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Abstract—In the context of abdominal computed tomography
(CT) imaging, precise identification and delineation of the
liver and malignant tumors are critical for enabling accurate
disease diagnosis and facilitating the development of advanced
computer-assisted medical treatments. Given the varied forms
of the affected regions and the indistinct edges,To achieve
precise liver tumor segmentation in medical imaging, this study
introduces a novel convolutional attention mechanism that
enhances the accuracy of tumor boundary detection. The U-
net network structure is employed, and the CHD convolutional
attention module designed in this paper is used in the encoder
to extract image features. Moreover, the SP operation is added
to the skip-connections between the encoder and decoder to
refine the shallow image feature information extracted by the
encoder. The decoder is used to restore the image resolution
and merge it layer by layer with shallow features, eventually
obtaining the segmentation results. On the LiTS dataset, the
Dice coefficients, VOE, and RVD results for the liver and tumors
were respectively 96.76 %, 8.29%, 2.53%, and 86.59%, 10.81%,
11.25%. Compared with other methods, this method has a
certain advantage in liver tumor segmentation, which proves
the effectiveness of this method.

Index Terms—Liver tumors, Image Segmentation, Convolu-
tion Attention, U-net.

I. INTRODUCTION

IVER is the body’s largest detoxification organ, and

liver cancer, which originates in the liver cells, is one of
the most common cancers worldwide. According to statistics,
liver cancer ranks as the fifth leading cause of cancer-related
deaths [1]. Common diagnostic methods for liver cancer
include liver ultrasound, computed tomography (CT) scans,
magnetic resonance imaging (MRI), and liver biopsies [2].
Among these, CT scans are widely used in clinical diagnosis
due to their fast imaging speed and relatively low cost. CT
scans provide three-dimensional images that reveal the liver’s
structure, the location, size, and shape of intrahepatic tumors,
and extrahepatic metastases. Clinical physicians can use this
information to develop appropriate treatment plans based on
the lesions identified [3]. Nevertheless, the liver’s grayscale
contrast is nearly indistinguishable from the adjacent sur-
rounding tissues and the tumor’s neighboring regions, which
significantly limits the ability to detect subtle changes in the
hepatic tissue.In the context of computed tomography (CT)
imaging, it is common to observe not only indistinct anatom-
ical boundaries but also intricate internal configurations
that often defy simple interpretation. Additionally, manual
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annotation is time-consuming and labour-intensive, with seg-
mentation accuracy highly dependent on expert radiologists’
subjective judgment. Therefore, leveraging computer-aided
diagnosis to achieve real-time, accurate segmentation of liver
tumors remains a highly challenging task. Early research
on liver tumor image segmentation mainly attempted to use
traditional image processing techniques [4]such as threshold-
based segmentation, edge detection, and region growing
methods [5]. However, in practical applications, traditional
methods usually require manual feature selection, making al-
gorithm parameter adjustment difficult, and they also demand
high image quality [6]. With the advancement of computer
technology, researchers began to explore machine learning-
based methods for liver tumor segmentation, such as support
vector machines, random forests, and k-means clustering.
Nevertheless, due to the diversity and complexity of liver
tumors, as well as the issue of data imbalance between
normal tissues and tumors, machine learning-based methods
often yield poor segmentation results for tumor regions and
suffer from poor model generalization capability [7]. With
the rise of artificial intelligence technology, deep learning-
based methods have gradually become the mainstream ap-
proach for liver tumor image segmentation in recent years.
In 2015, Ronneberger et al. [8] conducted a groundbreaking
study that explored the potential applications of neural net-
works in medical diagnostics.In a groundbreaking approach,
researchers introduced the U-Net architecture, which is based
on an encoder-decoder framework.The architecture employs
skip connections to integrate diverse feature representations
derived from both the encoder and decoder components.This
accomplishment highlights an exceptional capability within
the domain of medical imaging analysis, where the sys-
tem has consistently outperformed existing methodologies.
The architecture of U-Net and its skip connections have
profoundly impacted subsequent research. Researchers have
proposed numerous variants of the U-Net framework to meet
specific task requirements. For instance, U-Net++ [9] inserts
multiple feature fusion modules between the encoder and
decoder, each containing multiple feature maps at different
levels. Res-Unet [10] and Dense-Unet [11] are inspired by
residual connections and dense connections, respectively.
They replace each submodule in the U-Net backbone with
forms incorporating these connections, enhancing segmenta-
tion performance to varying degrees. Subsequent research on
convolutional models has primarily focused on large-window
convolutions, aiming to expand the receptive field. Recently,
visual attention mechanisms such as Vision Transformers
(VIT) [12] and Swin Transformers [13] have demonstrated
superior performance in the image domain [14]. For instance,
models like TransUnet [15] and LeViT-UNet [16] combine
U-Net and Transformers by incorporating self-attention into
the encoder. By embedding convolutional feature maps into
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a tokenized representation of image patches, these models
effectively capture global contextual information, which en-
ables them to outperform existing approaches in multi-organ
segmentation tasks. Swin-Unet [17] is restructured by inte-
grating the entire encoder with a series of Swin Transformer
blocks, which are designed to operate on shifted windows to
capture contextual information effectively. It also designs a
decoder with patch expansion layers in the Swin Transformer
to perform upsampling and restore the spatial resolution
of feature maps, outperforming TransUnet on multi-organ
datasets. Similarly, the Swin Unetr [18] model, which shares
this design philosophy, has achieved advanced performance
on brain tumor datasets. These methods leverage Transform-
ers for global long-range modelling of images, significantly
enhancing image understanding capabilities. Nevertheless,
the integration of attention mechanisms in models signifi-
cantly elevates the parameter count, which in turn results in
increased model intricacy, augmented hardware and memory
demands, and complicates the training process [19]. The
proposal of ConvNeXT [20] suggests that the superior per-
formance of Transformers is due to their advanced network
design philosophy. By altering the design of convolutional
networks and adopting training strategies from Swin Trans-
formers, the authors achieved performance surpassing that
of Swin Transformers. Hou et al. [21] combined the design
philosophies of ConvNeXT and Swin Transformer to propose
a hierarchical convolutional network called Conv2Former.
This network employs Hadamard [22] convolutional attention
modulation instead of the self-attention mechanism. Doing
s0, reduces the number of parameters while achieving perfor-
mance superior to mainstream convolutional network models
and Transformer-based models. Due to the high computa-
tional cost associated with self-attention networks, despite
their improved segmentation performance [23], this study is
inspired by Conv2Former. We design the CHD convolutional
attention module as the backbone network within the U-
net framework. Additionally, we incorporate Strip Pooling
[24] operations within the skip connections.This method
enhances feature maps by systematically addressing both
horizontal and vertical orientations, effectively eliminating
non-essential areas while maintaining the critical edge details
of the original image.Our findings indicate that the novel
approach significantly improves the precision of liver and
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Fig. 2: CHD Convolutional Attention module

