
 

 Abstract—With the acceleration of urbanization, the efficient 

and precise detection of road garbage is critical for urban 

environmental health management. To address the challenges 

of variable object morphology size and interference from 

complex backgrounds in urban road garbage detection, we 

propose an improved model—YOLO-CFDU based on 

YOLOv11. Firstly, the C3K2 module is replaced by C3K2-FE, 

which integrates the Fasterblock and EMA attention 

mechanism to enhance multi-scale target feature extraction 

while reducing computational complexity. Secondly, the 

Dynamic Spatial Weighted Fusion (DSWF) module is proposed 

in Neck network to strengthen target region features by 

generating spatial weight maps. Thirdly, the Unified-IoU 

(U-IoU) loss is introduced to optimize the accuracy of the 

bounding box regression. Lastly, LAMP technology is used to 

prune the model, reducing the number of parameters and 

calculations. Experimental results demonstrate that the 

proposed model achieves 0.735 for mAP@0.5 on a 

self-constructed road garbage dataset, outperforming the 

original YOLOv11n by 4.6%. In addition, the number of 

model parameters and computations is reduced by 44.0% and 

29.7%, respectively, meeting the requirements for lightweight 

deployment on embedded devices. Real-vehicle tests further 

validate the model’s superior real-time detection performance, 

providing an efficient and cost-effective solution for intelligent 

urban garbage management. 

 
Index Terms—Deep learning, Garbage detection, YOLOv11, 

Lightweight, EMA 

I. INTRODUCTION 

ITH the acceleration of the urbanization process, the 

surge of urban population density and the increase of 

consumption level have led to a continuous rise in the 

amount of domestic garbage generation [1]. The random 

disposal and accumulation of garbage not only affects the 

city appearance, but also may cause air pollution, traffic 

accidents and other problems, which adversely affects the 

urban ecological construction [2]. To promote urban 
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environmental health management, various types of 

sweepers, sanitation robots and other sweeping equipment 

have been gradually applied to urban roads, squares, parks 

and other scenes. However, the existing equipment mainly 

relies on preset routes or timed sweeping modes and lacks 

real-time sensing of the distribution of roadway trash [3], 

resulting in insufficient sweeping in some areas, while 

relatively clean areas are still unnecessarily swept, which 

affects the overall sweeping efficiency. Therefore, how to 

realize the real-time perception of road garbage through 

accurate garbage detection and provide intelligent decision 

support for sweeping equipment has become an urgent 

problem in the field of urban sanitation [4]. 

In recent years, deep learning techniques have made 

significant breakthroughs in the field of object detection [5], 

especially convolutional neural network (CNN)-based 

detection frameworks such as Faster R-CNN [6], SSD [7] 

and YOLO [8] [9]. Among them, two-stage detection 

models such as Faster R-CNN rely on the regional proposal 

network to generate candidate frames, which, despite its 

high accuracy, has a high computational complexity and is 

difficult to meet the real-time requirements for deployment 

on mobile devices. In contrast, single-stage detection models 

such as YOLO directly regress the target categories and 

bounding boxes in an end-to-end manner, which can realize 

efficient inference while guaranteeing accuracy, and is more 

suitable for real-time detection application scenarios. 

In response to the challenges in garbage detection tasks, 

scholars have proposed various optimization solutions based 

on the above detection approaches. Feng et al [10] 

introduced ResNet50 network to optimize the Faster R-CNN 

network framework for the target size difference challenge, 

but the inference speed is relatively slow. To improve the 

detection efficiency, single-stage detection models are 

gradually used to deal with the task of garbage detection [11]. 

He et al [12] proposed the EC-YOLOX model, which 

enhances the feature extraction of garbage of different 

morphologies by introducing the CA and ECA 

dual-attention mechanisms, but the increase in model 

computation leads to a slight decrease in the detection speed. 

