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Abstract—In this study, we derive several notable topological
indices for linear functional graphs over finite dimensional
vector spaces. In particular, we obtain certain novel topological
indices, such as the multiplicative degree-based topological
indices for Zagreb and Hyper Zagreb. In addition to these, we
investigated certain noteworthy geometric arithmetic indices in
their generalized forms. Reverse multiplicative indices utilize
this idea to analyze the inverse of these products, providing
an alternate method for measuring connectedness or other
structural features of a graph. Refined indices extend classic
topological measurements by taking into an account deeper
interactions between degrees or higher-order connections,
resulting in a more comprehensive representation of network
and graph structure. Revan indices are proposed as an extension
of traditional degree-based metrics, offering higher sensitivity to
subtle structural differences in network topology and effectively
distinguishing non-isomorphic graphs with identical global
features. Furthermore, we explore elliptic Sombor indices as
a novel variant that captures degree-based structural nuances
through elliptic functional transformations, enhancing the
analytical resolution of graph invariants.

Index Terms—topological indices, Wiener index, Randic
index, finite dimensional, linear functional graph.

I. I NTRODUCTION

T HE concept of connecting graphs with algebraic
frameworks was first explored by Beck [3], who

applied this perspective to address graph coloring challenges
using commutative ring theory. This initial work laid the
foundation for a broader field that merges graph theory
with algebra. Significant progress has since been made,
particularly through the contributions of Anderson and
Tamizh Chelvam [1], as well as Badawi [2], who introduced
and developed the theory of zero-divisor graphs. These
graphs serve as tools to investigate algebraic structures
by translating ring-theoretic properties into graph-theoretic
language.
Beyond ring theory, the application of graph-based
models has been extended to the study of vector spaces,
particularly those over finite fields. Das [5]-[6] proposed the
notion of linear functional graphs, where vertices represent
vectors and edges reflect linear transformations. These
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graphs naturally incorporate fundamental aspects of vector
spaces, such as their dimensional structure, basis elements,
and subspace relationships. Further studies, including
[12], have delved into the symmetries of these graphs
by analyzing their automorphisms, highlighting structural
regularities and invariants.
In parallel, topological indices-numerical measures derived
from graphs-have gained attention for their ability to
capture key features of complex structures. Originating in
the field of mathematical chemistry, these indices quantify
characteristics such as molecular branching, cyclic structures,
and vertex connectivity. Early foundational work by Gutman
[9] and Kulli [10] demonstrated how topological indices
like the Zagreb and Randic indices could predict molecular
properties such as stability, boiling points, and biological
activity.
The utility of topological indices now spans multiple
disciplines. In nanotechnology, they are used to describe
nanoscale architectures, including fullerenes and carbon
nanotubes. In biomedical science, these indices contribute to
the modeling of molecular networks, such as protein-protein
interactions and RNA configurations. For instance, during
the COVID-19 outbreak, structural analysis of antiviral
agents such as chloroquine, remdesivir, and theaflavin-
utilized topological descriptors to support drug research and
molecular modeling [20].
Additionally, [26] topological indices have found
applications in various computational and theoretical
fields. Like in machine learning and pattern recognition,
graph-based features, often encoded using topological
indices, enhance model performance in tasks like image
classification and community detection. In cryptography,
algebraic graphs are instrumental in constructing secure
protocols, including public-key systems grounded in vector
spaces and graph transformations. In quantum computing,
graph-theoretic tools are used to design quantum codes
and analyze quantum network states. And in network
theory, topological indices are employed to evaluate
system robustness, node influence, and structural balance
in networks such as transportation systems and digital
communication infrastructures.
The focus of this paper is to expand on this growing
body of research by computing and analyzing degree-based
topological indices for linear functional graphs over finite-
dimensional vector spaces. In particular, we investigate both
additive and multiplicative forms of indices such as the
Zagreb and Randic in [7] and [19] and Arithmetic-Geometric
indices, including their hyper and modified versions, as
presented in [15]. Furthermore, we explore the Revan index
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introduced in [11], which captures the structural imbalance
betweenconnected vertices. These indices provide deeper
insight into the internal arrangement of vector spaces
when viewed through a graph-theoretic lens. Through the
integration of linear algebra and graph theory, this research
presents a new mathematical perspective that supports
both theoretical exploration and practical application. The
outcomes of this study may be of interest to fields ranging
from chemistry and molecular biology to cryptography,
quantum computing, and network analysis.

II. PRELIMINARIES

Throughout the graph, letFq be a finite field with q

elements andn ≥ 3 be a positive integer,V0 be ann-
dimensional vector space overFq, andU0 be the set of all
linear functionals fromV0 to Fq. Let V = V0 \ {0} and
U = U0 \ {0}. The linear functional graph ofV0, denoted
by F(V), is an undirected bipartite graph whose vertex setV

is partitioned into two sets asV = V ∪ U, and two vertices
v ∈ V and f ∈ U are adjacent if and only iff sends the
vertexv to 0 in Fq.

In this section, we will review some of the definitions and
terminologies that are required to progress with this article.
Let x be a vertex on the graph. The degree d(x) is the number
of edges that intersect withx. For any two verticesx, y
connected by a path in the graph, the distance d(x, y) is the
length of the shortestx− y path. The eccentricity of vertex
x is the maximum distance betweenx and all other vertices
in the graph. The diameter of the graph is the maximum of
the eccentricities of all its vertices. The order represents the
number of vertices, whereas the size represents the number
of edges in the graph.

Lemma 2.1:([12, Lemma 2.4]) The degree of every vertex
of F(V) is qn−1−1, and henceF(V) is a(qn−1−1) - regular
graph.

Theorem 2.2:([12, Theorem 2.6]) The domination
number ofF(V) is 2q + 2.

Lemma 2.3:([23, Lemma 2.1]) LetDG(V) be the dual
graph of ann-dimensional vector spaceV over Fq. Then
(1) The order and the size ofDG(V) are, respectively,
2(qn−1)

q−1 and (qn−1)(qn−1−1)
(q−1)2 .

(2) DG(V) is a regular graph of degreeq
n−1−1
q−1 .

(3) A pair of distinct vertices inX∗ has qn−2−1
q−1 common

neighbors.
(4) A pair of distinct vertices inX has qn−2−1

q−1 common
neighbors.

Theorem 2.4: ([23, Theorem 3.4]) Letn ≥ 2. Then
diam(DG(V)) = ∞ if n = 2 and diam(DG(V)) = 3 if
n ≥ 3.

Remark 2.5:Let F(V) be the linear functional graphs
of an n - dimensional vector spaceV over Fq. Then the
order and the size ofF(V) are, respectively,2(q

n−1)
q−1 and

(qn−1)(qn−1−1)
q−1 .

Remark2.6: By theorem 2.4 and remarks 2.3 and 2.7 in
[12], we get the eccentricity of every vertex inF(V) is 3 for
n ≥ 3.

III. M ULTIPLICATIVE ZAGREB INDEX

This segment gives us some of the multiplicative Zagreb
indices forF(V), which are degree-based indices.

