectively captures 

node-hyperedge interactions, enhancing traffic flow 

prediction accuracy. Gao et al. [17] developed the 

DS-STGCN for traffic flow prediction. which models traffic 

flow by integrating node features, topological correlations, 

and time-slot dynamics within a triple graph structure. This 

approach enables collaborative modeling and dynamic 

sensing of global-local dependencies. Yao et al. [18] 

proposed an Auto-STCN model that captures 

spatio-temporal dependencies in traffic flows. Ali et al. [19]  

and Zhao et al. [20] introduced a model combining LSTM, 

GCN, and Bi-GRU to capture the periodic patterns of traffic 

flow. Wu et al. [21] enhanced the long-term time series 

modeling capacity of their model by combining dilated 

causal convolution with graph convolution to construct 

Graph WaveNet (GWN). However, the influence of various 

times and spaces on regional traffic accidents varies 

significantly. To improve prediction accuracy, it is crucial to 

analyze how spatio-temporal features at different scales 

impact the prediction[22][23][24]. 

The attention mechanism in deep learning models helps 

the system focus on key features by assigning different 

weights to sample features. This enhances training 

efficiency and the ability to handle long time series. Fares 

Alhaek et al. [25] used global semantic and local geospatial 

temporal relationships to predict urban traffic accident risk, 

creating multiple maps to capture both static and dynamic 

spatial connections, while using an attention mechanism to 

selectively emphasize key spatio-temporal information. 

Wang et al. [26] employed a multi-view attention approach 

to identify spatial relationships within a knowledge graph, 

facilitating traffic accident risk prediction at both broad and 

detailed levels. Li et al. [27] developed the developed the 

Direction-Distance Sensitive Graph Transformer 

(DDGformer), which integrates a direction distance 

bi-domain self-attention mechanism and a dynamically 

augmented graph convolution module for dynamic 

spatio-temporal correlation modeling. 

Yu et al. [28] proposed a fusion of the multi-head flow 

attention mechanism and spatio-temporal traffic flow 

features learned by a GCN; Patara Trirat et al. [29] modeled 

a dynamic and static graph in a heterogeneous environment.  

Guo et al. [30] use a self-attention approach to capture local 

context and a dynamic graph convolution module for 

spatio-temporal traffic flow forecasting. Fang et al. [31] 

applied a multi-head spatio-temporal attention method to 

improve the interaction of traffic state data across different 

time scales, combining location and semantic features for 

forecasting traffic flow. Chen et al. [32] combined the 

attention mechanism and graph convolution by fusing node 

dynamics and spatio-temporal features; Geng et al. [33] 

investigated the traffic flow based on the distance 

self-attention mechanism by considering the gated temporal 

self-attention Prediction theory system. Chen et al. [34] 

propose a multi-granular hierarchical spatio-temporal 

network that integrates remotely sensed data, captures 

spatial closeness and semantic relevance. 
Building on this, this paper proposes a multi-scale 

spatio-temporal feature map convolutional network model 

(MFA-MSSTGCN) using a Multi-Head Flow Attention 

(MFA). The primary contributions of this framework are 

outlined below: 

(1) At the global scale, we introduced the MFA 

mechanism, which replaces the traditional attention weight 

calculation method with a source competition and sink 

allocation mechanism, thereby reducing the complexity of 

the model. At the same time, we combined the Bi-GRU 

network to capture global temporal features and used 

multi-view GCN to learn global spatial features, further 

improving prediction performance. 

(2) At the local scale, low-scale spatial features and 

high-scale spatial features aggregated from adjacent regions 

are extracted. The gated-TCN model is used to capture local 

temporal similarity, thereby enhancing the model's local 

spatio-temporal modeling capabilities. 

(3) It dynamically fuses spatio-temporal features from 

both global and local scales and designs a sample-weighted 

loss function to address data sparsity issues. 

 

II． TRAFFIC ACCIDENT INFLUENCING FACTORS AND 

SPATIO-TEMPORAL CHARACTERIZATION 

A. Analysis of Factors Affecting Traffic Accidents 

A.1 Intrinsic factors 

Intrinsic factors influencing traffic accidents mainly 

include road structure and functional layouts. Specifically, 

Specifically, the design of road intersections has a 

significant impact on the occurrence of accidents. In 

addition, spatial differences exist across regions. The 

distribution of Points of Interest (POIs) in different 

functional zones directly influences accident patterns. 

Accident patterns within the same time period differ notably 

among various functional zones. Also, the spatial clustering 

of multiple POIs complicates regional accident patterns 

further. Therefore, carefully analyzing how internal factors 

relate to traffic accidents is important. The interaction of 

POIs is demonstrated in Fig 1. 
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Fig. 1.  The interaction of POIs 

 

A.2 External factors 

Weather conditions and holidays also play a crucial role 

in influencing the occurrence of road incidents. Rainy or 

snowy weather can lead to deteriorated road conditions or 

limited visibility for drivers; during holidays, the surge in 

traffic volume and increased traffic density in different 
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functional zones can also result in a higher frequency of 

accidents. These factors exhibit varying degrees of influence 

over time and space, leading to complex nonlinear and 

time-varying characteristics in accident occurrence patterns. 