tumor segmentation in medical imaging.

II. METHODS
A. Framework Design

The U-Net architecture has had a significant impact on
the development of medical image segmentation methodolo-
gies, primarily through its unique symmetric design and the
implementation of skip connections that effectively bridge
the encoder and decoder layers.To ensure that the output
maintains high precision, retains all essential details, and
remains resilient under varying conditions, the methodology
incorporates advanced algorithms designed to refine accu-
racy, preserve information integrity, and improve system
stability.In recent years, a significant number of leading-edge
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neural network architectures have emerged as derivative ver-
sions of the U-Net framework. Today, many high-performing
network models are variants of U-net. Therefore, in this
study, we adopt U-net as the fundamental design framework
for the network model. The overall network structure is illus-
trated in Figure 1. The backbone network utilizes the CHD
convolutional attention module designed in this paper, where
the encoder is responsible for extracting image feature in-
formation, and the decoder performs upsampling operations
to restore image resolution, followed by feature fusion with
the extracted features from the decoder. Recognizing that the
original U-net’s skip connections directly fuse shallow image
feature information extracted by the encoder with high-level
semantic information obtained by the decoder, leading to
information redundancy and affecting segmentation perfor-
mance, we introduce Strip Pooling (SP) operations into the
corresponding stage of skip connections between the encoder
and decoder to optimize shallow features before fusing them
with the high-level semantic information obtained by the
decoder.