In the garbage detection scenario, small target garbage can 

be difficult to accurately identify due to background 

interference. Kuang et al [13] introduced Transformer 

predictive detection head based on YOLOv5 and combined 

it with CBAM attention mechanism to enhance the detection 

effect of small targets. Li et al [14] designed noise 

suppression module ANSM to reduce the interference of 

background noise such as illumination, reflection, and so on; 

Xia et al [15] proposed a lightweight YOLO-MTG model, 

introduced MobileViTv3 to enhance the global feature 

expression, and optimized the Neck network by feature 

reuse technique, which solved the problem of balancing the 
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efficiency and accuracy in multi-target spam detection. In 

order to reduce the number of model parameters and realize 

the real-time deployment requirements, Bai et al [16] used 

group-level pruning method to improve YOLOv7 in a 

lightweight way, and the experimental results show that the 

number of parameters is reduced by 6.05% compared with 

the original model; Jiang et al [17] used lightweight 

convolution Ghost Conv to replace the standard convolution 

in YOLOv8 and remove the C2f module, and introduced the 

GTR module and the SimAM attention mechanism guided 

pyramid network to optimize the feature extraction 

efficiency. 

In the above context, although existing research has 

improved the feature extraction and detection effect of 

different morphological sizes of garbage to a certain extent 

by introducing multiple attention mechanism and feature 

fusion strategy, such improvement is often accompanied by 

a larger number of model parameters and computational 

burden, which is difficult to meet the real-time detection 

requirements of embedded devices. Moreover, the complex 

real road environment such as uneven road texture, light 

intensity changes and other background interference will 

also reduce the garbage detection precision. To address the 

above problems, we propose an improved model 

YOLO-CFDU based on YOLOv11n, with the following 

main contributions: 

1) Design the C3K2-FE module to replace the C3K2 

module, reducing redundant computation through PConv 

and enhancing multi-scale target feature extraction by 

combining the EMA attention mechanism; 

2) Propose the DSWF module to highlight the feature 

expression of target region and suppress the background 

noise interference through weight assignment; 

3) Introduce U-IoU loss, combining dynamic scaling 

strategy and Focal Loss mechanism to optimize the 

bounding box regression accuracy; 

4) Adopt LAMP pruning technique to reduce the number 

of model parameters and calculations, realizing lightweight 

deployment of the model. 

II. METHODOLOGY 

A. YOLOv11 

YOLOv11 [18] was released by Ultralytics in September 

2024, and the algorithm further strengthens the support for 

multi-tasks such as target detection, instance segmentation, 

and image classification based on inheriting the real-time 

and efficient features of the YOLO series. Among them, 

YOLOv11 performs excellently in the task of target 

detection, can quickly and accurately locate and recognize 

targets, and is widely used in many fields such as security 

surveillance, autonomous driving, and industrial inspection. 

According to the network depth, YOLOv11 also provides 

five different model sizes: n, s, m, l, and x. The model 

detection accuracy increases with the number of model 

parameters and computation amount, which is suitable for 

different task requirements and computational resources. 

The network structure of YOLOv11 consists of three parts, 

the Backbone network, the Neck structure and the Head 

structure. Its network structure is shown in Fig. 1. 

 

Fig. 1. YOLOv11 network structure 

Compared with YOLOv8, YOLOv11 replaces C2f with 

C3K2 in Backbone network to improve the feature 

extraction efficiency and introduces the C2PSA module 

after the SPPF layer to improve the multiscale feature 

extraction. The Neck structure combines PAN and FPN as 

the feature fusion network, and makes features more fully 

fused by the cross-layer splicing design of top-down and 

bottom-up. The Head structure adopts decoupled design and 

DWConv operation, which significantly reduces the number 

of model parameters and computation while improving the 

detection flexibility. 

B. YOLO-CFDU 

Due to the different sizes of garbage morphology and the 

interference from the complex background of road surface 

and light intensity, the existing detection methods are still 

deficient in accuracy and efficiency. For this reason, we 

propose an object detection model YOLO-CFDU for urban 

road garbage based on YOLOv11, and its network structure 

is shown in Fig. 2. 

 

Fig. 2. YOLO-CFDU network structure 
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1) C3K2-FE 

In the garbage detection task, garbage exhibits diverse 

morphological sizes, and the small-sized garbage is easy to 

be ignored, which puts high requirements on the feature 

extraction and expression ability of the model. In addition, 

the traditional convolutional operation has parameter 

redundancy in cross-channel feature fusion, leading to 

inefficient feature transfer and increased inference latency. 

