TAENG International Journal of Computer Science

Intrusion Detection in Wireless Sensor
Networks: A Lightweight Scheme

Yixian Liu, Feng Ni

Abstract— Wireless Sensor Networks (WSNs) represent a
critical technology of the 21st century. However, their inherent
characteristics make them vulnerable to various network
attacks. Meanwhile, the limited node resources complicate the
implementation of effective intrusion detection. In response to
these challenges, this study proposes a lightweight intrusion
detection scheme. The process begins by applying RobustScaler
to reduce the influence of outliers. Then, Incremental Principal
Component Analysis (IPCA) extracts 15 principal components
from the CICIDS2017 dataset, significantly reducing
computational demands. Harris Hawks Optimization (HHO) is
employed to further select the optimal subset of components.
Finally, a Decision Tree based on information gain detects
attacks on the lower-dimensional data representation.
Experimental results show that, compared to other classifiers
and studies, the proposed method maintains minimal
processing overhead on both the laptop and Raspberry Pi 5,
while delivering competitive performance metrics. It achieves
99.65% accuracy, 99.64% precision, 99.65% recall, 99.64%
F1-score, a false positive rate of 0.25%, and a false negative rate
of 0.51%. These outcomes demonstrate the method's
effectiveness and suitability for resource-constrained WSNs
environment.

Index Terms—WSNs; intrusion detection; RobustScaler;
IPCA; HHO; Decision Tree

1. INTRODUCTION

HE proliferation and widespread application of the

Internet of Things (IoT) have improved the quality of life
and transformed various aspects of work. Estimates suggest
that by 2025, the number of [oT devices will reach 100 billion
[1]. Wireless Sensor Networks (WSNs), a key component of
IoT infrastructure, have broad applications in areas such as
environmental monitoring, disaster alert systems, agriculture,
and smart cities [2]. Typically, WSNs comprise hundreds or
thousands of sensor nodes, as illustrated in Fig. 1. Each node
collects environmental data — such as air quality, soil
moisture, and water quality —and transmits it via wireless
channels.

Manuscript received February 23, 2025; revised July 5, 2025.

Yixian Liu is the Director of the Information Security and Information
Warfare Experimental Teaching Center, Xi'an University of Posts and
Telecommunications, Xi'an, China (e-mail: liu-yi-xian@xupt.edu.cn).

Feng Ni is a Postgraduate Student of the School of Cyberspace Security,
Xi'an University of Posts and Telecommunications, Xi'an, China (e-mail:
nifenggg@gmail.com).

The base station collects data from nodes, processes it, and
forwards it to a control center over the internet, which
typically includes databases, cloud servers, and terminal
devices. In essence, sensor nodes are small-scale computers
equipped with embedded operating systems such as TinyOS
and Contiki. They are responsible for sensing the
environment, gathering data, and transmitting it. Designed
for low cost and power efficiency, these devices have limited
bandwidth and computational capabilities. Moreover, sensor
nodes are often densely deployed, which necessitates a
compact and lightweight design. As a result, their limited
memory and battery capacity must be efficiently managed to
maintain stable operations. These constraints are prevalent
among loT devices, which are inherently constrained in both
processing capacity and power supply [3]. Besides, outdoor
deployment makes nodes vulnerable to physical damage.
Wireless communication also exposes WSNs to threats like
eavesdropping, data tampering, and signal interference. Such
threats can have severe consequences, especially in military
or medical applications. Numerous studies regard traditional
public key encryption technology and identity authentication
as the first line of defense for WSNs security [4], [5].
However, these methods demand significant computational
resources [6], [7], making them impractical for
resource-constrained sensor nodes. Recent advances in
lightweight encryption have improved their feasibility for
low-power devices [8], [9]. It is precisely because of the
aforementioned reasons that a series of challenges persist in
addressing security issues within WSNs.

To counter various attack behaviors, the security
requirements of WSNs generally include data integrity,
availability, and confidentiality [10], [11]. Numerous studies
have classified malicious attacks against WSNs based on
different criteria [12]-[14]. One common approach
distinguishes between active and passive attacks. Active
attacks involve direct interference with normal
communication, such as modifying data or injecting
fraudulent packets — examples include man-in-the-middle
and energy depletion attacks. In contrast, passive attacks rely
on eavesdropping, where adversaries use sniffers to monitor
data transmissions between nodes and extract sensitive
information. Attacks can also be categorized by their origin:
internal attacks, launched by compromised or impersonated
nodes, are generally more difficult to detect and prevent than
external attacks. Furthermore, attacks tar geting different
layers of the OSI model have been systematically classified.
Table I shows the classification of common attacks on each

Volume 52, Issue 9, September 2025, Pages 3043-3055

mailto:liu-yi-xian@xupt.edu.cn

TAENG International Journal of Computer Science

(@)

// O% ’2\\

/\9_4 \

/ = 5N |

Ty & |

\ (t / Base Station
= =

\ = = !

. O 0,

So_0) L7

Fig. 1 WSNs Architecture.

layer of WSNs. Among the various types of attacks targeting
WSNs, denial-of-service (DoS) attacks are among the most
prevalent and can occur at every layer of the network [15].
This is primarily due to two characteristics of WSNs: the
limited resources of sensor nodes, which cannot support
large-scale data requests, and the distributed architecture of
the network, which complicates attacker identification. The
primary objective of DoS attacks is to disrupt communication
between sensor nodes, preventing the network from
functioning properly and eventually causing node failure and
energy depletion.

TABLE I
ATTACKS AT EACH LAYER OF WSNS.
Protocol Layer Attack Type

Physical Layer Jamming, Dos, Tampering

Data Link Layer Collision, Unfairness, Exhaustion, Dos
Dos, Selective Forwarding, Spoofing,

Network Layer Sybil, Hole Attack

Transport Layer Flooding, Dos, Desynchronization

Application Layer Repudiation, Dos

With the evolution of attack techniques, the first line of
defense is no longer adequate to address security challenges
in WSNs. Consequently, intrusion detection has been widely
recognized as the second line of defense. In recent years, the
continuous advancement of hardware technology and the
growth of data volume have accelerated the application of
machine learning (ML) and deep learning (DL) in WSN
intrusion detection [16]. Nevertheless, resource constraints
remain a significant challenge for the design and
implementation of intrusion detection systems in WSNs.
Moreover, ML- and DL-based intrusion detection systems
rely on traffic data collected from the network, which often
contains redundant features, noise, and high dimensionality.
These factors increase storage requirements and
computational overhead, potentially impairing model
performance. Therefore, developing lightweight intrusion
detection methods is essential to reduce computational
complexity and storage costs, while maintaining a balance
between security and energy consumption [17].

The remaining sections of this paper are as follows.
Section II reviews recent developments in lightweight

\
\
\
\
\

Internet ~

/
/

/

Control Center

intrusion detection. Section III introduces the proposed
framework and describes its implementation process. Section
IV analyzes the experimental results and compares the
proposed method with conventional ML models and recent
studies. Finally, Section V summarizes the paper and outlines
directions for future research.

