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Abstract—Time-delayed systems driven by the Liu process
are characterized by uncertain delay differential equations (UD-
DEs). A critical aspect in the practical application of UDDEs
is statistical inference. This study concentrates on data-driven
maximum likelihood estimation (MLE) for UDDEs based on
discrete observations. Initially, the derivation of the difference
equation of UDDEs is outlined utilizing the implicit Euler
scheme. Following this, an approximate difference equation is
derived by applying the Taylor expansion to the state variable
with a delay at time t. The likelihood function is then introduced
to compute the estimators. Finally, the efficacy of the estimation
technique is confirmed through numerical illustrations and
empirical analysis of COVID-19 using authentic data.

Index Terms—UDDEs; MLE; Liu process; difference equa-
tion; likelihood function

I. INTRODUCTION

Statistical inference plays a crucial role in modeling
stochastic models and has been the subject of numerous
studies. For example, a numerical method was proposed by
Zhang et al. ( [27]) to identify the topology and estimate
line parameters without knowledge of voltage angles. Mal-
donado et al. ( [19]) utilized a sequential Bayesian approach
to estimate parameters in stochastic dynamic load models.
Zhang et al. ( [26]) focused on joint estimation of states and
parameters in a specific class of nonlinear bilinear systems.
Ji and Kang ( [11]) explored novel estimation techniques for
real-time parameter estimation in nonlinear systems. Escobar
et al. ( [8]) presented various strategies to tackle parameter
estimation challenges in stochastic systems operating con-
tinuously. Ding ( [7]) investigated the characteristics of two
types of least squares methods, effectively considering white
and colored noise perturbations using traditional methodolo-
gies. Shin and Park ( [21]) applied a generator-regularized
continuous conditional generative adversarial network for un-
certain parameter estimation. Amorino et al. ( [1]) introduced
a contrast function to estimate parameters in a stochastic
McKean-Vlasov equation. Mehmood and Raja ( [20]) studied
evolutionary heuristics of weighted differential evolution
for parameter estimation in a Hammerstein-Wiener model.
Brusa et al. ( [5]) demonstrated an evolutionary optimization
approach to facilitate approximate maximum likelihood es-
timation for discrete models. In practical applications, chal-
lenges such as uncertain communication environments and
population dynamics with time lag necessitate consideration
of time delay in parameter estimation for stochastic delay
differential equations, which has garnered increased attention
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in recent decades. In their work ( [3]), Berezansky and
Braverman discussed the estimates of solutions for linear
differential equations with delay. The weak convergence of
the maximum likelihood estimator was studied by Benke and
Pap ( [4]). Utilizing the method of moments, Liu and Jia (
[16]) estimated the parameters based on discrete observations
of solutions. Zhu et al. ( [28]) delved into the identification of
parameters in a reaction-diffusion rumor propagation system
with time delay. Jamilla et al. ( [10]) implemented a genetic
algorithm with multi-parent crossover to acquire parameter
estimates of three neutral delay differential equation models
with a discrete delay.

Stochastic differential equations might not adequately rep-
resent many time-varying systems, such as stock prices. As a
result, the uncertainty theory was devised by Liu ( [14]) and
further developed by Liu ( [15]) based on the concepts of
normality, duality, subadditivity, and product axioms. Recent
literature has explored parameter estimation for UDEs. For
instance, Li et al. ( [12]) presented three techniques for
parameter estimation in UDEs utilizing discrete observation
data. Chen et al. ( [6]) utilized the method of moments to es-
timate the parameters of an uncertain SIR model and devised
a numerical algorithm for their solution. Liu ( [17]) employed
generalized moment estimation for obtaining the estimators.
Yang et al. ( [24]) applied the α-path approach to derive
the estimators. Introducing moment estimations for unknown
parameters through the Euler method approximation of high-
order UDEs, Liu and Yang ( [18]) proposed a novel approach.
Wei ( [22], [23]) used the contrast function to derive the
least squares estimators of the uncertain Vasicek model and
investigated their consistency and asymptotic distribution. Ye
and Liu ( [25]) devised a method to assess the fit of an
uncertain differential equation to the observed data. He et
al. ( [9]) developed an algorithm for estimating parameters
in a unique uncertain fractional differential equation. Li and
Xia ( [13]) suggested a new method for estimating uncertain
differential equations using estimating function technique
based on uncertain integrals.