To solve this problem, we adopt the C3K2-FE module to 

replace the C3K2 module of the original network, which 

realizes fast feature extraction by PConv convolution and 

improves the model's adaptability to targets of different sizes 

by adding the EMA attention mechanism. The structure of 

the C3K2-FE module is shown in Fig. 3. 

 

Fig. 3. C3K2-FE module structure 

The core idea of Fasterblock [19], as a key component in 

the FasterNet structure, is to reduce redundant computations 

and memory accesses through PConv, which maintains or 

even improves the feature extraction and representation 

ability of the model while reducing the computational cost. 

Assuming that the size of the input feature map is C×H×W, 

PConv only performs k×k convolution operation on C/4 of 

these channels, and the rest of the channels are directly 

retained without any computation. The GFLOPs of PConv 

can be expressed as: 

 
2 2

pGFLOPs H W k C=   
 

(1) 

Where: Cp = 1/4C, the GFLOPs of PConv are only 1/16 of 

the normal Conv, significantly reducing the number of 

model parameters. The two subsequent 1×1 Conv are 

responsible for cross-channel information interaction, 

ensuring that the network captures both local details and 

global information. The structure of the Fasterblock is 

shown in Fig. 4. 

   

Fig. 4. Fasterblock structure 

The EMA module [20] is a new multi-scale learning 

attention mechanism, which aims to enhance the 

context-awareness of the model through efficient 

multi-scale feature fusion. The structure of the EMA module 

is shown in Fig. 5, and its main computational flow is as 

follows: first, the input feature map will be divided into G 

groups, and the dimensionality of each group becomes 

C/G×H×W; based on the grouped features, average pooling 

is performed in the X and Y directions, respectively, and 

then the biaxial features are spliced and output the two sets 

of feature vectors by 1×1 Conv, after which they are 

activated by the Sigmoid function; meanwhile, the third 

branch captures the local detail features by 3×3 

depth-separable Conv; finally, multi-scale fusion of channel 

attention weights with local features is performed by 

Cross-spatial learning network, and enhancement of the 

original input features is accomplished by Sigmoid function 

and multiplication operation, and the final output is the 

enhanced feature map that maintains the original resolution. 

 

Fig. 5. EMA module structure 

2) DSWF 

Although the Neck network of YOLOv11 realizes 

cross-layer multi-scale feature splicing through PANET, in 

the case of low contrast between target and background or 

noise interference, it adopts a uniform weighting strategy, 

which ignores the significance difference of different layer 

features in spatial dimensions, resulting in that the detailed 

information of the shallow features is easy to be masked by 

the background noise [21], which makes it difficult to 

accurately highlight the target region, affecting the detection 

accuracy. For this reason, we propose DSWF to spatially 

selectively enhance multiscale fusion features by 

dynamically assigning spatial weights after feature splicing 

and suppressing background noise interference. The 

structure of DSWF module is shown in Fig. 6. 

 

Fig. 6. DSWF module structure 

The DSWF module consists of three parts: channel 

compression, spatial weighting and weighted fusion. In the 

channel compression stage, 1×1 Conv is used to perform 

channel dimensionality reduction on the input feature map 

Fin R H×W×C: 

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3087-3097

 
______________________________________________________________________________________ 



 

 ( )1 1Conv ( ) RC H W

comp inF F b
 

= + 
 

(2) 

Where: C'  = [C/r] is the number of channels after 

compression, r is the compression rate, and b is the bias 

variable. 

In the spatial weighting stage, a single-channel weight 

feature map is generated based on Wmap: 

 ( )( )2 1

map sig 3 3 ReLu compConv ( ) Rd H WW f f F=  

= 
 

(3) 

Among them, fReLu implements feature sparsification to 

suppress background noise and expands the sensory field 

using 2

3 3Convd =


 with a null rate of 2, fsig constrains the output 

weights to the [0,1] interval to quantify the spatial feature 

importance. 

Finally, the target area feature expression is highlighted 

by weighted fusion: 

 ( )( , , ) ( , , ) ( , ) RC i j C i j i j C H W

out in mapF F W  =  
 

(4) 

Where: Fout R H×W×C is the output feature map and is the 

broadcast function extending single-channel weights to C 

channels. 