II. RELATED WORK

The application of ML and DL-based intrusion detection in
WSNss has attracted widespread attention and a large amount of
research [18]. Compared to traditional methods, they have
shown great potential and advantages, opening up new avenues
to address security issues in WSNs. Chandre et al. [19]
compared the performance of different ML techniques applied
to intrusion detection in WSNs. The authors used
convolutional neural networks as classifiers in this study and
tested on WSN-DS. Based on their findings, DL exhibits better
detection results than ML. Chaurasiya et al. [20] proposed a
DL-based intrusion detection method for WSNs, namely a
dense artificial neural network, which achieved an accuracy of
96.45% on the NSL-KDD dataset, slightly better than the DT
and SVM. The drawback is that the authors did not consider
the additional impact of computational costs and model
complexity. Although in numerous instances, DL can offer
enhanced accuracy for the purpose of intrusion detection, they
typically necessitate considerable computational power, which
can prove challenging in contexts with restricted resources.
Wazirali and Ahmad [21] compared the performance of
different ML algorithms for detecting DoS attacks in WSN,
they partitioned the WSN-DS into various data subsets and
conducted their work on these differently-sized partitions. The
results indicate that statistical and logic-based ML models
perform best on numerical statistical datasets. Additionally,
they noted that using DL algorithms on sensor nodes may be
overly demanding, as DL requires extensive training to achieve
high accuracy. Similarly, Ahmad et al. [22] conducted a series
of comparisons on network intrusion detection systems based
on ML and DL, with approximately 80% of the proposed
solutions being based on DL. Whereas the implementation of
these solutions is highly complex, requiring significant storage
and computational resources, and these deficiencies must be

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

further addressed. Otoum et al. [23] introduced a DL-based
intrusion detection system called RBC-IDS (Restricted
Boltzmann Clustering), this was compared with an adaptive
ML-based IDS (ASCH-IDS). The authors found that both
systems had similar accuracy and detection rates, however, the
detection time for RBC-IDS was nearly twice that of
ASCH-IDS, indicating that DL increases the computational
burden to some extent.

An increasing number of researchers are integrating feature
engineering techniques with ML algorithms. One reason is that
the continuous evolution of network attack techniques renders
single detection techniques insufficient for effective defense.
Another reason is to diminish the complexity of models,
thereby reducing system load. Abdulhammed et al.[24]
proposed a PCA-based network intrusion detection method,
reducing the CICIDS2017 dataset to 10 dimensions. The
Random Forest algorithm demonstrated superior classification

performance in both binary and multi-class scenarios. Roy et al.

[25] introduced a novel Stacking-based lightweight intrusion
detection system tailored for IoT environments. This study first
identifies multicollinearity among dataset features using the
Variance Inflation Factor and groups them accordingly. PCA is
then employed for dimensionality reduction, eliminating
multicollinearity and reducing the feature space. However,
both studies rely on fixed results obtained after dimensionality
reduction, which lack flexibility and fail to account for the
interactions between principal components and attack
variables. Al-Yaseen [26] employed the Firefly Algorithm for
feature subset selection and utilized a Support Vector Machine
as the base classifier. Experimental results demonstrated that
this approach not only reduced feature dimensionality but also
enhanced detection accuracy while lowering the false alarm
rate. However, the NSL-KDD dataset is outdated and
inadequate for representing modern network environments and
emerging threats. Elsadig [27] developed a lightweight ML
method based on the Decision Tree and Gini feature selection
method. This method has been tested on WSN-DS, and
compared with other traditional ML classifiers, achieving an
accuracy of 99.5% with a processing time of only 0.13 s. The
author further emphasizes that DL does not serve as a suitable
solution for WSNs. However, this study is restricted to DDoS
attacks and cannot be applied to comprehensive intrusion
detection. He et al. [28] proposed a lightweight intrusion
detection method tailored for IoT, leveraging raw PCAP files to
design a rapid protocol parsing and feature grouping
mechanism. Experimental results indicate that RF outperforms
various other ML algorithms and significantly surpasses CNN
in terms of processing time and memory consumption.

III. PROPOSED APPROACH

This section proposes a lightweight intrusion detection
scheme based on Incremental Principal Component Analysis

(IPCA) and the Harris Hawks Optimization (HHO) algorithm.

The IPCA was applied for feature extraction, mapping the
data into a lower-dimensional space. Next, considering that
IPCA does not maximize the relationship between features
and attack variables, each principal component retains part of
the original information but does not contribute equally to
attack detection in the Decision Tree. The HHO algorithm
was introduced to focus on the principal components with the

strongest attack discriminatory power. The Decision Tree
using information gain as the splitting criterion was
employed to classify network traffic on the new data
representation. Finally, common metrics, including accuracy,
precision, recall, F1 score, false alarm rate, and false negative
rate were used for validation. The detailed framework of the
model is shown in Fig. 2.

A. Dataset

The CICIDS2017 dataset, which has now been widely
employed to assess the effectiveness of intrusion detection
algorithms in IoT environments [29]. It was developed by the
Canadian Cybersecurity Research Institute and the University
of New Brunswick. It contains 78 feature columns and 1 label
column. The specific descriptions of each feature and category
in the dataset can be found in [30].

B. Data Cleaning

Data cleaning is an integral component of data
preprocessing. Typically, raw datasets contain various issues
such as missing values and duplicate records, which can affect
the reliability of the data. Data analysis revealed that the
CICIDS2017 dataset contains duplicate samples. These
duplicate samples can diminish the model's generalization
capability and necessitate their removal. Additionally, the
"Flow Bytes/s" column in the dataset contains missing and
infinite values, and the "Flow Packets/s" column also contains
infinite values. Consistent with the duplicate removal approach,
data in these columns was removed to ensure integrity. Table
II presents the CICIDS2017 distribution after cleaning.

TABLE 11
DISTRIBUTION OF CICIDS2017 AFTER PREPROCESSING.
Classes

Number of samples

Benign 795104
Dos 193745
DDos 128014
FTP-Patator 5931
SSH-Patator 3219
PortScan 90694
Bot 1948
Infiltration 36
Heartbleed 11

Web Attack 2143
Total 1220845

C. Label Encoding

Most ML algorithms can only process numerical data,
making feature encoding an essential step in ML. Label
encoding maps each category to an integer, starting from 0
and incrementing by 1. This process converts non-numerical
features in the raw data into numerical features.

D. Standardization

Proper standardization of data before performing
Incremental Principal Component Analysis (IPCA) ensures
that each feature contributes more evenly to IPCA. This study
used the RobustScaler for data standardization. One of the
advantages of the RobustScaler is its ability to effectively

batch, centered 1S the centered data matrix of the current input

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

-

X

CICIDS2017

P

Data Cleaning

Train Dataset

label Encode

Standardization

v

Hybrid IPCA-HHO

|
> v
| rL GOE/)OEDO
Training

Decision Tree

L

Test Dataset
—Pre-Processing

label Encode

Standardization

Fig. 2 Core structure of the proposed approach.

reduce the impact of outliers on the scaling results, making the
scaled data more robust [31]. RobustScaler employs the
median and the interquartile range (IQR) for feature scaling,
where IQR denotes the difference between the first quartile
(Q1) and the third quartile (Q3). Specifically, for each feature,
the median and IQR are calculated first. The data is then scaled
using IQR, thus compressing it into a smaller range. The
following formula is commonly used for standardization :

_ —median()
== @

here, is the standardization value of feature x, x; is the
original feature value, median(x) is the median of feature x.

E. Incremental Principal Component Analysis

As a widely utilized linear dimensionality reduction
technique, Principal Component Analysis (PCA) can
significantly reduce the dimensionality of the data while
preserving crucial information, achieving this by distilling the
main elements of data known as principal components by
identifying the directions of greatest variance [32]. By
retaining the most representative principal components,
transforming the original high-dimensional data into a set of
new independent variables. Incremental Principal Component
Analysis (IPCA), a variant of PCA, extracts principal
components based on singular value decomposition (SVD)
[33], [34], expressed as:

= 2

* —/
Hybrid IPCA-HHO
. Accuracy
- Precision
I . Recall
»l l - F1 Score
- FAR
. FNR

here, U denotes the left singular matrix, with each column
constituting the left singular vectors of , represents a
diagonal matrix whose diagonal elements are the singular
values of ,and is the transpose of the matrix composed of
the right singular vectors of . Unlike conventional PCA,
which requires loading the entire dataset into memory for
processing, IPCA operates by partitioning the original dataset
into multiple fixed-size batches:

11 1
batch — [l (3)

1

where patch 1S the batch data matrix, the variable d denotes the
feature count in the dataset, while m refers to the sample size in
the current batch. It iteratively updates the global mean by
incorporating data from the current batch and samples from
previous batches:

_ od ¥ batch (@)

new +

s represents the amount of data processed, is the previous
global mean, and sy 1S the mean of the current batch.
Subsequently, a new matrix is formulated:

old " old

_ batch, centered

new —)
’_'_— (old ™ batch)

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

batch size. A new SVD is then performed to update the
singular values and singular vectors. By incrementally
computing each batch and continuously updating the principal
components until the entire dataset is processed, principal
components were extracted from the final right singular matrix

. Subsequently, the original dataset was projected onto these
principal components:

6)

reduced — centered

Where equcedis the new low-dimensional data representation,
centered 1S the centered data matrix of the original data and

the represents the first k vectors of the matrix ~ where &

(k=d) is the number of principal components selected. IPCA
reduces memory consumption, offering greater flexibility and
efficiency, particularly when handling large-scale datasets.