By analyzing data from selected areas in Chicago, 

examining the proportion of traffic accidents under different 

weather conditions, and assessing the impact of holidays on 

accident volumes across various functional zones, we can 

more clearly elucidate the role of these external factors. The 

effects of weather conditions and holidays on traffic 

accidents are illustrated in Fig 2.  
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(b) holidays  

Fig. 2.  Impact of weather conditions and holidays on traffic accidents 

 

B. Spatial- temporal characterization 

B.1 Temporal characterization 

Assuming the prediction of traffic accident risk at time t. 

the temporal correlation refers to the temporal 

auto-correlation of the variable at time t with the past k 

moments, i.e. ( )1 2, ,...,t t t t kx f x x x− − −= . tx  is associated 

with the period from 1tx − to t kx − , while also exhibiting 

similarities with historical data at different scales. 

The neighboring time series exhibit low-scale proximity, 

with notable variations in traffic patterns on weekdays and 

weekends. Additionally, the accident pattern demonstrates a 

repetitive weekly regularity, indicating high-scale weekly 

periodicity. Therefore, the historical data are divided into 

two categories: the neighboring period of the predicted time 

and the weekly cycle period. That is 

( )
, ,...,

t p 1t p t 1
h hh hX X X X

− −− − =
 

      (1) 

( )
, ,...,weekly weekly weeklyt q w t q 1 w t w

w w w wX X X X
−  − −  − =

 
  (2) 

Where p represents the data of the time interval adjacent to 

the forecast period; q denotes the number of weekly cycle 

time segments, and weeklyw  indicates the length of the 

weekly cycle series. The low-scale sequence data captures 

local variations, while the high-scale sequence data better 

reflects the overall trend of data changes, making it more 

suitable for mid- to long-term forecasts. Based on these, the 

time feature matrix of the region at time t is constructed. 

That is 

1 2
1 1 1

1 2
2 2 2

1 2

t

t

t

t

d

d

n d

d
n n n

x x x

x x x
X

x x x



  
 
  

=  
 
   

      (3) 

Where td
nx  represents the td -dimensional traffic accident 

time characteristics of node n at time t. Assuming the 

prediction period is from 8:00 to 9:00 am on March 30, 

2023, the corresponding time series segment is constructed 

as illustrated in Fig 3. 
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Fig. 3.  Time series segment construction diagram 

 

B.2 Spatial characterization 

Spatial characteristics of traffic accidents include road 

network structures and implicit spatial relationships formed 

by factors such as Points of Interest (POIs) and road 

attributes. Local spatial dependencies occur in neighboring 

areas connected by roads. Global spatial dependencies result 

from similar road attributes and POIs, meaning distant areas 

with similar road features can have comparable accident 

patterns. Additionally, there is clear spatial heterogeneity 

across regions, so accident patterns within the same time 

period often differ greatly. However, areas with similar 

functional zones typically share highly similar accident 

patterns. By considering both broad and localized 

spatial-temporal relationships, more precise traffic accident 

risk predictions can be made. Fig 4 displays the global and 

local interaction diagrams. 
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Fig. 4.  The global and local interaction diagrams. 
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III． MODEL CONSTRUCTION 

A. Description of the problem 

City R is partitioned into A B  grid zones according to 

geographic coordinates, with each uniform section labeled 

as  11 i, , j a,bR r ,...,r ,...,r= . Among these, only N regions 

contain road and traffic accident data; the data for other 

regions are set to 0. Based on the historically observed 

eigenvalues of region 
( )1 2 TX ,X ,......,X

, the graph signal 

matrices 
( )1 2 TS ,S ,......,S

 and 
1TZ +
 are used to predict the 

risk of traffic accidents in the next time interval 

1
A B

TŶ R 
+ 

. 

Where gA B d
R

 
tX  denotes the grid features of all 

regions at time interval t, and gd  denotes the feature 

dimensions of the nodes, including external factors such as 

traffic accident risk value, POI, and weather. Let  

gN d
R


tS denote the graph signal matrix of the three 

graphs at time interval t. t
td

Z R  denotes the temporal 

features at moment t, including 24 hours a day, every day in 

a week, and whether it is a holiday or not. Owing to the 

varying scale influences on traffic accidents, the input data 

( )1 q TX ,...,X ,...,X T p q= + is obtained by selecting the 

most recent p time and the same time intervals in the 

previous q weeks. 

B. Traffic accident risk prediction model based on 

MFA-MSSTGCN 

Fig. 5 presents the structure of the MFA-MSSTGCN 

model, comprising three main components: global 

spatio-temporal feature modeling with a multi-head flow 

attention mechanism, local spatio-temporal feature modeling 

through multi-scale fusion, and fusion of global and local 

spatio-temporal features. A multi-view Graph Convolutional 

Network (GCN) captures global spatial correlations. 

MFA-BiGRU models global temporal dependencies. For 

local spatio-temporal modeling, we begin by applying a 

multi-channel convolutional network to derive spatial 

information from the original grid data. We apply 

multi-layer deconvolution to extract spatial patterns from 

aggregated high-scale regions. Next, these spatial features 

are passed through a gated temporal convolutional network 

(gated-TCN) to model local temporal patterns. Since global 

and local scales contribute differently, we fuse them with a 

weighted mechanism. Additionally, A weighted loss 

function is introduced to handle the zero-inflation problem 

resulting from sparse data. 

C. MFA-based full-domain spatio-temporal feature 

modeling 

C.1 Full-domain spatial feature extraction based on 

multi-view GCN 

1) Multi-view construction 

Considering that the non-linear relationship between road 

conditions and POIs across regions introduces additional 

potential factors influencing traffic accidents, we construct 

the POI，the road ，the accident risk similarity graphs: 

( )p p pV ,E ,A= , ( )R R RV ,E ,A= ， ( )K K KV ,E ,A= ,to 

capture the latent dynamic information in traffic accidents. 