3) U-IoU loss 

Although the regression loss CIOU takes into account the 

distance between the centroid of the predicted box and the 

real box as well as the aspect ratio factor on the basis of IOU, 

similar to DIOU, EIOU and other such loss improvements 

are still confined to static refinement of geometrical 

differences, and are unable to dynamically control the 

gradient contribution of high and low quality samples, 

leading to slow convergence in the pre-training stage, and 

difficulty in improving the detection accuracy in the late 

stage under high IoU thresholds. For this reason, we adopt a 

new regression loss function U-IoU [22]. The core idea of 

this method is to dynamically assign weights to different 

quality prediction box during the training process, so that the 

model pays more attention to high-quality prediction box, 

and at the same time strikes a balance between training 

speed and detection accuracy. Specifically, the scaling ratio 

between predicted and real box is adjusted by introducing 

the hyperparameter ratio, as shown in Fig. 7. 

 

Fig. 7. Illustration of bounding box 

At the initial stage of training, the ratio is set to a higher 

value to enlarge the bounding box and focus on low-quality 

samples to accelerate convergence, and as the number of 

training rounds is increasing, the score-decreasing strategy 

is used to gradually reduce the ratio and shrink the box size 

to enhance the loss weight of high-quality samples, so as to 

improve the detection accuracy under the high IoU threshold. 

In addition, drawing on the idea of Focal Loss, a 

dual-attention mechanism is introduced to further optimize 

the weight allocation of bounding box regression by 

adjusting the weights of different quality prediction boxes 

through the Focal box and forcing the model to focus on 

samples that are more difficult to locate according to the 

difference in confidence. 

The ratio is related to the number of training rounds as 

follows: 

 
150

=
+100

ratio
epoch  

(5) 

The Focal Loss expression is: 

 ( )ocal 1 log( )t t tF p p


= − −
 

(6) 

Where: αt is a balancing factor, pt is the predicted probability 

of target detection incorporating real labels, and γ is a focus 

factor to control the rate of weight decay for easy and 

difficult samples. 

4) LAMP pruning 

To further meet the lightweight deployment requirements 

of mobile and embedded devices, we adopt the LAMP 

technique for pruning optimization of YOLO-CFDU. 

LAMP is a layer adaptive sparse pruning method based on 

weight magnitude [23], and its core idea is to maximize the 

compression of the number of model parameters and 

computation under the premise of guaranteeing the accuracy 

of the model by dynamically assigning pruning ratios to 

each layer. LAMP evaluates the importance of the weights 

of each layer of the network and dynamically allocates 

pruning ratios for different layers, with less pruning for 

layers with more critical information and more pruning for 

layers with more redundant parameters. At the same time, 

the pruning threshold is determined based on the weight 

magnitude, and the weights below the threshold are set to 

zero. Finally, the model is iteratively fine-tuned to recover 

the accuracy to achieve a good balance between model 

lightweighting and detection performance. The specific 

score formula is as follows: 

 

2

2

( [ ])
( ; )

( [ ])

t
t

t

v u

W u
Socre u W

W v


=


 

(7) 

Where: u and v denote the index mappings corresponding to 

different weights, Wt[u] and Wt[v] denote the weights of 

index u and v mappings respectively. 

III. EXPERIMENTATION AND ANALYSIS 

A. Dataset 

Currently, the existing publicly available target detection 

datasets have not yet existed a labeled dataset specifically 

for urban road garbage scenarios. To meet the research 

needs, we independently constructed a diverse urban road 

garbage dataset through field photography and public 

resource screening. The dataset includes five categories of 

common road litter such as cigarette butts, plastic bags, 

plastic bottles, and waste paper. To improve the 
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generalization ability of the model and enhance the complex 

environment of the working road, the collected garbage 

images are enhanced by brightness adjustment, noise and 

random point addition, panning, flipping, etc., and the 

dataset is finally expanded to 7043. The effect of garbage 

image enhancement is shown in Fig. 8. 