F. Harris Hawks Optimization

Harris Hawks Optimization (HHO), conceptualized by
Heidari et al. in 2019 [35], represents a meta-heuristic
algorithm derived from the predatory strategies exhibited by
Harris Hawks. HHO is renowned for its simplicity and its
robust capabilities in both global and local search, making it
highly versatile for solving optimization problems across
various domains. In feature selection tasks, the initial
population of solutions is typically represented as binary
vectors, where the length of each vector corresponds to the
number of features in the dataset. A value of 1 in the vector
indicates the selection of a feature, while 0 denotes its
exclusion. HHO initializes the population by randomly
generating multiple binary candidate solution vectors. The
update of candidate positions within the population—whether
through global exploration or local exploitation—is
determined by the prey's escape energy and specific random
conditions, allowing for dynamic adjustments in the positions
and directions of solutions. Global exploration incorporates
strategies such as random tall trees and family member
strategies, aimed at expanding the search space. In contrast,
local exploitation focuses on fine-tuning solution positions,
utilizing strategies like soft besiege, hard besiege, soft besiege
with rapid dives, and hard besiege with rapid dives.

This study sought to enhance classification performance
within the principal component space by leveraging a fitness
function. The fitness function was defined as:

()=1- @)
which represents the complement of the attack detection
accuracy of the Decision Tree. To prevent the selection of an
empty subset of principal components, the fitness function
returns a value of 1 as a penalty. The corresponding
pseudocode is presented in Algorithm 1.

G. Decision Tree

A tree-structured ML algorithm under supervised learning,
the Decision Tree (DT), is straightforward to implement and
exhibits low model complexity, which has been proven to
result in high cost-efficiency for applications in the IoT domain,
while meeting real-time response requirements [36]-[38]. DT
consists of multiple nodes and directed edges. Nodes are

classified as internal or leaf nodes. Internal nodes serve as
decision points, where the dataset is partitioned according to
specific features, acting as criteria for branching. Leaf nodes,
on the other hand, represent the final outcomes of the decision
process [39]. In this study, the information gain method was
selected as the feature selection strategy for the experiment.
Information gain measures the reduction in uncertainty of the
original dataset due to a particular feature :
(.= ()= C1I) ®
(,) represents the information gain, where D is the
training dataset and F is the feature. () is the empirical
entropy of the dataset, (|) is the conditional entropy of D
given feature F. Node splitting typically aims to select the
feature with the highest information gain, signifying a greater
impact on reducing entropy. Entropy quantifies the level of
uncertainty and is calculated as:
()=- log 9
=1
X is a discrete random variable that can take on a limited set o
f values, with its probability distribution expressed as (=
)=, =12,.. .Conditional entropy represents the unc
ertainty of a random variable given known conditions:

(1)= cr =
=1
let Y be a random variable, and let X be the given condition
with (=)=, =12, .,

(10)

_Algorithm 1 Harris Hawks Optimization(HHO)
Input: Principal component space K, population size N,
maximum number of iterations M
Output: Optimal principal component subset Xp.y, classification
accuracy
1: Initialize the population: randomly generate N binary
vectors X;
2: Compute the fitness value for each X;, record the best
solution Xpes:

3: for iterations = 1 to M do
4: Calculate escape energy E:
E =2 x (1 — iterations/M)

for each individual)X; in the population do

if |E| > 1 and random > 0.5then

Exploration: Random tall tree
: else if |E£| > 1 and random < 0.5then

9: # Exploration: Family members mean
10: else if 0.5 <|E| < 1 and random > 0.5 then
11: # Exploitation: Soft besiege
12: else if |[E| < 0.5 and random > 0.5 then
13: # Exploitation: Hard besiege
14: else if 0.5 < |E| < 1 and random < 0.5 then

5
6:
7
8

15: # Exploitation: Soft besiege with progressive dives

16: else

17: # Exploitation: Hard besiege with progressive dives
18: end if

19: Repair X;: Ensure binary encoding

20: Evaluate new fitness for X; and update Xj.s: if better
21: end for

22: end for

23: return Final optimal subset X;.,; and accuracy

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

IV. EXPERIMENTS AND EVALUATION

A. Experimental Environment

The experimental platform was based on the Windows 11
operating system. PyCharm served as the development tool,
and model construction was performed using the Scikit-learn
library in Python version 3.8. Moreover, due to its low power
consumption, portability, and affordability, the Raspberry Pi
has become a popular choice for IoT devices [40].
Consequently, this study employed Raspberry Pi 5 to further
validate the scalability of the proposed method and to assess its
effectiveness in resource-constrained environments. This is
critical for the practical deployment of WSNs applications.
Table III outlines the specific devices and their corresponding
hardware specifications.

TABLE III
DEVICES IN THE STUDY.
Devices Components
HP Laptop Intel Core i5-13500H CPU; 16 GB RAM
Raspberry Pi 5 Broadcom BCM2712 SoC (Quad-core ARM

Cortex-A76); 8 GB RAM

B. Performance Metrics

In the domain of ML, evaluation of classification models
frequently involves metrics such as accuracy, precision,
recall, and the F1 score. Accuracy reflects the overall
effectiveness of an intrusion detection system by quantifying
the proportion of correctly classified instances relative to the
total number of instances. Precision measures the proportion
of correctly identified instances of a particular attack
category among all instances predicted to belong to that
category. Recall, also referred to as the detection rate,
evaluates the model’s capability to accurately identify attack
instances by calculating the proportion of actual attacks that
are correctly detected. The F1 score integrates both precision
and recall into a single measure, typically expressed as their
harmonic mean. The formal definitions of these four widely
used performance metrics are provided below:

=— : . (11)
=— (12)

=— (13)

1 =2 (14)

+

What's more, within the realm of intrusion detection, the
False Alarm Rate (FAR) and the False Negative Rate (FNR)
serve as critical metrics for evaluating the effectiveness of
detection models. FAR typically refers to the proportion of
normal traffic that a detection system incorrectly classifies as
attacks. An excessively high FAR can not only disrupt
legitimate activities within the network but also impair the
efficiency of actual attack detection. Conversely, the FNR
quantifies the proportion of actual attacks that the model fails
to detect, representing the fraction of malicious traffic
erroneously classified as benign. A high FNR indicates that a

substantial number of attacks go wundetected, thereby
compromising the effectiveness of the detection system. The
FAR and FNR are defined as follows:

= (15)

= (16)
-+
Notably, under resource-constrained conditions, execution
time is a crucial metric for the comprehensive evaluation of
algorithmic performance. In this study, the processing time is
the average result of ten executions under the same
conditions.

C. Analysis and Discussion

This experiment initially aimed to investigate the impact of
different standardization methods on feature extraction. The
updated dataset spanned a 70-dimensional feature space. As
shown in Fig. 3, the cumulative explained variance ratio for
CICIDS2017 revealed that reducing the number of principal
components to fewer than 10 retained less than 70% of the
original variance. This resulted in a significant loss of valuable
information, constraining the learning capability of intrusion
detection models.