Here, V denotes the collection of nodes., where each node 

corresponds to a region containing roads. Where V N= , E 

represents the edges that establish connectivity among the 

nodes,  N N
A R  represents the adjacency matrix of the 

graph , which ija denotes the spatial connectivity state 

between nodes iv , jv .We compute the similarity between 

two nodes using the Jensen Shannon JS− （ ）divergence and 

subsequently construct the similarity graph. That is 

( ) ( )1 i j
p P PSim i, j JS R R= − −        (4) 

( )
( )

( )

( ) ( )
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Fig. 5.  Framework of traffic accident risk prediction model based on MFA-MSSTGCN
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where i
PR  and j

PR denote the POI distributions of region i 

and region j; ( )i
pR k  denotes the kth dimension of i

PR . 

Sim( i, j )  denotes the degree of POI similarity for regions 

iv  and jv . Road similarity graphs and accident risk 

similarity graphs are constructed following the same 

methodology. For each graph, we choose the L nodes with 

the highest similarity scores to build the corresponding 

adjacency matrix. Specifically, ( )P R KA A ,A ,A  is 

outlined below: 

( )

0

i , jSim i, j ,e E

,else

  
=  

  
i, jA       (6) 

 

2) Global Spatial GCN 

The previously constructed views reveal that regions with 

similar features in the global domain may not be directly 

connected. The global domain representation learning 

process of the GCN is illustrated in Fig 6. 
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(b) Multi-view GCN 

Fig. 6.  Multi-view GCN full domain representation learning 

In other words, higher-order structural relationships exist 

between these regions. To effectively capture these potential 

higher-order relationships in the global road network, we 

utilize a multi-view GCN. The input consists of three graph 

signal matrices ( )1 2 TS ,S ,......,S  corresponding to different 

historical time periods. At each layer, we apply a graph 

convolution operation followed by an activation function to 

extract non-linear features from the data. Specifically, this 

process is outlined below: 

( ) ( )( ) ( ) ( )( )0 0 1 1
ReLu ReLu b b = + +S Α ASW W   (7) 

Where A refers to the collection of three similarity matrices 

constructed. The global domain representation learning 

process of the GCN is illustrated in Fig 6. 

C.2 Full-domain temporal feature extraction based on 

MFA-Bi GRU 

1) Bi GRU-based temporal feature extraction 

Traffic accidents exhibit strong temporal auto-correlation. 

However, their spatio-temporal interactions are dynamic, 

changing due to the spatial heterogeneity of urban functional 

areas. To capture the temporal correlations across the entire 

domain, We employ the Bi-GRU to model accident 

dynamics by utilizing both forward and backward 

information flows. It also adaptively learns temporal 

features, including high-frequency variations and long-term 

dependencies. The Bi-GRU is depicted in Fig. 7. 

From Fig 7, we can see that the Bi GRU hidden output 

th at time t combines the forward GRU hidden output th  

and the backward GRU hidden output th . That is: 

 ( )1t r t tr h ,x −= W         (8) 

 ( )1t t tz h ,x −= zW         (9) 

( ) 11t t t t th z h z h−= −  +        (10) 

 ( )t 1t t th tanh r h ,x−=  hW      (11) 

( )1t forward t th GRU x ,h −=       (12) 

( )1t backward t th GRU x ,h −=       (13) 

t t th h h=            (14) 

Where x denotes the continuous sequence information of the 

region; tr 、 tz  denote the reset, update gate; ()  and 

tanh()  are the activation functions; th  is the hidden state; 

th  is the candidate hidden state; th , th  is the hidden state 

of the forward、backward GRU;   is the splicing of 

th and th , to obtain the output of the final bidirectional 

GRU th . 
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Fig. 7.  Bi GRU structure 
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2) Temporal MFA 

In Section C.1, we concatenate graph signal matrices 

from different time steps along the time dimension to create 

a higher-dimensional graph signal matrix
( )gN T d

R
 

 as input. 

Although this approach captures temporal correlations, it 

fails to distinguish which specific time steps the features 

belong to. Consequently, it becomes challenging to 

dynamically and effectively model the influence of 

historical data on the prediction of future traffic accidents. 

To overcome this limitation, we introduce MFA mechanism. 

The MFA employs multiple parallel attention heads, 

assigning different weights to input sequences from various 

perspectives and focusing on the time-step information most 

relevant to traffic accidents. Furthermore, the MFA’s source 

competition and sink allocation mechanisms reduce 

computational complexity, enhance feature screening, and 

minimize information redundancy. 

Considering that the multi-layer nesting of the model may 

increase computational complexity, we replace the fully 

connected layer with Bi GRU for linear transformation. This 

generates the corresponding query Q, key K, and value V 

matrices. That is 

htQQ = W , K thK = W , thVV = W     (15) 

Where th  is the Bi GRU output. Let there be a total of i 

sinks and j sources, and normalize the obtained Q,K . That 

is 

( )
I

 Q
          (16) 

( )
O

 K
          (17) 

Where ()  is a non-negative non-linear transformation; 

1iI R   and 
1jO R   denote the inflow information flow 

of the sink and the outflow information flow of the source, 

respectively; 
( )
I

 Q
 denotes the conservation of the sink 

and 
( )
O

 K
 denotes the conservation of the source. The 

preservation of the outflow information flow of the source 

and the conservation of the inflow information flow of the 

sink are realized through normalization. That is 

( )
( )

1

Tj
m

m m

I
O




=

 = 
K

Q        (18) 

( )
( )

1

Ti
n

n n

O
I




=

 = 
Q

K       (19) 

where  1 2n , ,...,i ,  1 2m , ,..., j , 1iI R  ,
1jO R  deno

te the amount of conserved information flowing into and out 

of the information flow, respectively. 