  
(a) Original image (b) Random point + darken 

  
(c) Noise + flip + darken (d) Rotate + random point + lighten 

Fig. 8. Image enhancement 

In the data labeling stage, LabelImg tool was used to 

create labels for the garbage images, construct the urban 

road garbage dataset, and divide the dataset into training, 

validation, and testing sets according to the ratio of 8:1:1. 

The distribution of the number of instances in each category 

in the dataset is shown in Fig. 9. 

 

Fig. 9. Distribution of the number of instances of each type of garbage 

B. Evaluation Index 

In order to comprehensively evaluate the performance of 

the improved YOLO-CFDU model, we select the evaluation 

indexes such as Precision, Recall, mAP, Params and FPS. 

The related calculation formula is shown below: 

 
TP

Precison
TP FP

=
+  

(8) 

 
TP

Recall
TP FN

=
+  

(9) 

 
1

1 N

i

i

mAP AP
N =

= 
 

(10) 

Where: Precision denotes the proportion of positive cases 

among the samples predicted by the model; Recall denotes 

the proportion of correctly predicted positive cases among 

the samples predicted by the model; TP denotes the number 

of correctly predicted positive cases; FP denotes the number 

of incorrectly predicted positive cases; FN denotes the 

number of samples that are missed; mAP is used to measure 

the performance of the model under different IoU thresholds, 

and the higher the value of mAP, the better is the 

performance of the model detection. Params and FPS reflect 

the parameter size and computing speed of the model, 

respectively, which are important indicators of whether the 

model can run lightly. 

C. Experimental Environment 

The experiments were completed under the ubuntu18.04 

operating system, using the GPU model NVIDIA GeForce 

RTX 4090D, based on the Python3.8 compilation 

environment, using the Pytorch2.3.1 Deep learning 

framework, and the CUDA version of 11.8.The model 

training parameter settings are detailed in TABLE Ⅰ. 

TABLE Ⅰ 

PARAMETER SETTINGS FOR MODEL TRAINING 

 

Parameters Parameter value 

Epoch 200 
Batch 16 

Optimizer SGD 

Initial learning rate 0.01 
Maximum learning rate 0.01 

Weight Decay 0.0005 

Image Resolution 640×640 

D. Analysis of Experimental Results 

1) Comparative Experiment 

To verify the performance of the improved YOLO-CFDU 

model, we selected the mainstream models of YOLO series, 

YOLOv5n, YOLOv6, YOLOv8n, YOLOv9t, YOLOv10n, 

and YOLOv11n, to conduct comparative experiments under 

the same experimental conditions, and the experimental 

results are shown in TABLE Ⅱ. 

TABLE Ⅱ 
COMPARISON OF EXPERIMENTAL RESULTS 

 

Model Precision Recall mAP@0.5 mAP@0.5-0.95 Params/M GFLOPs FPS Size/MB 

YOLOv5n 0.816 0.620 0.683 0.544 2.5 7.2 588.2 5.3 

YOLOv6 0.850 0.529 0.602 0.488 4.2 11.9 571.4 8.2 
YOLOv8n 0.874 0.645 0.719 0.578 3.0 8.2 606.1 6.2 

YOLOv9t 0.855 0.625 0.700 0.569 2.0 7.9 568.7 4.6 

YOLOv10n 0.866 0.631 0.714 0.579 2.7 8.4 645.1 5.7 
YOLOv11n 0.873 0.630 0.703 0.541 2.5 6.4 602.4 5.5 

YOLO-CFDU 0.913 0.666 0.735 0.582 1.4 4.5 617.2 3.3 
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(a)YOLOv11n (b)YOLO-CFDU 

Fig. 10. Confusion matrix 

As can be seen from the data in the TABLE Ⅱ, the 

improved YOLO-CFDU model significantly outperforms 

the above comparison models in terms of detection accuracy, 

computational efficiency, and lightweight performance, 

with Precision and Recall reaching 0.913 and 0.666, and the 

mAP@0.5 and mAP@0.5-0.95 are improved by 4.6% and 

7.6%, compared to the YOLOv11n baseline model, 

reflecting the higher detection accuracy at different IoU 

thresholds. In terms of lightweighting, thanks to LAMP 

pruning technology, the number of model parameters and 

computational volume are compressed to 1.4M and 

4.5GFLOPs, the inference speed is increased to 617.2FPS, 

and the model volume is reduced to 3.3MB, which is 28.3% 

smaller compared to the smallest model in the table, 

YOLOv9t, and 40.0% smaller compared to the original 

model, which can meet the requirements of real-time 

detection and mobile deployment. 