Despite recent advancements in parameter estimation for
UDEs, few studies have taken into account the time lag
factor. Additionally, existing literature has mainly used the
explicit difference method to derive the difference equation,
which is known to be numerically unstable. With these
shortcomings in mind, our study focuses on data-driven MLE
for UDDEs using implicit Euler scheme with discrete obser-
vations. By employing the implicit Euler scheme, we derive
the difference equation for UDDEs. We then approximate
the difference equation by expanding the Taylor series of
the state variable with delay at time t, and develop the
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likelihood function to estimate the parameters. To validate
our estimation method, we conduct numerical experiments
and empirical analysis on real data related to COVID-19.
The structure of this paper is as follows: Section 2 provides
definitions for uncertain variables and Liu process. Section
3 introduces the UDDEs addressed in this study, along with
the equation used for parameter estimation. We also present
numerical examples and empirical analysis on COVID-19
based on real data to demonstrate the effectiveness of our
approach.

II. PROBLEM FORMULATION AND PRELIMINARIES

Firstly, we give some definitions about uncertain variables
and Liu process.

Definition 1: ( [14], [15]) Let L be a σ-algebra on a
nonempty set Γ. A set function M : L → [0, 1] is called
an uncertain measure if it satisfies the following axioms:
Axiom 1: (Normality Axiom) M(Γ) = 1 for the universal
set Γ.
Axiom 2: (Duality Axiom) M(Λ) +M(Λc) = 1 for any
event Λ.
Axiom 3: (Subadditivity Axiom) For every countable se-
quence of events Λ1, Λ2, · · · ,

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, · · · . Then the product uncertain measure
M is an uncertain measure satisfying

M{Π∞k=1Λk} = min
k≥1
Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k =
1, 2, · · · .

An uncertain variable ξ is a measurable function from the
uncertainty space (Γ,L,M) to the set of real numbers.

Definition 2: ( [14]) For any real number x, let ξ be an
uncertain variable and its uncertainty distribution is defined
by

Φ(x) =M(ξ ≤ x).

In particular, an uncertain variable ξ is called normal if it
has an uncertainty distribution

Φ(x) = (1 + exp(
π(µ− x)√

3σ
))−1, x ∈ <,

denoted by N (µ, σ). If µ = 0, σ = 1, ξ is called a standard
normal uncertain variable.

Definition 3: ( [15]) An uncertain process Ct is called a
Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz contin-
uous, (ii) Ct has stationary and independent increments, (iii)
the increment Cs+t−Cs has a normal uncertainty distribution

Φt(x) = (1 + exp(
−πx√

3t
))−1, x ∈ <.

Definition 4: ( [2]) Suppose that Ct is a Liu process, h
and w are two measurable real functions, τ stands for a
nonnegative time delay. Then

dXt = h(t,Xt, Xt−τ )dt+ w(t,Xt, Xt−τ )dCt (1)

is called an uncertain delay differential equation.

Moreover, a real-valued function Xα
t is called the α-

path of above uncertain differential equation if it solves the
corresponding ordinary differential equation

dXα
t = h(t,Xα

t , X
α
t−τ )dt+ |w(t,Xα

t , X
α
t−τ )|Φ−1(α)dt,

where

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1).

Remark 1: The uncertain delay differential equation (1)
has a unique solution if the coefficients h(t, x, y) and
w(t, x, y) satisfy the following conditions

|h(t, x, y)|+ |w(t, x, y)| ≤ L(1 + |x|+ |y|),

|h(t, x, y)− h(t, x1, y1)|+ |w(t, x, y)− w(t, x1, y1)|
≤ L(|x− x1|+ |y − y1|).

III. MAIN RESULTS AND PROOFS

The UDDEs considered in this paper is described as
follows:

dXt = h(t,Xt, Xt−τ , θ)dt+ w(t,Xt, β)dCt, (2)

where θ, β and τ are an unknown parameters, Ct is a Liu
process and τ is a delay time.

By applying the implicit Euler scheme, the Eq. (2) has the
following difference form

Xti+1
−Xti

= h(ti+1, Xti+1
, Xti+1−τ , θ)(ti+1 − ti)

+w(ti+1, Xti+1
, β)(Cti+1

− Cti). (3)

By using Taylor expansion of Xt−τ at time t, we get the
approximation difference equation

Xti+1 −Xti

= h(ti+1, Xti+1
, Xti+1

− τ
Xti+1

−Xti

ti+1 − ti
, θ)(ti+1 − ti)

+w(ti+1, Xti+1 , β)(Cti+1 − Cti). (4)

Then, we can get

Xti+1
−Xti

w(ti+1, Xti+1
, β)(ti+1 − ti)

−
h(ti+1, Xti+1 , Xti+1 − τ

Xti+1
−Xti

ti+1−ti , θ)(ti+1 − ti)
w(ti+1, Xti+1

, β)(ti+1 − ti)

=
Cti+1

− Cti
ti+1 − ti

.