To implement information flow conservation in the 

source and sink of the MFA, we introduce a mechanism for 

information flow competition. We set the inflow 

information flow of each sink to 1, ensuring that the output 

information flow from the source competes for a unique 

position (Competition). Next, we apply maximum pooling to 

the GCN output in the time dimension to aggregate the 

information flow (Aggregation). By setting the output 

information flow of the source to 1, we enable the sinks to 

compete for a unique flow. Finally, we filter the inflow 

information flow of each sink to achieve sink allocation. 

That is 

( )maxCompetition :V soft V = O     (20) 

( )
( )( )T

Aggregation : A V
I


 =

Q
K     (21) 

( )( )Allocation : R LN sigmoid I A H= +   (22) 

Where denotes element-wise multiplication, 

softmax() and sigmoid()  are activation functions, and 

LN() denotes layer normalization. Additionally, the residual 

mechanism in the MFA prevents network performance 

degradation and mitigates the gradient vanishing problem. 

To be consistent with the output dimensions of the local 

spatio-temporal features, the dimensional transformation is 

performed via a mapping matrix A B NR  M . That is 

GŶ = MR           (23) 

where M is the mapping matrix; R is the output of the 

multicurrent temporal attention; and GY  is the output of the 

global spatio-temporal correlation module. 

The primary process of mapping matrix transformation 

proceeds as follows. We divide the city into 3 3  grid 

regions numbered from 1 to 9, as shown in Fig 8, A). 

Regions 1, 2, and 9 contain no roads, while regions 3 to 8 

include only a few nodes in the similarity map, as show in 

Fig 8, B).  
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Fig. 8.  Example of diagram-grid mapping matrix 
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Fig. 9.  Graph data-grid data conversion 
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The mapping matrix has a dimension of A B NR  M , 

each row signifies a region, while each column signifies a 

node. If node n corresponds to region A, the matrix assigns 

the value 1A,nM = ; otherwise, it assigns the value 

0A,nM = .The graph signal matrix R 6 4 assigns each 

node a feature dimension of 4. We obtain 
GŶ

3 3 4
 by 

multiplying the feature matrix with the mapping matrix and 

then transforming the dimensions to produce the final output. 

The graph data-grid data conversion is shown in Fig 9. 

 

D. Local spatio-temporal feature modeling based on 

multi-scale fusion 

D.1 Multi-scale local spatial feature extraction 
Geographically neighboring regions tend to exhibit 

similar time-lagged accident patterns due to the 

spatio-temporal diffusion effects of traffic flow. Therefore, 

we employ a strategy for learning features at multiple scales. 

Specifically, we preserve the original low-scale regional 

division while constructing a high-scale representation space 

through neighborhood aggregation. This approach identifies 

the spatio-temporal patterns of traffic accidents while 

resolving data refinement and local bias problems typically 

found in low-scale analyses. The transformation of regional 

scales is illustrated in Fig. 10. 

 

, ,C W H 2 , ,
2 2

W H
C

 
Fig. 10.  a transformation of a scale 

In this case, we extract simple spatial features of traffic 

accidents between low-scale cell regions using 

multi-channel convolution. That is 
1k k k k

t t t tC ( C b ) −=  +W       (24) 

Subsequently, we apply a 3×3 convolutional filter to 

downsize the input feature map and enhance the feature 

channel count. This minimizes information loss during the 

feature fusion process. Next, we aggregate spatial features in 

high-scale regions through multi-layer convolution. That is 

( )1x MultiCNN x   −=        (25) 

Where   is the current number of convolutional layers; 

1x − is the input to the  layer. MultiCNN()  for the 

multi-layer convolution operation. Multi-layer 

deconvolution is applied to capture spatial correlations in 

high-scale regions. That is 

( )1s s sx MultiDeCNN x −=      (26) 

Where s is the number of current deconvolution layer 

layers; 1sx −  serves as the input for the s th layer; 

MultiDeCNN（） is the multi-layer deconvolution operation. 

Finally, the feature map dimension is reduced by 3*3 

deconvolution. 

D.2 Gated temporal convolutional layer 

Adjacent areas may belong to different functional zones 

and exhibit spatial differences in accident patterns. However, 

they often exhibit comparable time-lagged behaviors over 

time, owing to the spatio-temporal diffusion effects of traffic 

flow. To model these features, we use TCN to capture local 

temporal dependencies. The TCN effectively models 

temporal correlations across functional areas. To improve 

feature selection and reduce redundancy, we introduce a 

gating mechanism, creating a gated-TCN. This mechanism 

governs the flow of information, strengthening the model's 

capability to identify complex time-based patterns. The 

TCN network's design is depicted in Fig. 11. 

Dilated causal convolution combines the benefits of 

dilated convolution and causal convolution. It effectively 

captures distant relationships by enlarging the receptive field. 

At the same time, it preserves the causal relationship in the 

time series. This ensures that predictions at each step only 

depend on current and past information. Thus, future 

information does not affect current predictions. 