The Confusion Matrix can intuitively reflect the 

prediction accuracy and misclassification of the model for 

different target categories, and Fig. 10 demonstrates the 

change status of the confusion matrix of models YOLOv11n 

and YOLO-CFDU before and after improvement. Compared 

with the pre-improvement period, YOLO-CFDU 

significantly improves the recognition accuracy of each 

garbage category. Among them, the recognition accuracy of 

cigarette butt is improved by 37%, and the leakage problem 

of small-size garbage is effectively alleviated. In addition, 

the misclassification rate of background is significantly 

reduced, indicating that the model's anti-interference ability 

against complex background is improved. Overall, the 

improved model YOLO-CFDU performs better in 

recognition accuracy, and its generalization ability and 

robustness are significantly enhanced. 

To evaluate the optimization effect of different attention 

mechanisms on model performance, we further compared 

the mAP@0.5 variations over 200 training epochs when 

incorporating ECA, CBAM, SE, and EMA attention 

modules. The experimental results are shown in Fig. 11. As 

shown in Fig. 11, the mAP@0.5 of all attention mechanisms 

exhibits a similar growth trend during the early stages of 

training. However, as training progresses, the EMA 

attention mechanism demonstrates a clear advantage, 

ultimately achieving the highest mAP@0.5 of 0.73, 

outperforming the other attention modules overall. 

 

Fig. 11. Variation curves of mAP@0.5 for different attention mechanisms 

2) Ablation Experiment 

To further explore the contribution of each improved 

module to the performance of the YOLO-CFDU model, we 

design ablation experiments by gradually introducing each 

module and comparing the performance changes when 

different modules are combined, and the comparison results 

of the ablation experiments are shown in TABLE Ⅲ. 

TABLE Ⅲ 

COMPARISON RESULTS OF ABLATION EXPERIMENT 
 

C3K2-FE DSWF U-IoU LAMP Precision Recall mAP@0.5 mAP@0.5-0.95 Params/M GFLOPs FPS Size/MB 

× × × × 0.873 0.630 0.703 0.541 2.5 6.4 602.4 5.5 

√ × × × 0.902 0.633 0.731 0.582 2.4 6.7 510.2 5.2 

√ √ × × 0.911 0.656 0.738 0.607 2.5 7.7 492.6 5.4 

√ √ √ × 0.918 0.685 0.755 0.617 2.5 7.7 492.6 5.4 

√ √ √ √ 0.913 0.666 0.735 0.582 1.4 4.5 617.2 3.3 
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Fig. 12. Feature visualization 

The data in the TABLE Ⅲ shows that after the 

introduction of the C3K2-FE module, Precision is improved 

to 0.902, mAP@0.5 is improved by 4.0%, but FPS decreases 

by 15.3% due to the increase of the computational 

complexity; after further integration of the DSWF module, 

Recall is improved by 3.6%, and mAP@0.5 reaches 0.738, 

which indicates that the module can effectively enhance the 

target area feature expression; after the introduction of the 

U-IoU loss function, mAP@0.5 is improved by 2.3% 

compared with the previous stage, which verifies its 

optimization effect on the regression accuracy of the 

bounding box; finally, applying the LAMP pruning 

technique, the Params is compressed by 44.0%, and the 

model volume is reduced to 3.3MB. Although mAP@0.5 is 

slightly decreased by 2.6% compared with that before the 

pruning, it significantly balances the detection accuracy and 

the lightweight performance to meet the needs of mobile 

deployment. 