1. First Multiplicative Zagreb Index :

II1(F(V)) =
∏

ı∈V (dı)
2

2. General Multiplicative Index :

Wα
1 (F(V)) =

∏

ı∈V (dı)
α

3. First Multiplicative Generalized Zagreb Index :

MZα
1 (F(V)) =

∏

ı∈E(dı + d)
α

4. Second Multiplicative Generalized Zagreb Index :

MZα
2 (F(V)) =

∏

ı∈E(dı.d)
α

5. Multiplicative version of First Zagreb Index :

II∗1 (F(V)) =
∏

ı∈E(dı + d)

6. Second Multiplicative Zagreb Index :

II∗1 (F(V)) =
∏

ı∈E(dı.d)

7. Multiplicative First Hyper Zagreb Index :

HII1(F(V)) =
∏

ı∈E(dı + d)
2

8. Multiplicative Second Hyper Zagreb Index :

HII2(F(V)) =
∏

ı∈E(dı.d)
2

9. Multiplicative Augmented Zagreb Index :

AZII(F(V)) =
∏

ı∈E

(

dı.d

dı+d−2

)3

10. Multiplicative Exponential Wiener Index :

EW (F(V)) = 1
2

∏

ı∈V edı

Theorem 3.1: The First Multiplicative Zagreb Index of
F(V) is

II1(F(V)) = (qn−1 − 1)4q
n−4

Proof:

II1(F(V)) =
∏

ı∈V

(dı)
2

=
∏

ı∈V

(qn−1 − 1)2

= (qn−1 − 1)2[2(q
n−1)]

= (qn−1 − 1)4q
n−4

Theorem 3.2:The General Multiplicative Index ofF(V)
is

Wα
1 (F(V)) = (qn−1 − 1)2αq

n−2α

Proof:

Wα
1 (F(V)) =

∏

ı∈V

(dı)
α

=
∏

ı∈V

(qn−1 − 1)α

= (qn−1 − 1)α2(q
n−1)

= (qn−1 − 1)2αq
n−2α

Theorem 3.3:TheFirst Multiplicative Generalized Zagreb
Index ofF(V) is

MZα
1 (F(V)) = [2qn−1 − 2]αq

2n−1−αqn−αqn−1+α
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Proof:

MZα
1 (F(V)) =

∏

ı∈E

(dı + d)
α

=
∏

ı∈E

[qn−1 − 1 + qn−1 − 1]α

=
∏

ı∈E

[2(qn−1 − 1)]α

= [2(qn−1 − 1)]α(q
n−1)(qn−1−1)

= [2(qn−1 − 1)]α(q
2n−1−qn−qn−1+1)

= [2qn−1 − 2]α(q
2n−1−qn−qn−1+1)

= [2qn−1 − 2]αq
2n−1−αqn−αqn−1+α

Theorem 3.4:The Second Multiplicative Generalized
Zagreb Index ofF(V) is

MZα
2 (F(V)) = (qn−1 − 1)2αq

2n−1−2αqn−2αqn−1+2α

Proof:

MZα
2 (F(V)) =

∏

ı∈E

(dı.d)
α

=
∏

ı∈E

(qn−1 − 1× qn−1 − 1)α

=
∏

ı∈E

(qn−1 − 1)2α

= (qn−1 − 1)2α(q
n−1)(qn−1−1)

= (qn−1 − 1)2α(q
2n−1−qn−qn−1+1)

= (qn−1 − 1)2αq
2n−1−2αqn−2αqn−1+2α

Theorem 3.5:The Multiplicative version of First Zagreb
Index ofF(V) is

II∗1 (F(V)) = [2qn−1 − 2]q
2n−1−qn−qn−1+1

Proof:

II∗1 (F(V)) =
∏

ı∈E

(dı + d)

=
∏

ı∈E

[(qn−1 − 1) + (qn−1 − 1)]

=
∏

ı∈E

[2(qn−1 − 1)]

= [2(qn−1 − 1)](q
n−1)(qn−1−1)

= [2qn−1 − 2]q
2n−1−qn−qn−1+1

Theorem 3.6:The Second Multiplicative Zagreb Index of
F(V) is

II∗1 (F(V)) = (qn−1 − 1)2q
2n−1−2qn−2qn−1+2

Proof:

II∗1 (F(V)) =
∏

ı∈E

(dı.d)

=
∏

ı∈E

[(qn−1 − 1)× (qn−1 − 1)]

=
∏

ı∈E

(qn−1 − 1)2

= (qn−1 − 1)2(q
n−1)(qn−1−1)

= (qn−1 − 1)2(q
2n−1−qn−qn−1+1)

= (qn−1 − 1)2q
2n−1−2qn−2qn−1+2

Theorem 3.7:The Multiplicative First Hyper Zagreb
Index ofF(V) is

HII1(F(V)) = [2qn−1 − 2]2q
2n−1−2qn−2qn−1+2

Proof:

HII1(F(V)) =
∏

ı∈E

(dı + d)
2

=
∏

ı∈E

[(qn−1 − 1) + (qn−1 − 1)]2

=
∏

ı∈E

[2(qn−1 − 1)]2

= [2(qn−1 − 1)]2(q
n−1)(qn−1−1)

= [2(qn−1 − 1)]2(q
2n−1−qn−qn−1+1)

= [2qn−1 − 2]2q
2n−1−2qn−2qn−1+2

Theorem 3.8:The Multiplicative Second Hyper Zagreb
Index ofF(V) is

HII2(F(V)) = (qn−1 − 1)4q
2n−1−4qn−4qn−1+4

Proof:

HII2(F(V)) =
∏

ı∈E

(dı.d)
2

=
∏

ı∈E

[(qn−1 − 1)× (qn−1 − 1)]2

=
∏

ı∈E

[(qn−1 − 1)2]2

=
∏

ı∈E

(qn−1 − 1)4

= (qn−1 − 1)4(q
n−1)(qn−1−1)

= (qn−1 − 1)4(q
2n−1−qn−qn−1+1)

= (qn−1 − 1)4q
2n−1−4qn−4qn−1+4

Theorem 3.9:The Multiplicative Augmented Zagreb
Index ofF(V) is

AZII(F(V)) =
(

q2n−2+1−2qn−1

2qn−1−4

)3q2n−1−3qn−3qn−1+3
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Proof:

AZII(F(V)) =
∏

ı∈E

(

dı.d

dı + d − 2

)3

=
∏

ı∈E

(

(qn−1 − 1)(qn−1 − 1)

(qn−1 − 1) + (qn−1 − 1)− 2

)3

=
∏

ı∈E

(

(qn−1 − 1)2

2(qn−1 − 1)− 2

)3

=
∏

ı∈E

(

(qn−1 − 1)2

2(qn−1 − 1− 1)

)3

=
∏

ı∈E

(

(qn−1 − 1)2

2(qn−1 − 2)

)3

=

[

(

(qn−1 − 1)2

2(qn−1 − 2)

)3
](qn−1)(qn−1−1)

=

(

(qn−1 − 1)2

2(qn−1 − 2)

)3(qn−1)(qn−1−1)

=

(

(qn−1 − 1)2

2(qn−1 − 2)

)3(q2n−1−qn−qn−1+1)

=

(

(qn−1 − 1)2

2(qn−1 − 2)

)3q2n−1−3qn−3qn−1+3

=

(

q2n−2 + 1− 2qn−1

2qn−1 − 4

)3q2n−1−3qn−3qn−1+3

Theorem 3.10:Multiplicative Exponential Wiener Index
of F(V) is

EW (F(V)) = 1
2e

2q2n−1−2qn−2qn−1+2

Proof:

EW (F(V)) =
1

2

∏

ı∈V

edı

=
1

2

∏

ı∈V

e(q
n−1−1)