1.0
o
209
o
€08
[
20.7
©
>
206
g
5 0.5
!
X04
203
2
©
50.2
£
50.1

0'Ol 5

10 15 20 25 30 35 40 45 50 55 60 65 70
Number of Principal Components

Fig. 3 Cumulative Explained Variance Ratio on CICIDS2017.

Consequently, the feature dimensionality was progressively
reduced from 70 to 10 in steps of 5. Fig. 4 presents the
comparison of detection performance after applying IPCA
based on different standardization methods. Among them,
RobustScaler consistently outperformed the others. When the
CICIDS2017 dataset was standardized using RobustScaler,
the DT maintained high detection accuracy across different
numbers of principal components. In contrast, principal
components from conventionally scaled data restricted DT
capability and exhibited instability in identical dimensional
spaces. These discrepancies were primarily ascribed to the
intrinsic characteristics of the original data distribution.
Potential outliers and noise in the raw data can degrade the
effectiveness of traditional scaling methods, whereas
RobustScaler is less sensitive to such issues, thereby reducing
their impact and allowing the DT to detect a variety of attacks
in low-dimensional spaces. Given the high dimensionality of
the original features, selecting an appropriate number of
principal components was essential. As shown in Figs. 3 and 4,

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

the first 30 principal components captured nearly all the useful
information, indicating significant redundancy. When the
number of components reached 15, the accuracy plateaued,
and additional components yielded marginal gains. Therefore,
retaining 15 principal components allowed the DT to maintain
high classification performance while avoiding unnecessary
computational complexity. Meanwhile, the effect of varying
IPCA batch sizes was examined, as depicted in Fig. 5. Very
small batch sizes led to frequent updates of the principal
components, hindering convergence. Conversely, excessively
large batches offered negligible improvements in detection
capability but increased memory usage. Therefore, a batch size
of 10,000 samples was adopted as a balanced configuration.

Table IV compares the performance of DT trained with
Information Gain (IG-DT) and Gini Index (Gini-DT) after
dimensionality reduction via PCA and IPCA. Gini-DT
struggled with this task, requiring more computational time to
achieve accuracy comparable to IG-DT, while also exhibiting
higher FAR and FNR. In contrast, IG-DT more effectively
captured the correlation between principal components and
different attack types. On the other hand, PCA and IPCA
exerted a similar impact on the final classification performance
of DTs. However, the batch processing mechanism
demonstrated significantly higher computational efficiency.
As Fig. 6 shows, IPCA reduced execution time and peak
memory consumption across all dimensional settings.

100
99

98
97
96
95
94

Accuracy(%)

93

92 RobustScaler
StandardScaler
MinMaxScaler

10 15 20 25 30 35 40 45 50 55 60 65 70

Number of Components
Fig. 4 IPCA under Different Standardization Styles.

91

90

100.0

99.94

99.8

99.74

99.6

99.5

99.4

Accuracy (%)

99.34

99.21

99.14

99.0

160 560 IOIOO SOIOO 106001560020600256003060035600406004560050600
Batch Size
Fig. 5 Accuracy Across Different Batch Size.

TABLE IV
COMPARISON OF MODEL PERFORMANCE.

. Accuracy FAR FNR Processing
Classifiers (%) (%) (%) Time(s)
PCA +
Gini- DT 99.57 0.29 0.70 6.65
PCA +
IG-DT 99.60 0.28 0.57 4.52
IPCA+
Gini-DT 99.58 0.28 0.69 6.63
IPCA+
IG-DT 99.60 0.28 0.56 4.44

100

90

80

;\3 70

S 60
g

o 920
o

£ 4
®

n 30

20

—— Time
10 Memory
0

10 15 20 25 30 35 40 45 50 55 60 65 70
Number of Components
Fig. 6 Time and Memory Savings Ratio of IPCA (Relative to PCA).

After transforming the dataset using IPCA, the resulting 15
principal components were used as input to the HHO algorithm
to eliminate redundant components and enhance detection
performance. This dimensionality reduction significantly
narrowed the search space of the HHO compared to the
original dataset. Specific parameters are detailed in Table V.
As the hawk swarm size increased, both the selected subset and
the number of chosen principal components varied, as shown
in Table VL.

TABLE V
PARAMETER OF HHO.

Parameters Values
Population Size 10, 20, 30, 40, 50
Maximum Iteration 100
Levy 0.01

TABLE VI

SELECTED PRINCIPAL COMPONENTS SUBSETS.

EI;‘;VI{S Selected Principal Components Accuracy (%)
10 1,4,5,6,8,9,10,11,12,13,14,15 99.65
20 1,3,4,5,8,9,10,11,12,13,14,15 99.64
30 5,6,9,10,11,12,13,14,15 99.65
40 5,6,9,11,12,13,14,15 99.63
50 6,7,9,10,11,12,13,14,15 99.64

Components 9, 11-15 were consistently chosen across all
subsets, suggesting their higher relevance to attack detection.
In experiments with a hawk swarm size of 20 or fewer, the
HHO tended to select a larger number of features. However,
with a hawk swarm size of 30, the DT achieved optimal
accuracy using fewer principal components. Based on this

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

result, the subset of principal components selected under a
hawk swarm size of 30 was retained as the final set of principal
components. Figs. 7 and 8 show 2D visualizations of the
original feature space versus the reduced space with nine
selected components. In the original dataset, significant
overlap was observed between different classes, and some
benign traffic samples appeared as extreme outliers. In contrast,
the IPCA-HHO-transformed data showed a more compact
distribution, with certain classes forming distinct clusters.
However, some degree of overlap remained, suggesting that
complete separation of various attacks and normal traffic might
have required representation in a higher-dimensional feature
space or could have been attributed to the class imbalance in
the dataset. Table VII presents a performance comparison of
IG-DT in principal component spaces selected by different
supervised feature selection methods, including Fisher Score,
Analysis of Variance (ANOVA), Mutual Information (MI),
and Lasso regression. The results indicated that the proposed
method outperformed all other approaches across all
evaluation metrics. HHO mitigated the information loss caused
by IPCA by prioritizing principal components that contributed
significantly to attack classification. This synergy enhanced
the predictive reliability of DT and effectively reduced both the
FAR and FNR.

1200

2
—
o
o
IS

°

£}
C
(0]
C
o 800
Q
g .
8 600 o BENIGN
© & Dos
a o DDoS
g 400 o PortScan
= o SSH-Patator
o o FTP-Patator
200 ° Bot
o Web Attack
Infiltration
0 y Heartbleed
0 10 20 30
Principal Component 1
Fig. 7 2D Projection on CICIDS2017.
.!
120 °
~ 100 .°
-
; el
< 80 ':
g i =
€ 60
(e}
8 40 ° EENIGN
ol 0s
o e DDoS
0 20 @ PortScan
E ® SSH-Patator
QL_ 0 o FTP-Patator
Bot
o Web Attack
=20 . Infiltration
0 Heartbleed
-20 0 20 40 60 80 100

Principal Component 1
Fig. 8 2D Projection After IPCA-HHO on CICIDS2017.