According to definition 3, we obtain that

Cti+1
− Cti

ti+1 − ti
∼ N (0, 1). (5)

Hence, we have

Xti+1 −Xti

w(ti+1, Xti+1
, β)(ti+1 − ti)

−
h(ti+1, Xti+1

, Xti+1
− τ Xti+1

−Xti

ti+1−ti , θ)(ti+1 − ti)
w(ti+1, Xti+1

, β)(ti+1 − ti)
∼ N (0, 1).
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Given the observed data (ti, xti), i = 1, 2, · · · , n in which
ti+1 − ti = τ , we can get the parameter function

fi(θ, β, τ)

=
xti+1 − xti

w(ti+1, xti+1 , β)(ti+1 − ti)

−
h(ti+1, xti+1 , xti+1 − τ

xti+1
−xti

ti+1−ti , θ)(ti+1 − ti)
w(ti+1, xti+1

, β)(ti+1 − ti)
.

Since the standard normal uncertainty distribution is

Φ(x) = (1 + exp(
−πx√

3
))−1, (6)

we have

Φ
′
(x) =

π√
3

exp(−πx√
3

)

(1 + exp(−πx√
3

))2
. (7)

Then, we can obtain the following likelihood function:

L(θ, β, τ |f1, f2, · · · , fn−1)

=
n−1∧
i=1

Φ
′
(fi(θ, β, τ))

=

n−1∧
i=1

π√
3

exp(−πfi(θ,β,τ)√
3

)

(1 + exp(−πfi(θ,β,τ)√
3

))2
. (8)

It is easy to check that Φ
′
(fi(θ, β, τ)) decreases when

|fi(θ, β, τ)| decreases. Hence, the likelihood function can be
rewritten as follows:

L(θ, β, τ |f1, f2, · · · , fn−1)

=

n−1∧
i=1

Φ
′
(fi(θ, β, τ))

=

π√
3

exp(−π√
3

∧n−1
i=1 |fi(θ, β, τ)|)

(1 + exp(−π√
3

∧n−1
i=1 |fi(θ, β, τ)|))2

. (9)

Therefore, we can get the maximum likelihood estimators
by solving the equation

min
θ,β,τ

n−1∧
i=1

|fi(θ, β, τ)|. (10)

Moreover, the estimators of θ and τ can be obtained
through the equation

min
θ,τ

n−1∧
i=1

(xti+1
− xti − h(ti+1, xti+1

, xti+1

−τ
xti+1

− xti
ti+1 − ti

, θ)(ti+1 − ti))2,

and the estimator of β can be derived by the equation
n−1∧
i=1

w2(ti+1, xti+1 , β)(ti+1 − ti)2

=
n−1∧
i=1

(xti+1
− xti

−h(ti+1, xti+1 , xti+1 − τ̂
xti+1

− xti
ti+1 − ti

, θ̂)(ti+1 − ti))2,

where τ̂ and θ̂ are estimators of τ and θ.

IV. EXAMPLE

Example 1: Consider the following uncertain delay dif-
ferential equation:

dXt = Xt−τdt+ βdCt,

where τ and β are an unknown parameters. Given the ob-
served data (ti, xti), i = 1, 2, · · · , n in which ti+1− ti = 1.
By solving the equation

min
τ

n−1∧
i=1

(xti+1 − xti − (xti+1 − τ
xti+1 − xti
ti+1 − ti

)(ti+1 − ti))2,

(11)
we obtain the estimator of τ

τ̂ =

∧n−1
i=1 xti+1

(xti+1
− xti)∧n−1

i=1 (xti+1 − xti)2
− 1.

Then, according to Eq. (15), we can get the estimator of
β

β̂ =

√√√√n−1∧
i=1

(xti+1
− xti − (xti+1

− τ̂(xti+1
− xti)))2.

Assume that we have 20 groups of observed data as
shown in Table 1. Then, we derive the maximum likelihood
estimators

τ̂ = 2.9196, β̂ = 1.6138.

TABLE I
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Xti 0.75 2.20 4.54 8.19 13.28 6.17 3.92 11.26 5.34 15.37

n 11 12 13 14 15 16 17 18 19 20

ti 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00

Xti 10.43 18.12 11.10 7.63 14.12 10.06 20.31 11.16 8.52 17.38

Thus, the uncertain delay differential equation could be
written as

dXt = Xt−2.9196dt+ 1.6138dCt.

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = Xγ

t−2.9196dt+ 1.6138

√
3

π
ln

γ

1− γ
dt.