=
1

2
[e(q

n−1−1)]2(q
n−1)

=
1

2
e2(q

n−1)(qn−1−1)

=
1

2
e2q

2n−1−2qn−2qn−1+2

IV. M ULTIPLICATIVE BASED OTHER INDEX AND

GEOMETRIC ARITHMETIC INDEX:

This area shows the other multiplicative-based indices,
the harmonic index and the geometric arithmetic index,
which are based on the edges ofF(V)

1. Narumi - Katayama Index :

NK(F(V)) =
∏

ı∈V (dı)

2. Multiplicative Sum Connectivity Index :

SCII(F(V)) =
∏

ı∈E
1√

dı+d

3. Multiplicative Product Connectivity Index :

PCII(F(V)) =
∏

ı∈E
1√
dı.d

4. Multiplicative Sum Connectivity F - Index :

SFII(F(V)) =
∏

ı∈E
1√

d2
ı
+d2



5. Multiplicative Product Connectivity F - Index :

PFII(F(V)) =
∏

ı∈E
1√
d2
ı
.d2



6. Multiplicative First F - Index :

F1II(F(V)) =
∏

ı∈E [(dı)
2 + (d)

2]

7. Multiplicative Second F - Index :

F2II(F(V)) =
∏

ı∈E [(dı)
2.(d)

2]

8. Multiplicative ABC Index :

ABCII(F(V)) =
∏

ı∈E

√

dı+d−2
dı.d

9. Multiplicative Harmonic Index :

HII(F(V)) =
∏

ı∈E
2

dı+d

10. Multiplicative Geometric Arithmetic Index :

GAII(F(V)) =
∏

ı∈E

2
√

dı.d

dı+d

11. General Multiplicative Geometric Arithmetic Index :

GAαII(F(V)) =
∏

ı∈E

(

2
√

dı.d

dı+d

)α

Theorem 4.1: The Narumi - Katayama Index ofF(V) is
NK(F(V)) = (qn−1 − 1)2q

n−2

Proof:

NK(F(V)) =
∏

ı∈V

(dı)

=
∏

ı∈V

(qn−1 − 1)

= (qn−1 − 1)2(q
n−1)

= (qn−1 − 1)2q
n−2

Theorem 4.2:The Multiplicative Sum Connectivity Index
of F(V) is

SCII(F(V)) =

[

1√
2qn−1−2

]q2n−1−qn−qn−1+1

Proof:

SCII(F(V)) =
∏

ı∈E

1
√

dı + d

=
∏

ı∈E

[

1
√

(qn−1 − 1) + (qn−1 − 1)

]

=
∏

ı∈E

[

1
√

2(qn−1 − 1)

]

=

[

1
√

2(qn−1 − 1)

](qn−1)(qn−1−1)

=

[

1
√

2qn−1 − 2

]q2n−1−qn−qn−1+1
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Theorem 4.3:The Multiplicative Product Connectivity
Index ofF(V) is

PCII(F(V)) =
[

qn−1 − 1
]

(

−q
2n−1+q

n+q
n−1

−1
2

)

Proof:

PCII(F(V)) =
∏

ı∈E

1
√

dı.d

=
∏

ı∈E

[

1
√

(qn−1 − 1)× (qn−1 − 1)

]

=
∏

ı∈E

[

1
√

(qn−1 − 1)2

]

=
∏

ı∈E

[

1

(qn−1 − 1)

]

=

[

1

(qn−1 − 1)

](qn−1)(qn−1−1)

=
[

(qn−1 − 1)−
1
2

](qn−1)(qn−1−1)

=
[

qn−1 − 1
]

(

− (qn−1)(qn−1
−1)

2

)

=
[

qn−1 − 1
]

(

−q
2n−1+q

n+q
n−1

−1
2

)

Theorem 4.4:The Multiplicative Sum Connectivity F -
Index ofF(V) is

SFII(F(V)) =
[

1√
2(qn−1−1)

]q2n−1−qn−qn−1+1

Proof:

SFII(F(V)) =
∏

ı∈E

1
√

d2ı + d2

=
∏

ı∈E

[

1
√

(qn−1 − 1)2 + (qn−1 − 1)2

]

=
∏

ı∈E

[

1
√

2(qn−1 − 1)2

]

=
∏

ı∈E

[

1√
2(qn−1 − 1)

]

=

[

1√
2(qn−1 − 1)

](qn−1)(qn−1−1)

=

[

1√
2(qn−1 − 1)

]q2n−1−qn−qn−1+1

Theorem 4.5:The Multiplicative Product Connectivity F
- Index ofF(V) is

PFII(F(V)) =
[

qn−1 − 1
]−2q2n−1+2qn+2qn−1−2

Proof:

PFII(F(V)) =
∏

ı∈E

1
√

d2ı .d
2


=
∏

ı∈E

[

1
√

(qn−1 − 1)2 × (qn−1 − 1)2

]

=
∏

ı∈E

[

1
√

(qn−1 − 1)4

]

=
∏

ı∈E

[

1

(qn−1 − 1)2

]

=

[

1

(qn−1 − 1)2

](qn−1)(qn−1−1)

=
[

(qn−1 − 1)−2
](qn−1)(qn−1−1)

=
[

qn−1 − 1
]−2(qn−1)(qn−1−1)

=
[

qn−1 − 1
]−2(q2n−1−qn−qn−1+1)

=
[

qn−1 − 1
]−2q2n−1+2qn+2qn−1−2

Theorem 4.6:The Multiplicative First F - Index ofF(V)
is

F1II(F(V)) = [2qn−1 − 2]2q
2n−1−2qn−2qn−1+2

Proof:

F1II(F(V)) =
∏

ı∈E

[(dı)
2 + (d)

2]

=
∏

ı∈E

[(qn−1 − 1)2 + (qn−1 − 1)2]

=
∏

ı∈E

[2(qn−1 − 1)2]

= [2(qn−1 − 1)2](q
n−1)(qn−1−1)

= [2(qn−1 − 1)]2(q
n−1)(qn−1−1)

= [2qn−1 − 2]2(q
2n−1−qn−qn−1+1)

= [2qn−1 − 2]2q
2n−1−2qn−2qn−1+2

Theorem 4.7:The Multiplicative Second F - Index of
F(V) is

F2II(F(V)) = [qn−1 − 1]4q
2n−1−4qn−4qn−1+4

Proof:

F2II(F(V)) =
∏

ı∈E

[(dı)
2.(d)

2]

=
∏

ı∈E

[(qn−1 − 1)2 × (qn−1 − 1)2]

=
∏

ı∈E

[(qn−1 − 1)2]2

=
∏

ı∈E

(qn−1 − 1)4

= [(qn−1 − 1)4](q
n−1)(qn−1−1)

= [qn−1 − 1]4(q
n−1)(qn−1−1)

= [qn−1 − 1]4q
2n−1−4qn−4qn−1+4
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Theorem 4.8:The Multiplicative ABC Index ofF(V) is

ABCII(F(V)) =

[√
2qn−1−4

qn−1−1

]q2n−1−qn−qn−1+1

Proof:

ABCII(F(V)) =
∏

ı∈E

√

dı + d − 2

dı.d

=
∏

ı∈E

[
√

(qn−1 − 1) + (qn−1 − 1)− 2

(qn−1 − 1)(qn−1 − 1)

]

=
∏

ı∈E

[
√

2(qn−1 − 1)− 2

(qn−1 − 1)2

]