B. Convolutional block structure design

In the design of the convolutional block, drawing in-
spiration from the design principles of ConvNeXT and
Conv2Former, each stage of the encoder and decoder consists
of two CHD convolutional attention modules. The design
structure of the CHD convolutional attention module is
similar to that of the Transformer, consisting of linear layers,
depth-wise separable convolutional layers [25], Hadamard
modulation layers, layer normalization [26], and GeLU acti-
vation functions [27], as illustrated in Figure 2.

Original image X € RHXWXC where H, W, and C
represent the height, width, and number of channels of the
image, respectively. The original image enters the CHD con-
volutional attention module through three paths, one of which
serves as a residual connection to avoid the gradient van-
ishing and exploding problems caused by excessively deep
networks. The other two paths serve as convolutional feature
modulation values to simplify and replace self-attention. We
use features extracted from depth-wise separable convolution
and linear layers as weights for Hadamard convolutional
modulation operations, replacing self-attention layers. The
specific operations are as follows:

V =WeX (1)
A= DSConv (W1 X) (2)
Z=A0V 3)

Let X denote the input image, W; and W, are the weights
of two linear layers, DSConv(W;z) denotes the depth-wise
separable convolution operation, e stands for the Hadamard
product operation, and Z is the final output. Unlike tradi-
tional convolutional operations, depth-wise separable con-
volutions significantly reduce the number of parameters
and lower computational demands without sacrificing their
ability to enhance model performance. In contrast to the
significantly increased parameter count of self-attention lay-
ers in the CHD convolutional attention module, the linear
growth in the parameter count of the Hadamard convolutional
modulation operation offers advantages.

C. Skip connection

In the skip connection stage, considering that the shallow-
level features extracted by the encoder often contain low-
level features of the image, while the high-level feature infor-
mation of the decoder contains more semantic information,
directly concatenating these two types of feature information
will lead to information redundancy and reduce the model’s
generalization ability [28]. As a result, the Skip Connection
is enhanced by incorporating a Strip Pooling (SP) module
to refine the multi-scale feature information processed by
the encoder, as shown in Figure 3. Unlike the SegNeXT
model [29], which decomposes deep convolutions into two
serial stripe convolutions, the SP module consists of two
parallel paths. One path focuses on capturing distant con-
text information of liver tumor images from horizontal and
vertical dimensions, while avoiding unnecessary connections
between distant positions, highlighting liver and important
tumor information. The other path serves as a residual
connection to avoid overfitting. Let X € RT*Wx*C denote
the input image, where C' is the number of input channels.
The dual parallel routes consist of a horizontal or vertical
stripe pooling layer, which serves as the core component
in this architectural design.Next, we introduce a single-
layer convolutional architecture that employs a 3x3 kernel to
process the input data.Previously, the model was designed to
adjust the current location and its adjacent elements.Given
the definitions of ¢/ ; € RE*H and Yo i € RE*W | Then
y € REHXW can be represented

Yeij = Yr s+ “)
The final output is represented as:

z = Scale (x,0 (f (v))) 5)

Where Scale (., .) represents element-wise multiplication, o
stands for the Sigmoid function, and f represents the 1x1
convolution.

III. EXPERIMENTS AND ANALYSIS
A. Dataset

The dataset used is the MICCAI 2017 Liver Tumor
Segmentation Challenge (LiTS) dataset, which includes CT
scans from 201 patients. Among these, 131 CT scans are
designated as the training dataset and 70 CT scans as the test
dataset. This dataset, sourced from six medical centres world-
wide, is currently the largest and most authoritative publicly
available dataset in the liver tumor CT image segmentation
field. All CT scans from the 201 patients were annotated
by experienced radiology professionals. In abdominal CT
scans, the Hounsfield Unit (HU) values for the liver and
tumors can vary between 50 and 70. Therefore, a threshold
is set to limit the HU values to the range of [-200, 200],
with values outside this range being ignored. Subsequently,
the pixel values are normalized (0, 1), with overflow values
clamped to the boundary values. The training data comprises
131 medical CT images, each with a resolution of 512x512
pixels, and the number of slices in each image varies between
230 and 960.As a consequence of the processing steps, a total
of 85,150 individual image slices were generated.
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B. Experimental environment