( ) ( )
1

0

k

d t d s

i

X f t f t X

i

−

− 

=

 =       (27) 

Where TX R  denotes the feature vector, and 

( ) Kf t R  represents the convolution filter. The dilation 

factor d increases as the network layers deepen. The padding 

size helps maintain the output dimensions and smooths 

boundary effects. The expanded causal convolution is 

illustrated in Fig 12. 
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Fig. 11.  TCN Network Architecture 
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Fig. 12.  Expanded causal convolution structure diagram 

 

The gated-TCN contains two independent parallel TCNs 

that regulate the intensity of the information flow 

transmission through the Tanh function and the Sigmoid 

function regulates the flow of information. That is 
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( ) ( )1 2d dh tanh X b X c  =  +  +    (28) 

where: 1 2, ,b,c   is the convolution operation parameter; 

d denotes the inflated causal convolution; is the 

Hadamard product. 

E. Dynamic Fusion Layer 

We dynamically fuse the global domain and local domain 

spatio-temporal features. Subsequently, the predicted values 

are obtained through a fully connected layer. That is 

( )1 2G L
ˆ ˆ ˆY FC Y Y=  + W W      (29) 

Where the outputs GŶ and LŶ represent the global domain 

spatio-temporal feature modeling based on MFA 

mechanisms and the local domain feature modeling based 

on multi-scale fusion, respectively. The feature fusion 

prediction result shows the likelihood of traffic accidents 

occurring in the area during the next time step. 

Based on the number of accident casualties, the accident 

severity is classified into three levels: minor accident (risk 

value = 1), general accident (risk value = 2), and major 

accident (risk value = 3). Consequently, the accident risk 

level is categorized into four levels  0 1 2 3L , , ,= , where a 

risk value of 0 indicates no accident. Let i
tY  represent the 

total traffic accident risk in region i at time t. In order to 

tackle the problem of zero-inflation in the data, we design a 

weighted loss function to assign higher weights to samples 

with elevated traffic accident risks. The weights 

corresponding to the four risk levels are 0.05, 0.2, 0.25, and 

0.5, respectively. The Loss is expressed as: 

( ) ( ) ( )( )
21

2
l

l L

ˆ ˆLoss Y ,Y Y l Y l


= −     (30) 

Where Y  is the real data; Y  is the predicted value; ( )Y l  

to indicate the risk level of traffic accidents for l. samples; 

l  is the traffic accident risk level of l  weight. 

IV. CALCULATED CASE ANALYSIS 

A. Introduction to the dataset 

We evaluate the effectiveness of MFA-MSSTGCN using 

multi-source spatio-temporal data from two U.S. cities: 

NYC and Chicago. Each dataset includes time, location, and 

the number of injuries and fatalities in traffic accidents. The 

NYC dataset also provides point-of-interest (POI) 

information around accident locations, Divided into seven 

categories: residential zones, educational institutions, 

cultural sites, recreational spaces, social services, 

transportation, commercial zones. Weather information 

encompasses temperature and various atmospheric 

conditions. Roadway characteristics cover type, length, 

width, and snow removal priority. Dataset Overview and 

Metrics are presented in Table I. 
TABLE I 

DATASET OVERVIEW AND METRICS 

Dataset NYC Chicago 

time span 2013.01-2013.12 2016.02-2016.09 
Accidents 147000 44000 

Road Network 103000 56000 

Weather 8760 5832 
POI 15625 --- 

Fig. 13 presents a subset of traffic accident volumes from 

the NYC(June 1 to December 1, 2013) and Chicago(October 

2 to October 16, 2016.) datasets for specific time periods. 
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Fig. 13.  Changes in Traffic Accident Volume for Selected Areas on 

the NYC/Chicago Dataset 

 

B. Experimental Setup 

We implement this experiment using the PyTorch 

framework. The dataset is split into training, validation, and 

test sets in a 6:2:2 ratio. The road network is partitioned into 

2km 2km small regions, and the data is normalized to the 

range [0, 1] to enhance model stability. The proximity 

period p=3, and the weekly cycle length q=4. A 2-layer 

GCN with 64 filters is employed to learn full-domain spatial 

features. In the MFA mechanism, the quantity of heads is 

configured to 8, the quantity of layers is configured to 4, and 

each layer contains 256 hidden units. The Bi-GRU have 128 

hidden units in each direction. The Gated-TCN consists of 

128 hidden units per layer. During training, the batch size is 

configured to at 32, the learning rate is 0.001. 

C. Evaluation metrics 

Derived from the literature [22], this work uses RMSE, 

Recall, and MAP to evaluate the model performance. That is 

2

1

1
RMSE=

T

t t

t

Y Y
T



=

 
− 

 
        (31) 

1

1
Recall=

T
t t

t t

S R

T R=


         (32) 

( ) ( )
1

1 t

1
MAP=

tR
T

j

t

pre j rel j

T R

=

=


     (33) 

 

Where tY  is the true accident risk of all regions at moment 

t, and tŶ  is the predicted accident risk of all regions at 

moment t. The modeling performance for high-risk regions 

is summarized as follows tR  the set of regions with real 
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accidents at time t. tS  denotes the areas that rank at the top 

tR  regarding predicted accident risk. pre( j )  denotes the 

prediction accuracy of all regions ranked top j in tS ; 

rel( j )  is whether region j is involved in an accident at 

time t, and its value is 1 if it is, and 0 if it is not. The model 

evaluates prediction performance for peak accident hours, 

specifically 7:00-9:00 and 16:00-19:00, using RMSE*, 

Recall*, and MAP* as metrics. 