=
∏

ı∈E

[
√

2(qn−1 − 1− 1)

(qn−1 − 1)2

]

=
∏

ı∈E

[
√

2(qn−1 − 2)

(qn−1 − 1)2

]

=
∏

ı∈E

[

√

2(qn−1 − 2)

(qn−1 − 1)

]

=

[

√

2(qn−1 − 2)

(qn−1 − 1)

](qn−1)(qn−1−1)

=

[

√

2(qn−1 − 2)

(qn−1 − 1)

](q2n−1−qn−qn−1+1)

=

[

√

2qn−1 − 4

qn−1 − 1

]q2n−1−qn−qn−1+1

Theorem 4.9:TheMultiplicative Harmonic Index ofF(V)
is

HII(F(V)) =
[

qn−1 − 1
]−q2n−1+qn+qn−1−1

Proof:

HII(F(V)) =
∏

ı∈E

2

dı + d

=
∏

ı∈E

[

2

(qn−1 − 1) + (qn−1 − 1)

]

=
∏

ı∈E

[

2

2(qn−1 − 1)

]

=
∏

ı∈E

[

1

(qn−1 − 1)

]

=

[

1

(qn−1 − 1)

](qn−1)(qn−1−1)

=
[

qn−1 − 1
]−(qn−1)(qn−1−1)

=
[

qn−1 − 1
]−(q2n−1−qn−qn−1+1)

=
[

qn−1 − 1
]−q2n−1+qn+qn−1−1

Theorem 4.10:The Multiplicative Geometric Arithmetic
Index ofF(V) is

GAII(F(V)) = 1

Proof:

GAII(F(V)) =
∏

ı∈E

2
√

dı.d

dı + d

=
∏

ı∈E

2
√

(qn−1 − 1)(qn−1 − 1)

(qn−1 − 1) + (qn−1 − 1)

=
∏

ı∈E

2
√

(qn−1 − 1)2

2(qn−1 − 1)

=
∏

ı∈E

2(qn−1 − 1)

2(qn−1 − 1)

=
∏

ı∈E

(1)

= (1)(q
n−1)(qn−1−1)

= 1

Theorem 4.11:The General Multiplicative Geometric
Arithmetic Index ofF(V) is

GAαII(F(V)) = (1)
αq2n−1−αqn−αqn−1+α

Proof:

GAαII(F(V)) =
∏

ı∈E

(

2
√

dı.d

dı + d

)α

=
∏

ı∈E

(

2
√

(qn−1 − 1)(qn−1 − 1)

(qn−1 − 1) + (qn−1 − 1)

)α

=
∏

ı∈E

(

2
√

(qn−1 − 1)2

2(qn−1 − 1)

)α

=
∏

ı∈E

(

2(qn−1 − 1)

2(qn−1 − 1)

)α

=
∏

ı∈E

(1)
α

= [(1)
α
](q

n−1)(qn−1−1)

= (1)
α(qn−1)(qn−1−1)

= (1)
α(q2n−1−qn−qn−1+1)

= (1)
αq2n−1−αqn−αqn−1+α

V. REVERSE INDICES:

This subdivision gives us some of the well-known named
topological indices forF(V), which are degree-based indices.
Here the reduced reverse degreecı = δ(F(V))−dF(V)(v)+1

1. First Reverse Zagreb Index :

CM1(F(V)) =
∑

ı∈E(c(ı) + c())

2. Second Reverse Zagreb Index :

CM2(F(V)) =
∑

ı∈E(c(ı).c())

3. First Reverse Hyper Zagreb Index :

HCM1(F(V)) =
∑

ı∈E(c(ı) + c())2

4. Second Reverse Hyper Zagreb Index :
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HCM2(F(V)) =
∑

ı∈E(c(ı).c())
2

5. Reverse Randic Index :

RRα(F(V)) =
∑

ı∈E(c(ı) + c())α

6. Reverse ABC Index :

RABC(F(V)) =
∑

ı∈E

√

c(ı)+c()−2
c(ı).c()

7. Reverse Geometric Arithmetic Index :

RGA(F(V)) =
∑

ı∈E

2
√

c(ı).c()

c(ı)+c()

8. Reverse Forgotten Index :

RF (F(V)) =
∑

ı∈E(c(ı))
2 + (c())2

9. Reverse Harmonic Index :

RH(F(V)) =
∑

ı∈E
2

(c(ı)+c())

Theorem 5.1:The First Reverse Zagreb Index ofF(V) is
CM1(F(V)) = 2q2n−1 − 2qn − 2qn−1 + 2

Proof:

CM1(F(V)) =
∑

ı∈E

(c(ı) + c())

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]

=
∑

ı∈E

[1 + 1]

=
∑

ı∈E

[2]

= 2(qn − 1)(qn−1 − 1)

= 2(q2n−1 − qn − qn−1 + 1)

= 2q2n−1 − 2qn − 2qn−1 + 2

Theorem 5.2:The Second Reverse Zagreb Index ofF(V)
is

CM2(F(V)) = q2n−1 − qn − qn−1 + 1

Proof:

CM2(F(V)) =
∑

ı∈E

(c(ı).c())

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

×
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]

=
∑

ı∈E

[1× 1]

=
∑

ı∈E

[1]

= 1(qn − 1)(qn−1 − 1)

= q2n−1 − qn − qn−1 + 1

Theorem 5.3:The First Reverse Hyper Zagreb Index of
F(V) is

HCM1(F(V)) = 4q2n−1 − 4qn − 4qn−1 + 4

Proof:

HCM1(F(V)) =
∑

ı∈E

(c(ı) + c())2

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]2

=
∑

ı∈E

[1 + 1]
2

=
∑

ı∈E

[2]
2

= 4(qn − 1)(qn−1 − 1)

= 4(q2n−1 − qn − qn−1 + 1)

= 4q2n−1 − 4qn − 4qn−1 + 4

Theorem 5.4:TheSecond Reverse Hyper Zagreb Index of
F(V) is

HCM2(F(V)) = q2n−1 − qn − qn−1 + 1

Proof:

HCM2(F(V)) =
∑

ı∈E

(c(ı).c())2

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

×
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]2

=
∑

ı∈E

[1× 1]
2

=
∑

ı∈E

[1]
2

= 1(qn − 1)(qn−1 − 1)

= q2n−1 − qn − qn−1 + 1

Theorem 5.5:The Reverse Randic Index ofF(V) is
RRα(F(V)) = [2]α(q2n−1 − qn − qn−1 + 1)

Proof:

RRα(F(V)) =
∑

ı∈E

(c(ı) + c())α

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]α

=
∑

ı∈E

[1 + 1]
α

=
∑

ı∈E

[2]
α

= [2]α(qn − 1)(qn−1 − 1)

= [2]α(q2n−1 − qn − qn−1 + 1)

Theorem 5.6:The Reverse ABC Index ofF(V) is
RABC(F(V)) = 0
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Proof:

RABC(F(V)) =
∑

ı∈E

√

c(ı) + c()− 2

c(ı).c()

=
∑

ı∈E

√

2((qn−1 − 1)− (qn−1 − 1) + 1)− 2

((qn−1 − 1)− (qn−1 − 1) + 1)2

=
∑

ı∈E

√

2− 2

1

=
∑

ı∈E

[0]

= [0](qn − 1)(qn−1 − 1)