TABLE VII
EVALUATION OF HYBRID DIMENSIONALITY REDUCTION

APPROACHES.
Hybrid Methods Accuracy (%) FAR(%) FNR(%)
IPCA + Fisher Score 99.57 0.27 0.60
IPCA +ANOVA 99.57 0.27 0.60
IPCA + MI 99.58 0.30 0.57
IPCA+Lasso 99.59 0.29 0.58
Proposed 99.65 0.25 0.51

TABLE VIII

PARAMETERS OF EACH CLASSIFIER.
Classifiers Parameters
DT Max Depth=30, Classification criterion=
Information Gain

RF Number of trees =74, Classification criterion=

Information Gain
KNN Neighbors=3
LR Regularization parameter =0.7, Max Inter=600
GBDT Number of trees =68, Learning Rate=0. 1

To further evaluate the effectiveness and rationality of the
proposed method, it was compared against five benchmark ML
classifiers—DT, Random Forest (RF), K-Nearest Neighbors
(KNN), Logistic Regression (LR), and Gradient Boosting
Decision Tree (GBDT)—which were trained and tested on the
original dataset. The key parameters of each model are
summarized in Table VIII. Performance metrics and average
processing times on a laptop are reflected in Figs. 9 and 10,
respectively, while Fig. 11 shows the elapsed times when
deployed on Raspberry Pi 5. Training and inference times on
both platforms are reported in Tables IX and X.

As shown in Fig. 9, RF performed the best across all
evaluation metrics, achieving 99.80% in each. It also boasted
the lowest FAR and FNR, as shown in Table XI. However, RF
incurred high computational costs, with average processing
times of 125.39 s on the laptop and 315.31 s on Raspberry Pi 5.
This overhead stems primarily from the ensemble nature of RF,
which involves training and aggregating multiple decision
trees. The complexity is mainly driven by the number and
depth of trees, and the training process requires substantial
parallel computation. On resource-constrained devices, such
complexity may limit its practical applicability.

Meanwhile, KNN and GBDT also performed well, each
exceeding 99% in all metrics and maintaining FAR and FNR
below 1%. However, they demonstrated longer classification
times than RF, particularly on Raspberry Pi 5. The proposed
method, by comparison, exhibited negligible processing time.
Given that KNN is an instance-based learning method, it
identifies the n nearest neighbors for each instance by
computing the distances and making decisions based on their
labels. This means that for each sample, KNN must traverse
the entire dataset, significantly increasing processing time,
especially with large-scale datasets. The construction of each
tree in GBDT depends on the gradients of the preceding tree,
resulting in a sequential update and optimization process.
Unlike RF's parallelism, this approach is significantly more
computationally intensive. Although LR executed faster than
KNN and GBDT (137.71 s on the laptop and 540.9 s on
Raspberry Pi 5), its detection performance was inferior, with
FAR and FNR of 5.15% and 1.98%, respectively, and other
metrics below 97%. While tuning hyperparameters such as the
number of iterations may enhance its performance, it would
also increase computational complexity.

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

100.0
99.6522% 728 99.642% 72 99.6522% 720 99.6432%22
995 99.44 22.53 99.44
99.24 99.24 99.24
99.0
98.5
9
< 98.0
()
o
S 975
c
Q
5 97.0
a
96.57
96.5
96.0 95.88 95.88
95.5
95.0

Accuracy Precision

Proposed fmm DT mmm RF mm KNN B LR

Fig. 9 Comparison of performance indicators of each classifier.

500 48528 s

369.34 s

99.8

99.47
99.24
l959

F1l-score

GBDT

significantly
computational overhead while ensuring a rapid response to
network attacks. This slight reduction is primarily attributed to

TABLE IX
TRAINING AND INFERENCE TIME FOR DIFFERENT
CLASSIFIERS ON LAPTOP.

less than 0.1%. Specifically, it attained 99.65% accuracy and
recall, 99.64% precision and F1 score, an FAR of 0.25% and
an FNR of 0.51%. It is noteworthy that the proposed method
demonstrated a time cost of 2.26 s on a laptop, and an average

the inevitable loss of certain original information during the

450
400
350
(0]
_g 300
°’ 250
"” 200
; 150 125.39s 137.71s
100
50 24355
2.26s
0

elapsed time of only 6.62 s on Raspberry Pi 5, which faces
performance bottlenecks. This signi
IPCA process

proposed DT GBDT Classifiers Training Time(s) Inference Time(s)
. . DT 2423 0.12
Fig. 10 P 1 .
ig. 10 Processing duration on laptop RF 123.49 1.90
KNN 0.21 485.07
2000 LR 111.31 0.09
1791.69s GBDT 363.19 5.15
1800 Proposed 2.23 0.03
1600
- TABLE X
1400 TRAINING AND INFERENCE TIME FOR DIFFERENT
€ 1200 1118.89s CLASSIFIERS ON RASPBERRY PI 5.
En 1000 Classifiers Training Time(s) Inference Time(s)
g DT 53.40 0.31
¢ 800 RF 306.71 8.60
2 600 540.95 KNN 0.60 1791.09
LR 539.9 0.31
w . GBDT 110034 18.55
200 P d 6.56 0.06
652 53.71s I ropose
O proposed DT RF KNN (R GBDT TABLE XI
Fig. 11 Processing duration on Raspberry Pi 5. FAR AND FNR FOR EACH CLASSIFIER.
Classifiers FAR (%) FNR (%)
Among the classifiers trained on the original dataset, DT DT 0.20 0.45
demonstrated the highest computational efficiency, with RF 0.17 0.30
99.72% in accuracy, precision, recall, and F1 score, with FAR KNN 0.70 0.90
of 0.20% and FNR of 0.45%. In comparison, the proposed LR 515 1.98
method achieved slightly lower performance across all six GBDT 0.28 0.97
Proposed 0.25 0.51

metrics than the conventional DT, with a marginal decline of

Volume 52, Issue 9, September 2025, Pages 3043-3055

reduced

TAENG International Journal of Computer Science

Furthermore, this study measured the energy consumption
and average processor power (using Intel Power Gadget)
during the operation of various classifiers on a laptop, as well
as the peak memory usage percentage of their respective
processes. These results are presented in Table XII and Fig. 12.
The findings further validate the effectiveness of the proposed
approach in meeting low-power and low-memory
requirements while maintaining high detection performance.
This lightweight design is particularly suitable for WSN
devices. Although a slight reduction in detection capability
was observed, the loss remained within acceptable limits and
was offset by a substantial reduction in computational and
energy demands, thereby enhancing deployment
cost-efficiency. In the context of WSNs, achieving a balance
between computational efficiency and security is essential [41].
Moreover, the proposed method exhibits scalability when
applied to larger datasets. Dynamically adjusting the IPCA
batch size effectively reduces memory consumption. As the
number of features increases, HHO algorithm requires more
iterations to converge, increasing computational complexity.
However, IPCA-based dimensionality reduction significantly
reduces the HHO search space, partially offsetting the
additional overhead. The selection of principal component
subsets can also be optimized by modifying the fitness function
to meet varying security metric requirements. Nevertheless,
due to differences in data distributions across datasets,
fine-tuning—such as adjusting standardization techniques, the
number of principal components, and the population size—is
necessary to balance detection performance and computational
cost.

Fig. 13, considerable overlap was observed between the feature
distributions of bot and benign traffic, as well as infiltration
and benign traffic, leading to frequent misclassifications of
these attacks as normal behavior. Additionally, Fig. 14 shows
the Receiver Operating Characteristic (ROC) curve, while Fig.
15 employs SHAP values [42] to quantify the contribution of
each principal component to prediction outcomes for different
attack types, further enhancing the interpretability of the DT in
detecting malicious activity.

TABLE XIII
DETECTION METRICS OF THE PROPOSED METHOD FOR
DIFFERENT ATTACKS.