According to Figure 1, all observations fall into the area
between 0.05-path X0.05

t and 0.93-path X0.93
t . Therefore, the

methods used in this paper are reasonable.
Example 2: Consider the following uncertain delay dif-

ferential equation:

dXt = θXt−τdt+ βdCt,
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Fig. 1. Observations and γ-path of Xt

where θ, τ and β are unknown parameters. Given the ob-
served data (ti, xti), i = 1, 2, · · · , n in which ti+1−ti = 0.5.
By solving the equation

min
τ

n−1∧
i=1

(xti+1 − xti − θ(xti+1 − τ
xti+1

− xti
ti+1 − ti

)(ti+1− ti))2,

(12)
we obtain the estimators of θ and τ

θ̂ =
2
∧n−1
i=1 xti+1(xti+1 − xti)2∧n−1
i=1 x

2
ti+1

(xti+1
− xti)

,

τ̂ =
1

θ̂
−

∧n−1
i=1 x

2
ti+1

2
∧n−1
i=1 xti+1

(xti+1
− xti)

.

Then, we can get the estimator of β

β̂ = 2

√√√√∧n−1
i=1 (xti+1

− xti − θ̂τ̂(xti+1
− xti))2∧n−1

i=1 x
2
ti+1

.

Assume that we have 20 groups of observed data as shown
in Table 2. Then, we derive the least squares estimators

θ̂ = 1.0159, τ̂ = 0.9681, β̂ = 0.0450.

TABLE II
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Xti 5.16 2.39 7.45 3.28 8.41 10.25 3.81 12.68 9.15 13.27

n 11 12 13 14 15 16 17 18 19 20

ti 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00

Xti 15.93 10.18 18.07 8.53 20.31 11.64 14.35 16.85 12.38 23.68

Thus, the uncertain delay differential equation could be
written as

dXt = 1.0159Xt−0.9681dt+ 0.0450XtdCt.

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = 1.0159Xγ

t−0.9681dt+ 0.0450Xγ
t

√
3

π
ln

γ

1− γ
dt.

According to Figure 2, all observations fall into the area
between 0.05-path X0.05

t and 0.95-path X0.95
t . Therefore, the

methods used in this paper are reasonable.
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Fig. 2. Observations and γ-path of Xt

Example 3: It is known that COVID-19 spread model can
be described by the following uncertain differential equation

dXt = θXt−τdt+ βXtdCt,

where θ, τ and β are an unknown parameters.
By solving the equation

min
τ

n−1∧
i=1

(xti+1
− xti − θ(xti+1

− τ
xti+1

− xti
ti+1 − ti

)(ti+1− ti))2,

(13)
we obtain the estimators of θ and τ

θ̂ =

∧n−1
i=1 xti+1(xti+1 − xti)2∧n−1
i=1 x

2
ti+1

(xti+1
− xti)

,

τ̂ =
1

θ̂
−

∧n−1
i=1 x

2
ti+1∧n−1

i=1 xti+1(xti+1 − xti)
.

Then, we can get the estimator of β

β̂ = 2

√√√√∧n−1
i=1 (xti+1

− xti − θ̂τ̂(xti+1
− xti))2∧n−1

i=1 x
2
ti+1

.

Table 3 shows the real data about confirmed cases of
COVID-19 from 02/27/2023 to 03/28/2023, Then, we derive
the least squares estimators

θ̂ = 0.011, τ̂ = 0.899, β̂ = 0.056.
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Thus, the uncertain delay differential equation could be
written as

dXt = 0.011Xt−0.899dt+ 0.056XtdCt,

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = 0.011Xγ

t−0.899)dt+ 0.056Xγ
t

√
3

π
ln

γ

1− γ
dt.

TABLE III
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 1 2 3 4 5 6 7 8 9 10

Xti 9003 9007 9008 9013 9020 9022 9023 9025 9029 9039

n 11 12 13 14 15 16 17 18 19 20

ti 11 12 13 14 15 16 17 18 19 20

Xti 9045 9048 9050 9052 9053 9054 9063 9065 9067 9069

n 21 22 23 24 25 26 27 28 29 30

ti 21 22 23 24 25 26 27 28 29 30

Xti 9072 9077 9080 9082 9091 9093 9095 9098 9104 9105

According to Figure 3, all observations fall into the area
between 0.12-path X0.12

t and 0.94-path X0.94
t . Therefore, the

methods used in this paper are reasonable.
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Fig. 3. Observations and γ-path of Xt

V. CONCLUSION

This study focuses on the issue of data-driven MLE for
UDDEs utilizing the implicit Euler scheme from discrete
observations. The difference equation of UDDEs has been
determined through the application of the implicit Euler

scheme, along with the provision of the likelihood function.
Estimators for both the drift and diffusion items have been
derived. Additionally, numerical examples and empirical
analysis on COVID-19 using authentic data from 02/27/2023
to 03/28/2023 have been presented to validate the methodol-
ogy. Future research will explore estimation techniques for
partially observed UDDEs.
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