= 0

Theorem 5.7:TheReverse Geometric Arithmetic Index of
F(V) is

RGA(F(V)) = q2n−1 − qn − qn−1 + 1

Proof:

RGA(F(V)) =
∑

ı∈E

2
√

c(ı).c()

c(ı) + c()

=
∑

ı∈E

2

√

((qn−1 − 1)− (qn−1 − 1) + 1)
2

2 ((qn−1 − 1)− (qn−1 − 1) + 1)

=
∑

ı∈E

2

2

= [1](qn − 1)(qn−1 − 1)

= q2n−1 − qn − qn−1 + 1

Theorem 5.8:The Reverse Forgotten Index ofF(V) is

RF (F(V)) = 2q2n−1 − 2qn − 2qn−1 + 2

Proof:

RF (F(V)) =
∑

ı∈E

(c(ı))2 + (c())2

=
∑

ı∈E

(

(qn−1 − 1)− (qn−1 − 1) + 1
)2

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)2

=
∑

ı∈E

[

(1)2 + (1)2
]

=
∑

ı∈E

[2]

= 2(qn − 1)(qn−1 − 1)

= 2(q2n−1 − qn − qn−1 + 1)

= 2q2n−1 − 2qn − 2qn−1 + 2

Theorem 5.9:The Reverse Harmonic Index ofF(V) is

RH(F(V)) = q2n−1 − qn − qn−1 + 1

Proof:

RH(F(V)) =
∑

ı∈E

2

(c(ı) + c())

=
∑

ı∈E

2

2 ((qn−1 − 1)− (qn−1 − 1) + 1)

=
∑

ı∈E

2

2

=
∑

ı∈E

[1]

= 1(qn − 1)(qn−1 − 1)

= q2n−1 − qn − qn−1 + 1

VI. REVERSE MULTIPLICATIVE AND REFINED
INDICES:

This division shows that reverse multiplicative and refined
indices are based on degree.
1. Reverse First Multiple Zagreb Index :

RPM1(F(V)) =
∏

ı∈E c(ı) + c()

2. Reverse Second Multiple Zagreb Index :

RPM2(F(V)) =
∏

ı∈E c(ı).c()

3. Reverse First Refined Zagreb Index :

RReZG1(F(V)) =
∑

ı∈E
c(ı)+c()
c(ı).c()

4. Reverse Second Refined Zagreb Index :

RReZG2(F(V)) =
∑

ı∈E
c(ı).c()
c(ı)+c()

5. Reverse Third Refined Zagreb Index :

RReZG3(F(V)) =
∑

ı∈E(c(ı) + c())(c(ı).c())

Theorem 6.1:The Reverse First Multiple Zagreb Index of
F(V) is

RPM1(F(V)) = 2(q
2n−1−qn−qn−1+1)

Proof:

RPM1(F(V)) =
∏

ı∈E

(c(ı) + c())

=
∏

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]

=
∏

ı∈E

[1 + 1]

=
∏

ı∈E

[2]

= 2(q
n−1)(qn−1−1)

= 2(q
2n−1−qn−qn−1+1)

Theorem 6.2:TheReverse Second Multiple Zagreb Index
of F(V) is

RPM2(F(V)) = 1
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Proof:

RPM2(F(V)) =
∏

ı∈E

(c(ı)× c())

=
∏

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 1
)

×
(

(qn−1 − 1)− (qn−1 − 1) + 1
)]

=
∏

ı∈E

[1× 1]

=
∏

ı∈E

[1]

= 1(q
n−1)(qn−1−1)

= 1

Theorem 6.3:The Reverse First Refined Zagreb Index of
F(V) is

RReZG1(F(V)) = 2q2n−1 − 2qn − 2qn−1 + 2
Proof:

RReZG1(F(V)) =
∑

ı∈E

c(ı) + c()

c(ı).c()

=
∑

ı∈E

(

(qn−1 − 1)− (qn−1 − 1) + 1
)

((qn−1 − 1)− (qn−1 − 1) + 1)

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)

× ((qn−1 − 1)− (qn−1 − 1) + 1)

=
∑

ı∈E

[1 + 1]

1× 1

=
∑

ı∈E

[2]

= 2× (qn − 1)(qn−1 − 1)

= 2(q2n−1 − qn − qn−1 + 1)

= 2q2n−1 − 2qn − 2qn−1 + 2

Theorem 6.4:The Reverse Second Refined Zagreb Index
of F(V) is

RReZG2(F(V)) =
q2n−1−qn−qn−1+1

2
Proof:

RReZG2(F(V)) =
∑

ı∈E

c(ı).c()

c(ı) + c()

=
∑

ı∈E

(

(qn−1 − 1)− (qn−1 − 1) + 1
)

((qn−1 − 1)− (qn−1 − 1) + 1)

×
(

(qn−1 − 1)− (qn−1 − 1) + 1
)

+((qn−1 − 1)− (qn−1 − 1) + 1)

=
∑

ı∈E

1× 1

1 + 1

=
∑

ı∈E

1

2

=
1

2
((qn − 1)(qn−1 − 1))

=
1

2
(q2n−1 − qn − qn−1 + 1)

=
q2n−1 − qn − qn−1 + 1

2

Theorem 6.5:TheReverse Third Refined Zagreb Index of
F(V) is

RReZG3(F(V)) = 2q2n−1 − 2qn − 2qn−1 + 2

Proof:

RReZG3(F(V)) =
∑

ı∈E

(c(ı).c()) (c(ı) + c())

=
∑

ı∈E

(

(qn−1 − 1)− (qn−1 − 1) + 1
)

×
(

(qn−1 − 1)− (qn−1 − 1) + 1
)

(

(qn−1 − 1)− (qn−1 − 1) + 1
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 1
)

=
∑

ı∈E

(1× 1)(1 + 1)

=
∑

ı∈E

(1)(2)

= (2)((qn − 1)(qn−1 − 1))

= (2)(q2n−1 − qn − qn−1 + 1)

= 2q2n−1 − 2qn − 2qn−1 + 2

VII. REDUCED REVERSE INDICES:

This section gives us some of the results for calculating
reduced reverse degree-based topological indices forF(V),
which are degree-based indices.

Here the reduced reverse degree is
RRı = δ(F(V))− dF(V)(v) + 2

1. Reduced Reverse First Zagreb Index :

RRM1(F(V)) =
∑

ı∈E(RR(ı) +RR())

2. Reduced Reverse Second Zagreb Index :

RRM2(F(V)) =
∑

ı∈E(RR(ı).RR())

3. Reduced Reverse Hyper First Zagreb Index :

RRHM1(F(V)) =
∑

ı∈E(RR(ı) +RR())2

4. Reduced Reverse Hyper Second Zagreb Index :

RRHM2(F(V)) =
∑

ı∈E(RR(ı).RR())2

5. Reduced Reverse Forgotten Index :

RRF (F(V)) =
∑

ı∈E(RR(ı)2.RR()2)

6. Reduced Reverse ABC Index :

RRABC(F(V)) =
∑

ı∈E

[

RR(ı)+RR()−2
RR(ı).RR()

]

7. Reduced Reverse Geometric Arithmetic Index :

RRGA(F(V)) =
∑

ı∈E

[

2
√

RR(ı).RR()

RR(ı)+RR()

]

Theorem 7.1:The Reduced Reverse First Zagreb Index of
F(V) is

RRM1(F(V)) = 4q2n−1 − 4qn − 4qn−1 + 4
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Proof:

RRM1(F(V)) =
∑

ı∈E

(RR(ı) +RR())

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 2
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 2
)]

=
∑

ı∈E

[2 + 2]

=
∑

ı∈E

[4]

= 4(qn − 1)(qn−1 − 1)

= 4(q2n−1 − qn − qn−1 + 1)

= 4q2n−1 − 4qn − 4qn−1 + 4

Theorem 7.2:TheReduced Reverse Second Zagreb Index
of F(V) is

RRM2(F(V)) = 4q2n−1 − 4qn − 4qn−1 + 4
Proof:

RRM2(F(V)) =
∑

ı∈E

(RR(ı).RR())

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 2
)

×
(

(qn−1 − 1)− (qn−1 − 1) + 2
)]

=
∑

ı∈E

[2× 2]

=
∑

ı∈E

[4]

= 4(qn − 1)(qn−1 − 1)

= 4(q2n−1 − qn − qn−1 + 1)

= 4q2n−1 − 4qn − 4qn−1 + 4

Theorem 7.3:The Reduced Reverse Hyper First Zagreb
Index ofF(V) is

RRHM1(F(V)) = 16q2n−1 − 16qn − 16qn−1 + 16
Proof:

RRHM1(F(V)) =
∑

ı∈E

(RR(ı) +RR())2

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 2
)

+
(

(qn−1 − 1)− (qn−1 − 1) + 2
)]2

=
∑

ı∈E

[2 + 2]
2

=
∑

ı∈E

[16]

= 16(qn − 1)(qn−1 − 1)

= 16(q2n−1 − qn − qn−1 + 1)

= 16q2n−1 − 16qn − 16qn−1 + 16

Theorem 7.4:The Reduced Reverse Hyper Second
Zagreb Index ofF(V) is

RRHM2(F(V)) = 16q2n−1 − 16qn − 16qn−1 + 16

Proof:

RRHM2(F(V)) =
∑

ı∈E

(RR(ı).RR())2

=
∑

ı∈E

[(

(qn−1 − 1)− (qn−1 − 1) + 2
)

×
(

(qn−1 − 1)− (qn−1 − 1) + 2
)]2

=
∑

ı∈E

[2× 2]
2

=
∑

ı∈E

[16]

= 16(qn − 1)(qn−1 − 1)

= 16q2n−1 − 16qn − 16qn−1 + 16

Theorem 7.5:The Reduced Reverse Forgotten Index of
F(V) is

RRF (F(V)) = 8q2n−1 − 8qn − 8qn−1 + 8
Proof:

RRF (F(V)) =
∑

ı∈E

(RR(ı)2.RR()2)

=
∑

ı∈E

[

(

(qn−1 − 1)− (qn−1 − 1) + 2
)2

+
(

(qn−1 − 1)− (qn−1 − 1) + 2
)2
]

=
∑

ı∈E

[

22 + 22
]

=
∑

ı∈E

[8]

= 8(qn − 1)(qn−1 − 1)

= 8(q2n−1 − qn − qn−1 + 1)

= 8q2n−1 − 8qn − 8qn−1 + 8

Theorem 7.6:The Reduced Reverse ABC Index ofF(V)
is

RRABC(F(V)) =
[

q2n−1−qn−qn−1+1
2

]

Proof:

RRABC(F(V)) =
∑

ı∈E

[

RR(ı) +RR()− 2

RR(ı).RR()

]

=
∑

ı∈E

[

2
(

(qn−1 − 1)− (qn−1 − 1) + 2
)

((qn−1 − 1)− (qn−1 − 1) + 2)
2

]

−
[

2

((qn−1 − 1)− (qn−1 − 1) + 2)
2

]

=
∑

ı∈E

[

4− 2

4

]

=
∑

ı∈E

[

2

4

]

=

[

1

2

]

(qn − 1)(qn−1 − 1)

=

[

q2n−1 − qn − qn−1 + 1

2

]
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Theorem 7.7:The Reduced Reverse Geometric Arith-
metic Index ofF(V) is

RRGA(F(V)) = q2n−1 − qn − qn−1 + 1
Proof:

RRGA(F(V)) =
∑

ı∈E

[

2
√

RR(ı).RR()

RR(ı) +RR()

]

=
∑

ı∈E





2

√

((qn−1 − 1)− (qn−1 − 1) + 2)
2

2 ((qn−1 − 1)− (qn−1 − 1) + 2)





=
∑

ı∈E





2

√

(2)
2

4





=
∑

ı∈E

[

2× 2

4

]

=
∑

ı∈E

[1]

= [1] ((qn − 1)(qn−1 − 1))

= q2n−1 − qn − qn−1 + 1

VIII. REVAN INDICES:

The following section explores various results pertaining
to the Revan degree-based topological indices associated
with F(V). The Revan degree, in this case, is characterized
asrF(V)(v) = ∆(F(V)) + δ(F(V))− dF(V)(v)

1. First Revan Index :

R1(F(V)) =
∑

ı∈E(rF(V)(ı) + rF(V)())

2. Second Revan Index :

R2(F(V)) =
∑

ı∈E(rF(V)(ı))(rF(V)())

3. Third Revan Index :

R3(F(V)) =
∑

ı∈E |rF(V)(ı)− rF(V)()|
4. Multiplicative Revan Zero Index :

RII0(F(V)) =
∏

ı∈V (rF(V)(ı))

5. Multiplicative Revan Vertex Index :

RII01(F(V)) =
∏

ı∈V (rF(V)(ı))
2

6. First Multiplicative Revan Index :

RII1(F(V)) =
∏

ı∈E(rF(V)(ı) + rF(V)())

7. Second Multiplicative Revan Index :

RII2(F(V)) =
∏

ı∈E(rF(V)(ı))(rF(V)())

8. First Multiplicative Hyper Revan Index :

HRII1(F(V)) =
∏

ı∈E(rF(V)(ı) + rF(V)())
2

9. Second Multiplicative Hyper Revan Index :

HRII2(F(V)) =
∏

ı∈E [(rF(V)(ı))(rF(V)())]
2

10. F-Revan Index :

FR(F(V)) =
∑

ı∈E [rF(V)(ı)
2rF(V)()

2]

Theorem 8.1:The First Revan Index ofF(V) is
R1(F(V))

= 2q3n−2 − 4q2n−1 − 2q2n−2 + 4qn−1 + 2qn − 2
Proof:

R1(F(V)) =
∑

ı∈E

(rF(V)(ı) + rF(V)())

=
∑

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

+
(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)]

=
∑

ı∈E

[

(qn−1 − 1) + (qn−1 − 1)
]

= 2(qn−1 − 1)(qn − 1)(qn−1 − 1)

= 2q3n−2 − 4q2n−1 − 2q2n−2 + 4qn−1

+ 2qn − 2

Theorem 8.2:The Second Revan Index ofF(V) is
R2(F(V)) =

q4n−3−3q3n−2−q3n−3+3q2n−2+3q2n−1−3qn−1−qn+1
Proof:

R2(F(V)) =
∑

ı∈E

(rF(V)(ı))(rF(V)())

=
∑

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

×
(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)]

=
∑

ı∈E

[

(qn−1 − 1)× (qn−1 − 1)
]

= (qn−1 − 1)2(qn − 1)(qn−1 − 1)

= (q2n−2 + 1− 2qn−1)(q2n−1 − qn

− qn−1 + 1)