D. Comparative analysis of prediction results 

To evaluate the effectiveness of the suggested model, a 

comparison will be conducted against the following baseline 

models: 

⚫ SDCAE [10]: It learns spatial correlations across regions 

using denoising convolution layers. 

⚫ Conv LSTM [5]: ConvLSTM integrates convolution and 

LSTM into a unified framework, enabling efficient 

processing of spatio-temporal data. 

⚫ T-GCN [13]: T-GCN is new temporal graph 

convolutional network model. 

⚫ ST-RiskNet [21]: This model combines local and global 

spatial-temporal features, considering multiple factors to 

predict traffic accident risk. 

⚫ ASTGCN [31]: A network model that uses an attention 

mechanism to dynamically capture spatio-temporal features 

in traffic data. 

⚫ MVMT-STN[23]: A recent multi-task learning approach 

predicts both detailed and broad citywide traffic accident 

risks at the same time. 

⚫ GSNet [22]: A model designed to extract spatio-temporal 

relationships by integrating geographic and semantic 

perspectives. 

⚫ MGHSTN [33]: MGHSTN integrates remote sensing to 

evaluate urban traffic accident risks. 

Table 2 presents a comparison of the MFA-MSSTGCN 

model's outcomes with reference models on the NYC and 

Chicago datasets. SDCAE performs slightly worse than 

other baseline models, because it captures spatial 

correlations solely through multi-layer CNNs, neglecting 

temporal features. Although ConvLSTM incorporates both 

temporal and spatial correlations, it extracts only basic 

features, resulting in limited performance improvement. 

T-GCN captures spatio-temporal correlations in the road 

network structure using GCN and GRU; however, none of 

these three models account for external factors influencing 

traffic accidents. 

ASTGNN improves prediction accuracy by dividing input 

data into multiple scales, refining temporal information, and  

using a spatio-temporal dynamic attention mechanism. 

GSNet captures global semantic and local geographic 

correlations by applying attention-based GRU, modeling 

semantic, geographic, and temporal dependencies. Building 

on GSNet, ST-RiskNet simultaneously considers global and 

local spatio-temporal correlations. MVMT-STN splits the 

road network into coarse-grained and fine-grained regions 

based on latitude and longitude. These three models also 

include external factors such as weather and temperature 

when making predictions for different regional scales. 

MGHSTN performs better than other multi-view models, 

highlighting the advantages of attention mechanisms in 

learning spatio-temporal features. 

Compared to these baseline models, our proposed method 

significantly improves prediction performance. This 

demonstrates the benefit of considering multi-scale regions. 

Table 2 shows that MFA-MSSTGCN reduces RMSE by 

1.2211 compared to GSNet on the NYC dataset. Recall 

increases by 1.29%, and MAP improves by 0.0126. 

Because the Chicago dataset lacks POI data, prediction 

accuracy during both general periods and peak accident 

periods is lower compared to the NYC dataset. This 

emphasizes the importance of including regional functional 

similarity to improve accuracy. Fig.14 compares 

RMSE/RMSE*, Recall/Recall*, and MAP/MAP* across 

various models for the NYC and Chicago datasets. 

E. Analysis of the impact of weather factors 

This study examines the impact of weather on traffic 

accidents by performing a comparative assessment of 

prediction outcomes with the NYC dataset and chosen 

baseline models, with and without the inclusion of weather 

factors.

TABLE II 

COMPARISON OF MODEL PERFORMANCE ON THE NYC/CHICAGO DATASET 

Models 
NYC  Chicago 

RMSE/RMSE* Recall/Recall* MAP/MAP*  RMSE/RMSE* Recall/Recall* MAP/MAP* 

SDCAE 8.5542/8.0063 27.66%/29.01% 0.1483/0.1513  10.9520/10.8255 18.32%/18.61% 0.0765/0.0786 

ConvLSTM 8.3741/8.1149 28.91%/31.52% 0.1547/0.1584  10.0361/9.8931 19.25%/19.87% 0.0902/0.0955 

T-GCN 8.1945/8.0126 28.37%/29.75% 0.1591/0.1627  9.4523/9.0029 20.17%/20.98% 0.1040/0.1103 

ST-RiskNet 8.1132/7.6854 29.61%/30.41% 0.1628/0.1690  10.3120/9.3651 19.32%/21.17% 0.0924/0.0971 

ASTGNN 7.7698/7.4783 30.14%/30.76% 0.1635/0.1691  9.5625/8.7736 20.37%/21.01% 0.1067/0.1186 

MVMT-STN 7.6650/7.3536 32.61%/32.99% 0.1786/0.1803  8.9310/8.0479 20.85%/21.56% 0.1144/0.1203 

GSNet 7.5366/6.9848 33.47%/33.93% 0.1758/0.1788  8.6525/8.1294 20.23%/22.21% 0.1071/0.1193 

MGHSTN 6.9871/6.6430 33.38%/33.90% 0.1790/0.1832  8.5400/8.3381 21.07%/22.13% 0.0910/0.0951 

Ours 6.3155/5.4961 34.76%/35.48% 0.1884/0.1915  8.0231/7.7785 22.25%/23.91% 0.1254/0.1305 
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(a) RMSE/RMSE*                      (b) Recall/Recall*                                  (c) MAP/MAP* 

Fig. 14.  Performance comparison of different models on NYC and Chicago dataset 
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Fig. 15.  Comparison of Whether Weather is Considered on the NYC Dataset

As illustrated in Fig 15, the comparison of forecasting 

results between several baseline models and the proposed 

MFA-MSSTGCN model, both with and without weather 

factors. The data shows clear differences in prediction 

accuracy among models when weather conditions are 

considered. ST-RiskNet performs the worst among all tested 

models, with or without weather factors. Without weather 

conditions, ST-RiskNet has an RMSE of 9.7531, a Recall of 

28.14%, and an MAP of 0.1579. MVMT-STN and GSNet 

perform better under the same conditions. MVMT-STN 

achieves an RMSE of 8.7481, a Recall of 30.17%, and an 

MAP of 0.1721. GSNet achieves an RMSE of 8.5513, a 

Recall of 32.50%, and an MAP of 0.1693. 