In the ablation experiments, the DSWF module enhances 

the model's ability to extract target features in complex 

backgrounds through the dynamic spatial weight allocation 

strategy. To visually verify its mechanism of action, Fig. 12 

demonstrates the feature enhancement effect of the DSWF 

module. When the DSWF module is not added, the model 

does not focus on the target region prominently enough in 

the face of limited illumination, shadow occlusion, complex 

road texture and other environmental interferences, resulting 

in an affected detection effect. After adding the DSWF 

module, the high response region of the heat map is more 

focused on the target object, indicating that the module can 

effectively overcome the environmental interference and 

improve the recognition of target features. 

3) U-IoU Loss Analysis 

To evaluate the advantage of U-IoU over the original 

CIoU for bounding box regression, we recorded the curves 

of the two loss functions with epochs under the same 

training settings, as shown in Fig. 13. 

 

Fig. 13. Loss function variation curve 

From the change in the loss curve in Fig. 13, U-IoU shows 

a faster decline in loss at the beginning of the training period, 

showing stronger convergence ability. Throughout the entire 

training process, its loss remains consistently below that of 

CIoU and ultimately converges to a lower level. In addition, 

the U-IoU loss curve remains smooth and stable throughout 

the whole process without significant fluctuations, while the 

CIoU has slight oscillations during the descent process. 

These results fully demonstrate the superiority of U-IoU 

over traditional CIoU in the bounding box regression task, 

both in terms of convergence speed, final results and training 

stability. 

4) Pruning Experiment 

LAMP pruning, as a layer-adaptive structured pruning 

algorithm, has the advantage that automated model 

compression can be achieved without intervention in 

hyperparameter tuning. It is worth noting that due to the 

heterogeneous nature of topological connections between 

neural network layers, different pruning strengths impair 

inter-layer dependencies significantly, which is often 

accompanied by unavoidable accuracy degradation. 
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TABLE Ⅳ 

COMPARISON RESULTS OF DIFFERENT PRUNING RATES 

 

Speed_up Precision Recall mAP@0.5 mAP@0.5-0.95 Params/M GFLOPs FPS Size/MB 

1.0 0.918 0.685 0.755 0.617 2.5 7.7 492.6 5.4 
1.5 0.915 0.669 0.745 0.594 1.7 5.1 598.8 3.6 

1.7 0.913 0.666 0.735 0.582 1.4 4.5 617.2 3.3 

2.0 0.906 0.639 0.728 0.578 1.3 3.8 636.9 2.9 
2.2 0.899 0.619 0.703 0.552 1.1 3.5 645.1 2.5 

2.4 0.869 0.602 0.681 0.534 1.0 3.2 657.8 2.3 

 

Although subsequent accuracy fine-tuning can reconfigure 

the model representation capability, there is a significant 

difference in the magnitude of accuracy regain under 

different Speed_up pruning rates. In order to seek the 

optimal balance between model compression and accuracy 

maintenance, we design multiple sets of Speed_up 

parameter comparison experiments, and the experimental 

results are shown in TABLE Ⅳ. 

The data in the TABLE Ⅳ shows that when Speed_up is 

1.7, the model Params and Size shrink by 44.0% and 38.9%, 

while mAP@0.5 decreases by only 2.6%. When Speed_up is 

1.5, mAP@0.5 drops by just 1.3%, but the computational 

cost decreases relatively small. When Speed_up exceeds 1.7, 

the model Size is further reduced, but the loss of accuracy is 

aggravated, and the compression ratio tends to slow down. 

Therefore, after comprehensive consideration, the pruning 

model with a Speed_up of 1.7 is selected as the final 

optimized model, which significantly reduces the 

computational cost while maintaining the model 

characterization ability to the greatest extent. The 

comparison of the number of channels before and after 

pruning is shown in Fig. 14. 

5) Visualization Results 

To intuitively demonstrate the garbage detection 

performance of the improved YOLO-CFDU model, four 

representative urban road garbage scenarios from the test set 

are selected for visual comparison. The results are shown in 

Figs. 15 to 18, with each figure displaying: (a) original 

image, (b) YOLOv11n output, and (c) YOLO-CFDU output. 