= q4n−3 − 3q3n−2 − q3n−3 + 3q2n−2

+ 3q2n−1 − 3qn−1 − qn + 1

Theorem 8.3:The Third Revan Index ofF(V) is
R3(F(V)) = 0

Proof:

R3(F(V)) =
∑

ı∈E

|rF(V)(ı)− rF(V)()|

=
∑

ı∈E

|
[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

−
(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)]

|
=
∑

ı∈E

|
[

(qn−1 − 1)− (qn−1 − 1)
]

|

=
∑

ı∈E

|0|

= [0](qn − 1)(qn−1 − 1)

= 0

Theorem 8.4:The Multiplicative Revan Zero Index of
F(V) is
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RII0(F(V)) = (qn−1 − 1)2q
n−2

Proof:

RII0(F(V)) =
∏

ı∈V

(rF(V)(ı))

=
∏

ı∈V

(

(qn−1 − 1) + (qn−1 − 1)− (qn−1 − 1)
)

=
∏

ı∈V

(qn−1 − 1)

= (qn−1 − 1)[2(q
n−1)]

= (qn−1 − 1)2q
n−2

Theorem 8.5:The Multiplicative Revan Vertex Index of
F(V) is

RII01(F(V)) = (qn−1 − 1)4q
n−4

Proof:

RII01(F(V)) =
∏

ı∈V

(rF(V)(ı))
2

=
∏

ı∈V

(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)2

=
∏

ı∈V

(qn−1 − 1)2

= (qn−1 − 1)2[2(q
n−1)]

= (qn−1 − 1)4q
n−4

Theorem 8.6:The First Multiplicative Revan
Index ofF(V) is

RII1(F(V)) = (2qn−1 − 2)q
2n−1−qn−qn−1+1

Proof:

RII1(F(V)) =
∏

ı∈E

(rF(V)(ı) + rF(V)())

=
∏

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

+
(

(qn−1 − 1)

+(qn−1 − 1)− (qn−1 − 1)
)]

=
∏

ı∈E

[

(qn−1 − 1) + (qn−1 − 1)
]

=
∏

ı∈E

[

2(qn−1 − 1)
]

= [2(qn−1 − 1)](q
n−1)(qn−1−1)

= (2qn−1 − 2)q
2n−1−qn−qn−1+1

Theorem 8.7:The Second Multiplicative Revan
Index ofF(V) is

RII2(F(V)) = (qn−1 − 1)2q
2n−1−2qn−2qn−1+2

Proof:

RII2(F(V)) =
∏

ı∈E

(rF(V)(ı))(rF(V)())

=
∏

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

×
(

(qn−1 − 1)

+(qn−1 − 1)− (qn−1 − 1)
)]

=
∏

ı∈E

[

(qn−1 − 1)× (qn−1 − 1)
]

= (qn−1 − 1)2(q
n−1)(qn−1−1)

= (qn−1 − 1)2(q
2n−1−qn−qn−1+1)

= (qn−1 − 1)2q
2n−1−2qn−2qn−1+2

Theorem 8.8:The First Multiplicative Hyper Revan
Index ofF(V) is

HRII1(F(V)) = (2qn−1 − 2)2q
2n−1−2qn−2qn−1+2

Proof:

HRII1(F(V)) =
∏

ı∈E

(rF(V)(ı) + rF(V)())
2

=
∏

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

+
(

(qn−1 − 1)

+(qn−1 − 1)− (qn−1 − 1)
)]2

=
∏

ı∈E

[

(qn−1 − 1) + (qn−1 − 1)
]2

=
∏

ı∈E

[

2(qn−1 − 1)
]2

= [2(qn−1 − 1)]2(q
n−1)(qn−1−1)

= (2qn−1 − 2)2q
2n−1−2qn−2qn−1+2

Theorem 8.9:The Second Multiplicative Hyper Revan
Index ofF(V) is

HRII2(F(V)) = (qn−1 − 1)4q
2n−1−4qn−4qn−1+4

Proof:

HRII2(F(V)) =
∏

ı∈E

[(rF(V)(ı))(rF(V)())]
2

=
∏

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)

×
(

(qn−1 − 1)

+(qn−1 − 1)− (qn−1 − 1)
)]2

=
∏

ı∈E

[

(qn−1 − 1)× (qn−1 − 1)
]2

=
∏

ı∈E

[

(qn−1 − 1)2
]2

=
∏

ı∈E

[

(qn−1 − 1)
]4

= (qn−1 − 1)4(q
n−1)(qn−1−1)

= (qn−1 − 1)4(q
2n−1−qn−qn−1+1)

= (qn−1 − 1)4q
2n−1−4qn−4qn−1+4
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Theorem 8.10:The F-Revan Index ofF(V) is
FR(F(V)) =

2q
2n−1−qn−qn−1+1(qn−1 − 1)2q

2n−1−2qn−2qn−1+2

Proof:

FR(F(V)) =
∑

ı∈E

[rF(V)(ı)
2rF(V)()

2]

=
∏

ı∈E

[(

(qn−1 − 1) + (qn−1 − 1)

−(qn−1 − 1)
)2

+
(

(qn−1 − 1)

+(qn−1 − 1)− (qn−1 − 1)
)2
]

=
∏

ı∈E

[

(qn−1 − 1)2 + (qn−1 − 1)2
]

=
∏

ı∈E

[

2(qn−1 − 1)2
]

= [2(qn−1 − 1)2](q
n−1)(qn−1−1)

= [2(qn−1 − 1)2](q
2n−1−qn−qn−1+1)

= [2(qn−1 − 1)]2q
2n−1−2qn−2qn−1+2

= 2q
2n−1−qn−qn−1+1

(qn−1 − 1)2q
2n−1−2qn−2qn−1+2

IX. ELLIPTIC SOMBOR INDEX:

The following discussion highlights various properties
and outcomes related to the Elliptic Sombor Index and
associated degree-based indices forF(V).

1. Elliptic Sombor Index:

ESO(F(V)) =
∑

ı∈E(dı + d)
√

d2ı + d2

2. Modified Elliptic Sombar Index:

mESO(F(V)) =
∑

ı∈E
1

(dı+d)
√

d2
ı
+d2



3. Multiplicative Elliptic Sombar Index:

ESOII(F(V)) =
∏

ı∈E(dı + d)
√

d2ı + d2

4. Multiplicative Modified Elliptic Sombar Index:

mESOII(F(V)) =
∏

ı∈E
1

(dı+d)
√

d2
ı
+d2



5. Multiplicative Sombor Index:

SO(F(V)) =
∏

ı∈E

√

d2ı + d2

6. Reduced Sombor Index:

SOr(F(V)) =
∑

ı∈E

√

(dı − 1)2 + (d − 1)2

7.Increased Sombor Index:

SO+(F(V)) =
∑

ı∈E

√

(dı + 1)2 + (d + 1)2

Theorem 9.1:The Elliptic Sombor Index ofF(V) is
ESO(F(V)) = 2

√
2(qn − 1)(qn−1 − 1)3

Proof:

ESO(F(V)) =
∑

ı∈E

(dı + d)
√

d2ı + d2

=
∑

ı∈E

[

(qn−1 − 1) + (qn−1 − 1)
]

[

√

(qn−1 − 1)2 + (qn−1 − 1)2
]

=
∑

ı∈E

[

2(qn−1 − 1)
]

[

√

2(qn−1 − 1)2
]