In comparison, our proposed MFA-MSSTGCN model 

outperforms all baseline models. Specifically, without 

weather factors, MFA-MSSTGCN reduces RMSE by 

16.20%, increases Recall by 3.85%, and improves MAP by 

7.16% compared to GSNet. These results highlight the 

robustness and stability of MFA-MSSTGCN. The model 

maintains strong performance whether or not weather 

factors are included. This demonstrates its effectiveness in 

improving prediction accuracy and reliability across various 

environmental conditions, confirming its advantage over 

existing baseline models. 

F. Ablation Experiment 

To investigate the model’s performance under varying 

hyper parameters, we examine and assess the implications of 

batch-size, learning rate with the NYC and Chicago datasets. 

Moreover, we investigate the effect of GCN layer count, the 

quantity of heads in the MFA mechanism, and hidden unit 

count in the Bi-GRU on forecasting results using the NYC 

dataset. To facilitate a unified comparison of RMSE, Recall, 

and MAP within the same coordinate system, the overall 

RMSE values are scaled by a factor of 0.1 for visualization 

purposes. 

F.1 Influence of batch size on the model 

Considering the implications of batch size on model 

efficiency, training speed and memory usage, we set the 

batch size to {8, 16, 32, 64}. The comparison of prediction 

performance with different batch sizes is depicted in Fig 16.  

With a batch size of 32, the model yields the highest 

performance on both the NYC and Chicago datasets. While 

a larger batch size can enhance model performance and 

reduce gradient noise, it may compromise the model’s 

generalization ability. Conversely, a smaller batch size can 

lead to unstable training, thereby adversely affecting model 

performance. 

 

8 16 32 64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

batch-size  
(a)batch-size NYC 

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3008-3021

 
______________________________________________________________________________________ 



 

8 16 32 64

0.0

0.2

0.4

0.6

0.8

1.0

batch-size  
(b) batch-size Chicago 

Fig. 16.  Comparison of Prediction Performance under Different Batch 

Processing Sizes 

F.2 Learning rate influence. 

The learning rate is set to {0.0001, 0.001, 0.005, 0.01} to 

test the effect on the prediction results. The comparison of 

prediction performance under different learning rate sizes is 

depicted in Fig 17. 

The model reaches its best performance with a learning 

rate of 0.001, as evidenced by the minimal RMSE value and 

the maximal Recall and MAP values. A larger learning rate 

may result in unstable or divergent training, whereas a 

smaller learning rate can slow the training process and 

increase the risk of converging to suboptimal local solutions. 
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Fig. 17.  Comparison of Prediction Performance under Different 

Learning Rates  

F.3 Impact of GCN layer quantity. 

Given the varying effects of different GCN layers on 

feature learning, the layers are set to {1, 2, 3, 4} to assess 

their impact on forecasting accuracy. The comparison of 

prediction performance with different GCN layer numbers is 

depicted in Fig 18. (a). 

The best results are obtained when the GCN layers are 

configured to 2. With just a solo layer, the model is unable 

to effectively extract the features of graph nodes. While 

increasing the quantity of GCN layers enhances the 

aggregation of node features and improves the model’s 

representational capacity, it also leads to higher parameter 

complexity and computational costs. Furthermore, an 

excessively deep network may suffer from gradient 

explosion or vanishing gradients, compromising the stability 

of model training. 

 

F.4 Effect of MFA head count on performance 

The head count in the MFA mechanism is configured as 

{2, 4, 6, 8, 10} to evaluate its impact on the prediction 

outcomes. The performance with different numbers of heads 

in the MFA is depicted in Fig 18. (b). 

The model performs best with 8 heads. Each head 

independently focuses on distinct aspects or hierarchical 

levels of features, enabling finer-grained learning of 

correlations between graph nodes. While too few heads limit 

the model’s representational capacity, an excessive number 

of heads increases computational resource consumption, 

ultimately degrading model performance. 

 

F.5 Effect of hidden layer unit count in Bi GRU on model 

performance. 

Taking into account the varying impacts of hidden layer 

unit count on feature learning, the hidden layer unit count in 

the Bi GRU for both directions is configured as {32, 64, 128, 

256} to assess its influence on prediction performance. The 

comparison of the prediction performance for different Bi 

GRU hidden layer unit numbers is depicted in Fig 18. (c). 

The model reaches peak performance with 128 hidden 

units. Having fewer than 128 hidden units restricts the 

model's capacity to learn long-term relationships, leading to 

underfitting and a decline in all three evaluation metrics. 

Conversely, a higher number of hidden units induces 

overfitting, which similarly degrades model performance. 

 

G. Ablation Experiment 

The ablation experiment was conducted by removing the 

following four components. (1) no-Bi GRU: Replace the Bi 

GRU in the MFA mechanism with a fully connected layer. 