Attacks Precision(%) Recall (%) F1 Score (%)
Benign 99.73 99.75 99.74
Dos 99.64 99.45 99.54
DDos 99.93 99.91 99.92
FTP-Patator 99.60 99.21 99.40
SSH-Patator 98.69 99.29 98.99
PortScan 98.96 99.93 99.44
Bot 80.10 53.49 64.15
Infiltration 100.00 61.54 76.19
Heartbleed 100.00 100.00 100.00
Web Attack 97.48 97.79 97.64

BENIGN- 23770 78 25 194 4 0 0 283 13 9

Bot- 273 314 0 0 0 0 0 0 0 0

DDoS- 34 0

Dos- 308 0

FTP-Patator- 14 0

Heartbleed- 0 0 0 0 0 4 0 0 0 0

Infiltration -

PortScan-

SSH-Patator -

4

5

5

0 0
0 0
0 0

TABLE XII
RESOURCE CONSUMPTION.
Classifiers Energy Consumption (J) Processor Power (W)
DT 544.08 23
RF 3085.88 23
KNN 22757.22 433
LR 7627.60 48
GBDT 8052.43 22
Proposed 45.89 19
30
25
§ 20 19.3 18.8
& 16.4 16.8 17.4
3
D15
Pl
[e]
€10
=
5
2.
g Proposed DT RF KNN LR GBDT

Fig. 12 Memory Usage.

Table XIII illustrates the recognition capabilities of the
proposed method across various attacks. With only nine
principal components, the DT maintained strong predictive
capabilities for most attacks. However, its performance was
relatively weaker for bot and infiltration attacks, likely due to
both the limited number of training instances and overlapping
feature boundaries. As illustrated by the confusion matrix in

Web Attack- 11 0 0 i 2 0 0 0 0 620

N o o 0> of 2 \O 2 of o
MO o O 58 0% (@ 7 T P
® < 2 S AEE S
¢ ©e \ 22 W
Fig. 13 Confusion Matrix.
1.0
2
.,
.
.,
’
.
.
.
.
e
0.8 7
’
.
.
.
’
e
,
% //
X 06 7
o
2 ol
=}
@ //,
& P
v .
E 04 ot
7 —— ROC curve for BENIGN (area = 0.9990)
,/’ ROC curve for Bot (area = 0.9817)
7 —— ROC curve for DDoS (area = 0.9995)
Pid —— ROC curve for Dos (area = 0.9990)
o Jad —— ROC curve for FTP-Petator (area = 0.9963)
i 27 —— ROC curve for Heartbleed (area = 1.0000)
’z’ ROC curve for Infiltration ~ (area = 0.8077)
7 —— ROC curve for PortScan (area = 0.9997)
o ROC curve for SSH-Patator (area = 0.9969)
,t, == ROC curve for Web Attack (area = 0.9937)

0'%.0 0.2 0.4 0.6 08 10
False Positive Rate

Fig. 14 Roc Curve.

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

)

e B

n

S . PC14

g B L

o

S Jrcis o

© FTP-Patator

9 . A I Heartbleed

LCJ I PCO B Infiltration

= B PortScan

e | pcs m SSH-Patator
Web Attack

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 15 Average Impact on Model Output Magnitude.

To ensure greater fairness and representativeness of the
results, this study conducted an additional 10 rounds of
hold-out validation. Figs. 16, 17, 18, and 19 illustrate the
variations in accuracy, precision, recall, and F1 score for the 6
classifiers across different runs. As shown in the figures, each
model exhibited only minor fluctuations within a narrow range
across all experiments, indicating overall stability. The average
values of these metrics for each classifier are summarized in
Table XIV. Notably, the metrics of LR and GBDT showed
greater variability, likely due to the randomness introduced by
a single data split. However, the repeated hold-out method
helped mitigate such inconsistencies. In contrast, other
classifiers, including the proposed method, produced average
results that closely aligned with those obtained from a single
split. This consistency suggests that the proposed approach

demonstrates robust performance across varying data
distributions.

100.0

—— Proposed

995 RE

— —— —

99.0 LR
o= 98.5 KNN
< 980 GBDT
>
(%}

o 975
!
Y 970
<

96.5

96.0

955

95.0

GI G2 G3 G4 G5 G6 G/ G8 G9 GI10
Groups
Fig. 16 Accuracy Across Hold-Out Methods.
100.0
—— Proposed
99.5 RF
e - . LR

99.0
~ 98.5 N
S 980 GBDT
5
z 97.5
(9}

@ 97.0
o

96.5

96.0

95.5

95.0

GI G2 G3 G4 G5 G6 G/ G8 G9 GIO

Groups
Fig. 17 Precision Across Hold-Out Methods.

100.0
—— Proposed
99.5 RF
N 0 T
99.0 LR
98.5 KNN
;\3 98.0 GBDT
T 975
(9]
& 970
9.5
96.0
95.5
95.0
Gl G2 G3 G4 G5 G6 G/ G8 G9 GI10
Groups
Fig. 18 Recall Across Hold-Out Methods.
100.0
—— Proposed
99.5 RF
— — LR
99.0
s KNN
X 980 GBDT
g
S 975
|9}
2]
— 97.0
w
96.5
96.0
95.5
95.0
Gl G2 G3 G4 G5 G6 G7 G8 G9 Gl10

Groups
Fig. 19 F1 Score Across Hold-Out Methods.

TABLE XIV
AVERAGE METRICS OF DIFFERENT CLASSIFIERS UNDER THE
HOLDOUT METHOD.

Classifiers Accuracy Precision Recall F1
(%) (%) (%) Score(%)

DT 99.71 99.71 99.71 99.71
RF 99.80 99.80 99.80 99.80
KNN 99.21 99.21 99.21 99.21
LR 95.82 96.49 95.82 95.84
GBDT 99.48 99.50 99.48 99.48
Proposed 99.65 99.64 99.65 99.64

D. Computational complexity

The computational complexity of IPCA is predominantly
governed by SVD operations executed across distinct data
batches, formally expressed as O(md?). Here, m corresponds
to the sample count within each batch, while d signifies the
feature dimensionality. Regarding the HHO algorithm, its
computational overhead is principally dictated by three
factors: the hawk population size (N), the dimensionality of
the principal component subspace (K), and the maximum
iteration count (M), yielding a composite complexity
of O(N-K-M). For the DT, complexity analysis segregates
into two primary stages: training and inference. The training
phase exhibits O(n-p-log(p)), complexity, with n representing
training instances and p the optimized principal components.
During inference, operational complexity is determined by
tree depth, conventionally characterized as O(log(n)).

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

E. Comparison with Current Researches

This subsection presents a comparative analysis of the
proposed method with existing research on network intrusion
detection algorithms based on the CICIDS2017 dataset. These
studies have employed various techniques to simplify the
dataset and reduce computational load. Table XV provides a
detailed comparison of the data. [43] proposed a binary manta
ray foraging (MRF) optimization algorithm to select the
optimal feature subset. Although the accuracy of this method is
comparable to that of this study, precision, recall, and F1 score
show varying degrees of decline. [44] employed a deep neural
network (DNN) and introduced a feature selection scheme that
integrates standard deviation with the difference between the
mean and the median. Although the approach exhibits
near-flawless results across multiple metrics, it comes at the
cost of high computational complexity. The hybrid CNN and
LSTM models proposed by [45] achieved an accuracy of
98.99% in the context of intrusion detection in IoT. However,
the lack of additional overall metrics makes it difficult to fully
assess the model's performance across different aspects.
Moreover, the hybrid DL may not be appropriate for
implementation on constrained IoT devices. The reason for this
is that these DL algorithms involve a multitude of parameters
and intricate computations, which collectively result in an
increased demand for computational resources and storage
space. In contrast, DT might be a more practical solution in
such environments. Similarly, [46] does not mention
computational efficiency, which is a critical factor in WSNss.
They employed various feature extraction techniques and
eventually fed the reduced dataset into a feed-forward neural
network.