The experimental environment for the method described
in this paper consists of a computing platform running the
Ubuntu Linux operating system, equipped with an Intel Xeon
E5 processor, 128GB of memory, and two Nvidia GTX
Titan XP high-performance graphics cards. The development
process is based on the Python programming language,
and it leverages the PyTorch deep learning framework to
build and train the model.The model training process is
executed with the Adam optimization algorithm, employing
its default parameters, which include an initial learning rate
of 0.001.The model employs a first-moment decay coefficient
of 0.9, which ensures rapid dissipation of initial energy, and a
second-moment decay coefficient of 0.999, further enhancing
the transient behavior of the system, while the stability
parameter is set to le-8 to maintain numerical robustness
during simulation.The total number of training iterations is
set to 200, and the batch size used during each epoch is 8.

C. Evaluation Criteria

Three primary quantitative assessment tools were em-
ployed in this study to measure the effectiveness of the
network model’s segmentation process.The Dice Coefficient,
the Volumetric Overlap Error (VOE), and the Relative Vol-
ume Difference (RVD) are three distinct metrics that provide
complementary insights into the spatial alignment and geo-
metric consistency of overlapping datasets. The formulas are
as follows:

2T P
o .
Dice = o b T FP T FN ©)
|AN B
E=1-— 7
Vo |AU B| ™
|B| — |A]
RvD = 21— 141 (8)
|4

Among these metrics, A denotes the anticipated outcome,
while B corresponds to the actual value, TP denotes the
number of instances where both the predicted and actual
labels are positive, reflecting correctly identified positive
cases.In this context, F'N denotes the number of actual
negative cases that were incorrectly classified as positive.
However, the ground truth is positive, and F'P represents the
false positive count where the prediction is positive, but the
ground truth is negative. The Dice Coefficient and the Jaccard

Index are used to assess the similarity of image segmentation
results. However, in liver tumor segmentation tasks, the liver
occupies a much larger portion of the image compared to
the tumor, leading to class imbalance issues. Compared to
the Jaccard Index, the Dice Coefficient places more emphasis
on matching positive samples, making it more suitable for
medical image processing tasks.

D. Loss Function

In classification tasks, a loss function quantifies the dis-
parity between the predicted outputs of a model and the
actual target labels. The goal of neural network optimization
is continuously updating parameters to find weights that
minimize the loss function. The cross-entropy loss function
is a commonly used loss function for classification tasks. It
is defined as follows:

1 N 1 M
Lycr = ZLZ- =-¥. > viclog (pic)  (9)
i=1 i=1 C=1

where N is the number of pixels, C' is the number of
predicted classes,y;. is the label for class ¢, which takes the
value of 1 or 0, and p,. is the predicted ¢ probability of
the sample belonging to class c. In the liver tumor image
segmentation task, since the background and liver occupy
most of the overall image and the tumor proportion is very
small, the amount of negative samples far exceeds that of
positive samples, leading to a class imbalance problem. As
a result, the cross-entropy loss function inherently favors
training outcomes that align more closely with samples of
larger magnitude in the dataset.By decelerating the network’s
rate of integration, this approach inadvertently hampers the
precision of data partitioning.In the field of medical image
segmentation, the Dice loss function is frequently employed
due to its ability to effectively manage class imbalance and
address challenges posed by unclear or fuzzy boundaries in
images.This concept refers to the ratio between twice the
area of the overlapping region formed by two sets and the
total combined size of both sets.The following explanation

provides a detailed clarification:

2xnY) 2TP
I X|+|Y|  ~ FP4+2TP+FN

where X represents the set of predicted values, and YV
represents the ground truth set. This data set is considered

LDice =1 (10)
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Fig. 4: Comparison of experimental results

to be the benchmark or reference standard for evaluating
the accuracy of our model’s predictions.Taking into account
the distinct features of the loss functions applied in liver
tumor segmentation,This study integrates the cross-entropy
loss function with the Dice similarity coefficient to create a
novel hybrid objective function that effectively balances both
classification accuracy and structural similarity. The weight
0 is manually assigned, and it is defined as follows:

LLoss = HLBCE + (1 - 9) LDice (11)

E. Comparative Experiments

To confirm the efficacy of the new approach, extensive
experiments were conducted on the LiTS liver tumor public
dataset, comparing it with six other classical and outstanding
methods, including U-net, Res-Unet, TransUnet, and Swin-
Unet, under the same dataset and experimental environment.
To facilitate a clearer assessment of the segmentation efficacy
across different models,A total of five distinct sets of patient
computed tomography (CT) scans were randomly chosen
from the test dataset to undergo visualization analysis, as
detailed in Figure 4. In the figure, black represents the
segmentation background, the grey shades denote the liver
tissue that has been separated from the surrounding area,
while the white regions indicate the tumor’s boundaries.

As seen in Figure 4, U-net, Res-Unet, and Dense-Unet
exhibit over-segmentation and under-segmentation issues due
to directly merging shallow feature information extracted
by the encoder with the high-level semantic information of
the decoder without considering the impact of shallow layer
noise. Additionally, the simplistic backbone network of U-
net results in insufficient feature extraction by the encoder,
making it challenging to segment smaller tumors accurately.

TABLE I: Results of liver segmentation by different
methods on the LiTS dataset

Model Dice(%) VOE(%) RV D (%)
U-net 94.24 12.14 16.81
U-net++ 94.75 11.86 15.47
Res-Unet 95.43 10.09 6.59
Dense-Unet 95.36 10.54 6.76
TransUnet 96.29 8.53 3.48
Swin-Unet 96.72 8.07 291
Our 96.76 8.29 2.53

Despite its integration of the strengths of conventional con-
volutional and self-attention techniques, the segmentation
outcomes are affected by data bias and overfitting, which
are both exacerbated by the relatively small dataset size.
The Swin-Unet model, based on the Swin Transformer, is
even more dependent on data quality and diversity, making
it more susceptible to overfitting, and both models demand
high computational resources.

The proposed method significantly reduces the computa-
tional resource requirements by using Hadamard convolution
modulation instead of the attention mechanism. The designed
CHD convolution module demonstrates strong feature ex-
traction capabilities, and the SP operation added in the skip
connections effectively addresses the noise in shallow feature
information, leading to better feature fusion with high-level
semantic information. This technique enables precise delin-
eation of the liver’s anatomical edges and tumor margins,
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TABLE II: Results of tumor segmentation by different
methods on LiTS dataset

Model Dice(%) VOE(%) RVD(%)
U-net 75.74 32.12 36.85
U-net++ 79.27 30.98 33.06
Res-Unet 81.74 25.07 28.65
Dense-Unet 82.36 20.59 27.67
TransUnet 84.29 19.85 20.34
Swin-Unet 85.72 15.03 14.29
Our 86.59 10.81 11.25

even for minute lesions.This approach not only validates
the efficacy of the proposed method but also confirms its
robustness in liver tumor segmentation tasks, as demonstrated
through rigorous experimental validation.

IV. CONCLUSION

Accurate delineation of liver tumors within abdominal CT
imaging data is crucial for both clinical assessment and sur-
gical strategy development, as it enables precise tumor local-
ization and enhances treatment efficacy.This study introduces
a novel liver tumor segmentation approach, which integrates
a CHD convolutional block into the U-Net architecture to
enhance feature extraction and improve segmentation accu-
racy.By integrating advanced architectural modifications into
the encoder, we have successfully improved its ability to ex-
tract critical features from input data.The encoder-decoder ar-
chitecture utilizes spatial pooling techniques during the skip
connections to enhance shallow feature representation by
reducing noise and maintaining critical visual elements.These
intermediate outputs are subsequently combined with high-
level semantic data extracted from the decoder to ultimately
produce the final segmentation outcome.The findings from
our experimental study indicate that this approach provides
superior segmentation accuracy for liver and tumor regions
within the LiTS dataset, surpassing existing techniques in
both precision and recall metrics. Future work will optimize
this method to improve segmentation accuracy and general-
ization capabilities. Additionally, research will explore com-
bining weakly supervised and semi-supervised approaches to
address the scarcity of liver tumor image datasets, thereby
enhancing model performance while reducing the cost of
creating liver tumor images.
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