(2) no flow-attention: Replace the MFA mechanism with a 

traditional attention mechanism to validate the merits of 

MFA. (3) no gated-TCN: Remove the gated-TCN module 

from the local temporal correlation module, i.e., only 

consider global temporal correlation. (4) no LS-FE: Remove 

the high-scale region aggregation part, capturing only the 

spatiotemporal features of the initial partitioned grid regions. 

The comparisons of RMSE/RMSE*, Recall/Recall*, and 

MAP/MAP* for different components on the NYC、Chicago 

dataset are shown in Fig 19, 20.  
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Fig 18. Predictive performance of the model with different hyperparameters 
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Fig. 19.  Comparison of RMSE/RMSE*、Recall/Recall*、MAP/MAP* for different component on NYC 
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Fig. 20.  Comparison of RMSE/RMSE*、Recall/Recall*、MAP/MAP* for different component on Chicago

As shown in Fig 19, reducing different components in the 

NYC dataset leads to a decrease in the final prediction 

results, indicating that each component plays a positive role 

in prediction performance. As depicted in Fig 20, removing 

the MFA mechanism results in the worst prediction 

performance, with the number of computational parameters 

being 9,914,763. However, when the MFA mechanism is 

added, the number of parameters decreases to 8,827,448, 

indicating that the multi-head attention mechanism 

addresses the quadratic complexity issue in traditional 

attention mechanisms, thereby improving model 

performance. Removing the Bi-GRU and using a fully 

connected layer for the MFA mechanism's matrix mapping

—i.e., not considering global temporal similarity—yields 

prediction results similar to those of the model without the 

gated-TCN, which does not consider local temporal 

similarity. This indicates that the temporal features 

influencing accident occurrence exhibit multi-scale 

dependencies. After removing high-scale region aggregation, 

the lack of consideration for local spatio-temporal 

interactions also leads to a decline in performance. This 

demonstrates that MFA-MSSTGCN employs different 

prediction modules for global and local spatio-temporal 

feature capture, and each module effectively enhances 

traffic accident risk prediction performance. 

H.  Contribution of the weighted loss function 

To evaluate the performance of the weighted loss function, 

trials were carried out using the NYC dataset. The 

comparison data for the weighted loss function is shown in 

Table III. 
Table III  

ALGORITHM COMPARISON DATA 

Model RMSE/RMSE* Recall/Recall* MAP/MAP* 

un-weighted 9.1426/8.6382 34.21%/34.53% 0.1891/0.1857 

weighted 6.3155/5.4961 34.76%/35.48% 0.1884/0.1915 
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As illustrated in Table III, the weighted loss function has 

a relatively minor impact on Recall and MAP but 

significantly reduces RMSE and RMSE* by 2.8271 and 

3.1421, respectively. This suggests that adding the weighted 

loss function improves the model's overall forecasting 

ability across all regions and helps reduce the problem of 

data zero-inflation. 

I. Visualization of partial region prediction 

In the following analysis, the predicted traffic accident 

values are contrasted with the real data for selected areas in 

the NYC and Chicago datasets at 30-minute intervals on a 

specific day. The visualization of the traffic accident risk 

prediction comparison is presented in Fig 21 and Fig 22. 

The MFA-MSSTGCN prediction results for the selected 

areas exhibit strong alignment with the actual accident 

conditions. Due to higher traffic flow and frequent crowd 

gatherings in NYC, its accident risk consistently remains 

elevated. Furthermore, the addition of POI data in the NYC 

dataset leads to better forecasting results than those 

observed in the Chicago dataset. Although the Chicago 

dataset records significantly fewer accidents than NYC, the 

introduction of a weighted loss function partially mitigates 

the zero-inflation issue, thereby enhancing prediction 

accuracy for regions with higher accident risks. 

 

 
Fig. 21.  Visualization of NYC dataset traffic accident risk prediction 

 
Fig. 22.  Visualization of Chicago dataset traffic accident risk prediction 

 

 

V.  CONCLUSION 

To overcome the limitations of current traffic accident 

prediction models, which typically focus only on global or 

local spatial features or rely on single-scale temporal 

modeling, this paper proposes the MFA-MSSTGCN based 

on multi-head flow attention. The main findings are: 

(1) Combining Bi-GRU with multi-head attention 

improves modeling of global spatio-temporal features. This 

method considers POIs, road features, and accident-risk 

similarities. Additionally, the source competition and sink 

allocation strategies in multi-head attention significantly 

reduce computational complexity. Experimental results 

show that MFA strongly improves the model's 

spatio-temporal modeling ability and prediction accuracy. 

(2) Local spatio-temporal convolutions allow the model to 

reconstruct the original spatio-temporal feature maps by 

extracting features from different spatial scales. This helps 

capture and predict spatio-temporal dependencies across 

areas with varying scales. 

(3) Dynamically combining global and local 

spatio-temporal features enables the model to better 

represent complex accident patterns within regions. The 

weighted loss function also effectively addresses the 

zero-inflation problem caused by sparse data, further 

improving model performance. 

Although MFA-MSSTGCN shows improved prediction 

accuracy, this study has two main constraints. Primarily, the 

model does not yet provide fine-grained predictions at the 

road segment level. Second, it does not fully consider how 

multiple external factors affect accident patterns. Future 

research will focus on fine-grained predictions and 

integrating multiple external factors to improve the model’s 

performance. 
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