Table XV
COMPARISON BETWEEN THE PREVIOUS STUDIES.
Classif Feat Accur Precis Recal Fl1 Time(s)
iers ures acy ion 1(%) Score
(%) (%) (%)
[24] 10 99.6 96.5 99.6 98.03 544.47
[25] 15 99.11 99.08 99.11 99.08 N/A
[26] 3 98.03 N/A N/A N/A 211.19
[43] 38 99.6 94.3 96.9 99.3 455317
[44] 64 99.80 99.85 99.94 99.89 27719.36
[45] N/A 9899 N/A N/A N/A N/A
[46] 39 99.8 98.7 97.7 98.7 N/A
Propos 9 99.65 99.64 99.65 99.64 2.26
ed

V. CONCLUSION AND FUTURE WORK

The implementation of intelligent intrusion detection in
resource-constrained WSNs presents significant technical
challenges and necessitates a low-power detection model
capable of operating efficiently under such limitations. From a
system perspective, this also helps extend the lifespan of sensor
nodes [47]. To balance security and power consumption, this
study employed IPCA to transform the original data space into
a set of linearly independent vectors. To preserve the overall
data structure, the optimal number of principal components
and batch size were determined. Subsequently, HHO was
applied to select the most informative components, resulting in
an 87% reduction in data dimensionality. This substantially
alleviated the computational and memory burden imposed by
the detection algorithm. The proposed method also

demonstrated strong detection performance and practical
applicability, as validated through deployment and testing on
Raspberry Pi 5.

The imbalance in the CICIDS2017 dataset may adversely
affect the model's performance [48]. Future work will
investigate techniques such as SMOTE [49] to address this
issue. Moreover, as attack behaviors in the Internet of Things
(IoT) continue to evolve, models trained offline may become
less effective. To address this, future research will explore the
potential of online learning. IPCA inherently supports online
learning by incrementally updating principal components
through sliding-window-based batch processing. However, the
traditional HHO algorithm is not natively compatible with
dynamic data streams. One promising direction is to adapt the
optimization strategy across successive data windows to reflect
evolving data distributions. For instance, HHO could inherit
the optimal component subset from the previous window to
avoid redundant computations. Additionally, a memory
mechanism could be introduced to retain promising solutions
from prior iterations as initial candidates, while randomly
reinitializing the rest [50], thereby mitigating the risk of local
optima. Furthermore, the search intensity, population size, and
iteration count could be adaptively tuned to minimize latency.
During the detection phase, online models such as Hoeffding
Trees may replace traditional decision trees. A concept drift
detection module [51] can also be integrated to monitor
changes in data distribution and trigger reinitialization of IPCA
and HHO, followed by retraining or structural updates to the
detection model.

REFERENCES

[1] K. Rose, S. Eldridge, and L. Chapin, ‘The Internet of Things: An
Overview’, vol. 80, no. 15, pp. 1-53, 2015.

[2] M. A.Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman,
‘Challenges, Applications, and Future of Wireless Sensors in Internet
of Things: A Review’, IEEE Sensors J, vol. 22, no. 6, pp. 54825494,
Mar. 2022.

[3] M. A.Khanand K. Salah, ‘IoT security: Review, blockchain solutions,
and open challenges’, Future Generation Computer Systems, vol. 82,
pp. 395411, May. 2018.

[4] M. Abedini and 1. Al-Anbagi, "Active eavesdroppers detection system
in multi-hop wireless sensor networks," 2022 IEEE Symposium on
Computers and Communications (ISCC), Rhodes, Greece, 2022, pp.
1-6.

[5] Y.Kumarand V. Kumar, ‘A Systematic Review on Intrusion Detection
System in Wireless Networks: Variants, Attacks, and Applications’,
Wireless Pers Commun, vol. 133, no. 1, pp. 395-452, Nov. 2023.

[6] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, ‘Advanced
lightweight encryption algorithms for IoT devices: survey, challenges
and solutions’, J Ambient Intell Human Comput, vol. 15, no. 2, pp.
1625-1642, Feb. 2024.

[71 Z. Huanan, X. Suping, and W. Jiannan, ‘Security and application of
wireless sensor network’, Procedia Computer Science, vol. 183, pp.
486-492,2021.

[8] B.Kaur, M. Rakhra, D. Singh, A. Singh, and Shruti, “Advancements in
lightweight cryptography: Secure solutions for resource-constrained
environments in IoT, WSNs, and CPS,” 2024 [Ith International
Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), Noida, India, 2024, pp. 1-7.

[9] L. Harn, C.-F. Hsu, Z. Xia, and Z. He, ‘Lightweight Aggregated Data
Encryption for Wireless Sensor Networks (WSNs)’, [EEE Sens. Lett.,
vol. 5, no. 4, pp. 1-4, Apr. 2021,.

[10] P. Dewal, G. S. Narula, V. Jain, and A. Baliyan, ‘Security Attacks in
Wireless Sensor Networks: A Survey’, in Cyber Security, vol. 729, M.
U. Bokhari, N. Agrawal, and D. Saini, Eds., in Advances in Intelligent
Systems and Computing, vol. 729. , Singapore: Springer Singapore,
2018, pp. 47-58.

[11] J.-Y. Yu, E. Lee, S.-R. Oh, Y.-D. Seo, and Y.-G. Kim, ‘A Survey on
Security Requirements for WSNs: Focusing on the Characteristics
Related to Security’, I[EEE Access, vol. 8, pp. 45304-45324, 2020.

Volume 52, Issue 9, September 2025, Pages 3043-3055

TAENG International Journal of Computer Science

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

M. Faris, M. N. Mahmud, M. F. M. Salleh, and A. Alnoor, ‘Wireless
sensor network security: A recent review based on state-of-the-art
works’, International Journal of Engineering Business Management,
vol. 15, p. 18479790231157220, Feb. 2023.

I. Tomic and J. A. McCann, ‘A Survey of Potential Security Issues in
Existing Wireless Sensor Network Protocols’, IEEE Internet Things J.,
vol. 4, no. 6, pp. 1910-1923, Dec. 2017.

D. E. Boubiche, S. Athmani, S. Boubiche, and H. Toral-Cruz,
‘Cybersecurity Issues in Wireless Sensor Networks: Current
Challenges and Solutions’, Wireless Pers Commun, vol. 117, no. 1, pp.
177-213, Mar. 2021.

O. A. Osanaiye, A. S. Alfa, and G. P. Hancke, ‘Denial of Service
Defence for Resource Availability in Wireless Sensor Networks’,
IEEE Access, vol. 6, pp. 6975-7004, 2018.

S. Ismail, D. W. Dawoud, and H. Reza, ‘Securing Wireless Sensor
Networks Using Machine Learning and Blockchain: A Review’,
Future Internet, vol. 15, no. 6, p. 200, May. 2023.

R. Ahmad, R. Wazirali, and T. Abu-Ain, ‘Machine Learning for
Wireless Sensor Networks Security: An Overview of Challenges and
Issues’, Sensors, vol. 22, no. 13, Art. no. 13, Jan. 2022.

M. Mamdouh, M. A. L. Elrukhsi, and A. Khattab, ‘Securing the Internet
of Things and Wireless Sensor Networks via Machine Learning: A
Survey’, in 2018 International Conference on Computer and
Applications (ICCA), Beirut: IEEE, Aug. 2018, pp. 215-218.

P. R. Chandre, P. N. Mahalle, and G. R. Shinde, ‘Deep Learning and
Machine Learning Techniques for Intrusion Detection and Prevention
in Wireless Sensor Networks: Comparative Study and Performance
Analysis’, in Design Frameworks for Wireless Networks, Singapore:
Springer Singapore, 2020, pp. 95-120.

A. Goyal, S. Mishra, and V. K. Chaurasiya, ‘Intrusion Detection in
Wireless Sensor Networks Using Deep Learning’, in 2023 4th
International Conference for Emerging Technology (INCET),
Belgaum, India: IEEE, May. 2023, pp. 1-13.

R. Wazirali and R. Ahmad, ‘Machine Learning Approaches to Detect
DoS and Their Effect on WSNs Lifetime’, Computers, Materials &
Continua, vol. 70, no. 3, pp. 4922-4946, 2022.

Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
‘Network intrusion detection system: A systematic study of machine
learning and deep learning approaches’, Trans Emerging Tel Tech, vol.
32,no. 1, p. 4150, Jan. 2021.

S. Otoum, B. Kantarci, and H. T. Mouftah, ‘On the Feasibility of Deep
Learning in Sensor Network Intrusion Detection’, /[EEE Netw. Lett.,
vol. 1, no. 2, pp. 68-71, Jun. 2019.

R. Abdulhammed, M. Faezipour, H. Musafer, and A. Abuzneid,
‘Efficient Network Intrusion Detection Using PCA-Based
Dimensionality Reduction of Features’, in 2019 International
Symposium on Networks, Computers and Communications (ISNCC),
Istanbul, Turkey: IEEE, Jun. 2019, pp. 1-6.

S. Roy, J. Li, B.-J. Choi, and Y. Bai, ‘A lightweight supervised
intrusion detection mechanism for IoT networks’, Future Generation
Computer Systems, vol. 127, pp. 276-285, Feb. 2022.

W. L. Al-Yaseen, ‘Improving intrusion detection system by developing
feature selection model based on firefly algorithm and support vector
machine,” IAENG Int. J. Comput. Sci., vol. 46, no. 4, pp. 534-540,
2019.

M. A. Elsadig, ‘Detection of Denial-of-Service Attack in Wireless
Sensor Networks: A Lightweight Machine Learning Approach’, [EEE
Access, vol. 11, pp. 83537-83552, 2023.

M. He, Y. Huang, X. Wang, P. Wei, and X. Wang, ‘A Lightweight and
Efficient IoT Intrusion Detection Method Based on Feature Grouping’,
IEEE Internet Things J., vol. 11, no. 2, pp. 2935-2949, Jan. 2024.

G. A. Mukhaini, M. Anbar, S. Manickam, T. A. Al-Amiedy, and A. A.
Momani, ‘A systematic literature review of recent lightweight
detection approaches leveraging machine and deep learning
mechanisms in Internet of Things networks’, Journal of King Saud
University - Computer and Information Sciences, vol. 36, no. 1, p.
101866, Jan. 2024.

1. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, ‘Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization’:, in Proceedings of the 4th International Conference
on Information Systems Security and Privacy, Funchal, Madeira,
Portugal: SCITEPRESS - Science and Technology Publications, 2018,
pp. 108-116.

V.N. G. Raju, K. P. Lakshmi, V. M. Jain, A. Kalidindi, and V. Padma,
‘Study the Influence of Normalization/Transformation process on the
Accuracy of Supervised Classification’, in 2020 Third International
Conference on Smart Systems and Inventive Technology (ICSSIT),
Tirunelveli, India: IEEE, Aug. 2020, pp. 729-735.

H. Abdi, LJ. Williams, Principal Component Analysis, Wiley
interdisciplinary reviews: computational statistics. 2 (2010) 433-459.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, ‘Incremental Learning
for Robust Visual Tracking’, Int J Comput Vis, vol. 77, no. 1-3, pp.
125-141, May 2008.

A. Levy and M. Lindenbaum, ‘Sequential Karhunen-Loeve Basis
Extraction and its Application to Images’, IEEE Transactions on
Image Processing, vol. 9, no. 8, 2000.

A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H.
Chen, ‘Harris hawks optimization: Algorithm and applications’,
Future Generation Computer Systems, vol. 97, pp. 849-872, Aug.
2019,

R. F. Bikmukhamedov and A. F. Nadeev, ‘Lightweight Machine
Learning Classifiers of IoT Traffic Flows’, in 2019 Systems of Signal
Synchronization, Generating and Processing in Telecommunications
(SYNCHROINFO), Russia: IEEE, Jul. 2019, pp. 1-5.

P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo,
‘Practical real-time intrusion detection using machine learning
approaches’, Computer Communications, vol. 34, no. 18, pp.
2227-2235, Dec. 2011.

N. Tekin, A. Acar, A. Aris, A. S. Uluagac, and V. C. Gungor, ‘Energy
consumption of on-device machine learning models for IoT intrusion
detection’, Internet of Things, vol. 21, p. 100670, Apr. 2023

K. Das and R. N. Behera, ‘A survey on machine learning: concept,
algorithms and applications’, International Journal of Innovative
Research in Computer and Communication Engineering, vol. 5, no. 2,
pp. 1301-1309, 2017.

M. Hosny, K. Magdi, A. Salah, O. El-Komy, and N. A. Lashin,
"Internet of Things Applications Using Raspberry-Pi: A Survey," Int. J.
Electr. Comput. Eng., vol. 13, no. 1, pp. 902-910, 2023.

T. Kim, L. F. Vecchietti, K. Choi, S. Lee, and D. Har, ‘Machine
Learning for Advanced Wireless Sensor Networks: A Review’, IEEE
Sensors J., vol. 21, no. 11, pp. 12379-12397, Jun. 2021.

S. M. Lundberg and S. I. Lee, ‘A unified approach to interpreting
model predictions’, Advances in Neural Information Processing
Systems, vol. 30, 2017.

1. H. Hassan, M. Abdullahi, M. M. Aliyu, S. A. Yusuf, and A.
Abdulrahim, ‘An improved binary manta ray foraging optimization
algorithm based feature selection and random forest classifier for
network intrusion detection’, Intelligent Systems with Applications, vol.
16, p. 200114, Nov. 2022.

A. Thakkar and R. Lohiya, ‘Fusion of statistical importance for feature
selection in Deep Neural Network-based Intrusion Detection System’,
Information Fusion, vol. 90, pp. 353-363, Feb. 2023.

A. Nazir, J. He, N. Zhu, S.S. Qureshi, S.U. Qureshi, F. Ullah, A.
Wajahat, M.S. Pathan, ‘A deep learning-based novel hybrid
CNN-LSTM architecture for efficient detection of threats in the IoT
ecosystem’, Ain Shams Engineering Journal, vol. 15, no. 7, p. 102777,
Jul. 2024.

M. H. Behiry and M. Aly, ‘Cyberattack detection in wireless sensor
networks using a hybrid feature reduction technique with Al and
machine learning methods’, J Big Data, vol. 11, no. 1, p. 16, Jan. 2024.
S. Rajasegarar, C. Leckie, and M. Palaniswami, ‘Anomaly Detection in
Wireless Sensor Networks’, IEEE Wireless Communications, 2008.

J. Liu, Y. Gao, and F. Hu, ‘A fast network intrusion detection system
using adaptive synthetic oversampling and LightGBM’, Computers &
Security, vol. 106, p. 102289, Jul. 2021.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
‘SMOTE: Synthetic Minority Over-sampling Technique’, Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, Jun. 2002.
X.-F. Liu, Z.-H. Zhan, and J. Zhang, °Incremental particle swarm
optimization for large-scale dynamic optimization with changing
variable interactions’ , Applied Soft Computing, vol. 141, p. 110320,
Jul. 2023.

J. Gama, 1. Zliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia, ‘A
survey on concept drift adaptation” , ACM Comput. Surv., vol. 46, no.
4,pp. 1 - 37, Apr. 2014.

Volume 52, Issue 9, September 2025, Pages 3043-3055

	I. INTRODUCTION
	II. RELATED WORK
	III.PROPOSED APPROACH
	A. Dataset
	B. Data Cleaning
	C. Label Encoding
	D. Standardization
	E. Incremental Principal Component Analysis
	F. Harris Hawks Optimization
	G. Decision Tree

	IV.EXPERIMENTS AND EVALUATION
	A. Experimental Environment
	B. Performance Metrics
	C. Analysis and Discussion
	D. Computational complexity
	The computational complexity of IPCA is predominan
	E. Comparison with Current Researches

	V. CONCLUSION AND FUTURE WORK
	REFERENCES