=
∑

ı∈E

[

2(qn−1 − 1)
]

[√
2(qn−1 − 1)

]

=
∑

ı∈E

[

2
√
2(qn−1 − 1)2

]

=
(

2
√
2(qn−1 − 1)2

)

(

(qn − 1)(qn−1 − 1)
)

= 2
√
2(qn − 1)(qn−1 − 1)3

Theorem 9.2:The Modified Elliptic Sombor Index of
F(V) is

mESO(F(V)) = (qn−1)

2
√
2(qn−1−1)

Proof:

mESO(F(V)) =
∑

ı∈E

1

(dı + d)
√

d2ı + d2

=
∑

ı∈E

(

(dı + d)
√

d2ı + d2

)−1

=
∑

ı∈E

([

(qn−1 − 1) + (qn−1 − 1)
]

[

√

(qn−1 − 1)2 + (qn−1 − 1)2
])−1

=
∑

ı∈E

(

[

2(qn−1 − 1)
]

[

√

2(qn−1 − 1)2
])−1

=
∑

ı∈E

(

[

2(qn−1 − 1)
]

[√
2(qn−1 − 1)

])−1

=
∑

ı∈E

(

2
√
2(qn−1 − 1)2

)−1

=
∑

ı∈E

1

2
√
2(qn−1 − 1)2

=

[

1

2
√
2(qn−1 − 1)2

]

(qn − 1)(qn−1 − 1)

=
(qn − 1)(qn−1 − 1)

2
√
2(qn−1 − 1)2

=
(qn − 1)

2
√
2(qn−1 − 1)

Theorem 9.3:TheMultiplicative Elliptic Sombor Index of
F(V) is

ESOII(F(V)) =
[

2
√
2(qn−1 − 1)2

]q2n−1−qn−qn−1+1
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Proof:

ESOII(F(V)) =
∏

ı∈E

(dı + d)
√

d2ı + d2

=
∏

ı∈E

[

(qn−1 − 1) + (qn−1 − 1)
]

[

√

(qn−1 − 1)2 + (qn−1 − 1)2
]

=
∏

ı∈E

[

2(qn−1 − 1)
]

[

√

2(qn−1 − 1)2
]

=
∏

ı∈E

[

2(qn−1 − 1)
]

[√
2(qn−1 − 1)

]

=
∏

ı∈E

[

2
√
2(qn−1 − 1)2

]

=
[

2
√
2(qn−1 − 1)2

](qn−1)(qn−1−1)

=
[

2
√
2(qn−1 − 1)2

]q2n−1−qn−qn−1+1

Theorem 9.4:The Multiplicative Modified Elliptic
Sombor Index ofF(V) is

mESOII(F(V)) =
[

1
2
√
2(qn−1−1)2

]q2n−1−qn−qn−1+1

Proof:

mESOII(F(V)) =
∏

ı∈E

1

(dı + d)
√

d2ı + d2

=
∏

ı∈E

(

(dı + d)
√

d2ı + d2

)−1

=
∏

ı∈E

([

(qn−1 − 1) + (qn−1 − 1)
]

[

√

(qn−1 − 1)2 + (qn−1 − 1)2
])−1

=
∏

ı∈E

([

2(qn−1 − 1)
]

[

√

2(qn−1 − 1)2
])−1

=
∏

ı∈E

(

2
√
2(qn−1 − 1)2

)−1

=
∏

ı∈E

[

1

2
√
2(qn−1 − 1)2

]

=

[

1

2
√
2(qn−1 − 1)2

](qn−1)(qn−1−1)

=

[

1

2
√
2(qn−1 − 1)2

]q2n−1−qn−qn−1+1

Theorem 9.5:The Multiplicative Sombor Index ofF(V)
is

SO(F(V)) =
[√

2(qn−1 − 1)
]q2n−1−qn−qn−1+1

Proof:

SO(F(V)) =
∏

ı∈E

√

d2ı + d2

=
∏

ı∈E

√

(qn−1 − 1)2 + (qn−1 − 1)2

=
∏

ı∈E

√

2(qn−1 − 1)2

=
∏

ı∈E

√
2(qn−1 − 1)

=
[√

2(qn−1 − 1)
](qn−1)(qn−1−1)

=
[√

2(qn−1 − 1)
]q2n−1−qn−qn−1+1

Theorem 9.6:The Reduced Sombor Index ofF(V) is
SOr(F(V)) =

√
2(qn−1 − 2)(qn − 1)(qn−1 − 1)

Proof:

SOr(F(V)) =
∑

ı∈E

√

(dı − 1)2 + (d − 1)2

=
∑

ı∈E

√

((qn−1 − 1)− 1)2 + ((qn−1 − 1)− 1)2

=
∑

ı∈E

√

2(qn−1 − 2)2

=
∑

ı∈E

√
2(qn−1 − 2)

=
(√

2(qn−1 − 2)
)

(

(qn − 1)(qn−1 − 1)
)

=
√
2(qn−1 − 2)(qn − 1)(qn−1 − 1)

Theorem 9.7:The Increased Sombor Index ofF(V) is
SO+(F(V)) =

√
2(qn−1)(qn − 1)(qn−1 − 1)

Proof:

SO+(F(V)) =
∑

ı∈E

√

(dı + 1)2 + (d + 1)2

=
∑

ı∈E

√

((qn−1 − 1) + 1)2 + ((qn−1 − 1) + 1)2

=
∑

ı∈E

√

2(qn−1)2

=
∑

ı∈E

√
2(qn−1)

=
(√

2(qn−1)
)

(

(qn − 1)(qn−1 − 1)
)

=
√
2(qn−1)(qn − 1)(qn−1 − 1)

X. CONCLUSION

In the present research, we explored the
topological features of linear functional graphs built
on finite-dimensional vector spaces. We established a
fresh approach for understanding algebraic structures
using graph-theoretical techniques by associating graphs
with vector space elements transformed linearly. To capture
fundamental structural aspects of these graphs, we computed
and examined a variety of degree-based topological indices,
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including the Zagreb, Randic, Arithmetic-Geometric, and
Revan indices, as well as their hyper and redefined variants.

These indices, which were historically utilized in
mathematical chemistry to represent molecular structures,
have shown promise for broader applications when extended
to abstract algebraic contexts. Their application in describing
connectedness, symmetry, and interaction patterns in vector
spaces opens new possibilities in both theoretical and applied
mathematics, including coding theory, network analysis, and
cryptography.

We also examined the Elliptic Sombor Index, a
recently introduced topological invariant that encodes
structural information through elliptic functional
transformations. Its mathematically rich formulation
enhances sensitivity to degree-based variations and provides
a compact numerical representation of graph structure.
Originally used in chemistry, this index is now gaining
relevance in areas such as graph-based learning, anomaly
detection, and structural analysis within complex networks.

The technique proposed here contributes to the expanding
confluence of graph theory and linear algebra by providing
insights into how vector space features might be captured and
investigated using graphical indices. This work extends the
importance of topological indices beyond chemistry, pointing
to potential applications in complex network modeling, high
dimensional data analysis, and machine learning optimization
challenges.

Future research might explore extensions to infinite-
dimensional vector spaces, investigate non-linear
mappings, and incorporate spectral indices and
eigenvalue-based metrics. Additionally, further analysis
of automorphism groups and dynamic features of linear
functional graphs may offer deeper insights into the interplay
between algebraic and topological structures.
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