Fig. 15 presents a scenario characterized by pavement 

cracks and weed interference. As shown in Fig. 15(b), the 

baseline model fails to detect a plastic bag target obscured 

by the complex background. In contrast, the improved 

model successfully identifies the target, demonstrating 

enhanced detection accuracy under challenging visual 

conditions. For the densely piled garbage scene in Fig. 16, 

the improved feature fusion strategy effectively enhances 

the target area feature expression. As a result, multiple 

overlapping or partially occluded targets, which are difficult 

to distinguish in Fig. 16(b), are clearly and accurately 

identified in Fig. 16(c). In Fig. 17, which contains small and 

inconspicuous targets such as cigarette butts on the road 

surface, the integration of the EMA attention mechanism 

significantly boosts the model’s sensitivity to fine details, 

enabling precise localization of the small targets. As shown 

in Fig. 18, under the interference of strong illumination and 

shadows, the improved model further detects fuzzy targets 

that were previously missed due to light interference, while 

ensuring the accurate identification of the original targets. 

These results collectively demonstrate that the improved 

YOLO-CFDU model achieves higher accuracy and stronger 

robustness across a wide range of complex urban garbage 

detection scenarios. 

 

   

(a) original image (b) YOLOv11n output (c) YOLO-CFDU output 

Fig. 15. Comparison of detection visualization results of the two models in the first scenario. 

Fig. 14. Comparison of channels before and after pruning 
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(a) original image (b) YOLOv11n output (c) YOLO-CFDU output 

Fig. 16. Comparison of detection visualization results of the two models in the second scenario. 

   

(a) original image (b) YOLOv11n output (c) YOLO-CFDU output 

Fig. 17. Comparison of detection visualization results of the two models in the third scenario. 

   

(a) original image (b) YOLOv11n output (c) YOLO-CFDU output 

Fig. 18. Comparison of detection visualization results of the two models in the fourth scenario. 

6) Real-vehicle Experiment 

To verify the detection performance of the improved 

YOLO-CFDU model in real road scenarios, we conduct 

real-vehicle testing experiments based on the AKM ROS 

smart car, which is equipped with the Astra camera, 

embedded computing unit (Jetson Xavier NX), board 

computer and other equipment required for this experiment, 

The experimental vehicle is shown in Fig. 19. 

 

Fig. 19. AKM ROS smart car 
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The experiment was conducted on a 200-meter secondary 

road and sidewalk in a city, with randomly distributed 

cigarette butts, plastic bags, plastic bottles, and other litter. 

The ROS smart car traveled the route at a constant speed of 1 

m/s, capturing road images with an Astra camera. These 

images were processed by an embedded unit for garbage 

detection, with results transmitted to an onboard computer 

for storage and real-time display. Experimental results 

demonstrate that YOLO-CFDU delivers excellent detection 

performance in real road environments, achieving a stable 

inference speed of 43.6 FPS, which meets real-time 

requirements. As shown in Fig. 20, the model effectively 

detects targets of varying sizes in mixed scenes and 

maintains high accuracy even under complex conditions 

such as dense garbage piles, uneven road textures, and 

lighting interference, with no missed or false detections 

observed. 

  

  

Fig. 20. Vehicle testing effect 

Ⅳ. CONCLUSION 

To address the challenges of variable object morphology 

size and complex background interference in urban road 

garbage detection, this paper proposes an improved model 

YOLO-CFDU based on YOLOv11. The C3K2-FE module 

is designed to replace the C3K2 module, incorporating 

Fasterblock to reduce redundant computations while 

integrating the EMA attention mechanism to enhance 

multi-scale feature extraction. Additionally, the DSWF 

module is introduced to dynamically allocate spatial weights 

and reinforce target feature representation. The U-IoU loss 

function is adopted to optimize bounding box regression 

accuracy and balance gradient contributions from high- and 

low-quality samples. To meet lightweight deployment 

requirements, the LAMP pruning technique is used to 

compress model parameters and computational overhead. 

Experimental results on the self-constructed urban road 

garbage dataset demonstrate that the improved model 

achieves mAP@0.5 of 0.735, outperforming the baseline by 

4.6%. Meanwhile, model parameters and computations are 

reduced by 44.0% and 29.7%, respectively, significantly 

lowering computational overhead while maintaining 

detection accuracy. This study provides an efficient and 

cost-effective garbage detection solution for urban 

sanitation management, offering technical support for 

advancing urban environmental governance. 
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