
 

  

 

Abstract—This paper addresses the challenges of high 

computational costs and prolonged processing times in chaotic 

system parameter calculations by integrating the Particle 

Swarm Optimization (PSO) algorithm into chaotic systems, 

searching for optimal parameters. A novel data encryption 

system is proposed, integrating a four-dimensional chaotic 

system with PSO-based parameter optimization. 

In the first step, A new four-dimensional chaotic system is 

formulated with reference to the simplified Lorentz chaotic 

system, and the chaotic properties of the chaotic system are 

analyzed, such as dissipation analysis, equilibrium point 

analysis and Lyapunov exponential analysis. In the second step, 

the equation delineating the mathematical relationship between 

the parameters of the chaotic system and the maximum 

Lyapunov exponent is constructed, the optimal parameter 

values of the chaotic system are found based on the PSO 

algorithm, and the chaotic characteristics of the simplified 

Lorenz chaotic system, the optimized chaotic system and the 

original system are compared and analyzed. In the third step, 

the optimized chaotic system's output sequence is merged with 

perturbation and diffusion algorithms for performing image 

encryption and decryption, and the encryption security analysis 

is carried out. Finally, the encryption and decryption function 

are implemented on ZYNQ. 

Through software testing and hardware experimental 

evaluation, the system shows stable security performance, and 

can adapt to the security communication needs of different 

encryption objects, which have certain practical application 

values. 

 
Index Terms—Chaos, Data encryption, PSO algorithm, 

ZYNQ platform 

 

I. INTRODUCTION 

ith the deep connection between science and 

technology, computer technology and Internet 

applications, the information field pays more and more 

attention to data security, and once some information is 

leaked, it will inevitably lead to some irreversible 

 
Manuscript received September 26, 2024, revised July 18, 2025.  

This work was supported by a grant (No. NCOC-24-03) from Key 

Laboratory of Nonlinear Circuit and Optical Communications (Guangxi 
Normal University). 

Qi Liang is a visiting student of Key Laboratory of Nonlinear Circuit and 

Optical Communications, Guangxi, China (e-mail: 2692057273@qq.com).  

Qian Xiong is a postgraduate student of Hunan University of Science and 

Technology, Xiangtan, China (corresponding author to provide e-mail: 
2077193636@qq.com). 

Chunsheng Jiang is an associate professor of School of Guangxi Normal 
University, Guangxi, China (e-mail: 20210038@mailbox.gxnu.edu.cn).   

Wenxin Yu is a lecturer at School of Information and Electrical 

Engineering, Hunan University of Science and Technology, Xiangtan, China 
(e-mail: slowbird@sohu.com). 

consequences, such as economic losses and security threats. 

Therefore, based on the diversity and sensitivity of 

information and data, it is particularly important to build a 

safe and reliable confidential communication system. Secure 

communication hinges on encryption algorithms. 

Researchers in the area have proposed numerous algorithms 

and applied them to encryption tasks, such as 3DES (Triple 

Data Encryption Standard) [1], ECC (Elliptic Curve 

Cryptography) [2] and so on. 

Chaos theory is one of the greatest discoveries in physics 

in the 20th century, and together with quantum mechanics 

and relativity theory, it is known as the three major 

milestones of 20th century science. Because of the 

pseudo-randomness, hiddenness, high susceptibility to initial 

values and unpredictability in the long run of chaotic systems, 

many researchers have focused on chaotic cryptography. In 

chaotic systems, a large number of non-periodic, noise-like 

signals can be generated, and this property can be used to 

achieve encryption of data. For example, a chaotic system is 

used to encrypt power data [3], or to fuse chaos with other 

theories to innovate encryption methods, such as the 

combination of chaos theory and DNA coding principle [4], 

the fusion of chaotic system and block compression sensing 

[5], and the integration of chaotic system and neural network 

[6]. Therefore, it is possible to encrypt chaotic sequences 

generated by chaotic systems as encrypted sequences, which 

have a huge key space and are strongly influenced by the 

internal parameters of the chaotic system and its initial state 

are designed so that slight parameter tweaks or initial 

condition changes can cause significant mutations in the 

generated encrypted sequences [7]. Dingwell J B posits that 

Lyapunov characteristic exponents occupy a pivotal role in 

delineating the behavioral patterns of dynamical system [8]. 

To make sure chaotic systems are stable and reliable, this 

paper is devoted to exploring and determining the optimal 

parameters of the system. To this end, a functional 

relationship between chaos parameters and Lyapunov 

exponent is constructed to maximize the Lyapunov exponent 

to boost system complexity and reliability, and shield the 

encryption performance. 

Optimization problems are ubiquitous in life and scientific 

research, addressing many challenges, and the swarm 

intelligence algorithms have become one of the efficient 

solutions due to their unique advantages. For instance, 

Kennedy and Eberhart introduced PSO, a bio-inspired 

algorithm that locates optimal solutions via population-based 

collaborative and divisive exploration[9]. Wu D et al. 

proposed a unique intelligent diagnostic approach aimed at 

identifying and solving faults in motor bearings more 

efficiently [10].  Wang C et al. adopted artificial intelligence 
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algorithm methods to optimize the weights of indicators [11]. 

You Z P et al. proposed a nature-inspired and chaos theory 

that merges ant colony optimization (ACO) and particle 

swarm optimization (PSO) to improve image quality [12]. 

Bigdellou S et al. suggested a hybrid PSO-heuristic algorithm 

that integrates combinatorial Benders’ cuts to dynamically 

address road blockages and fuel constraints in wildfire 

evacuation[13]. Allaoui et al. introduced t-SNE-PSO, a 

PSO-enhanced manifold learning algorithm ,improving 

clustering silhouette scores by 27% and overcoming gradient 

descent’s susceptibility to local optima[14]. The above 

literature is sorted out and analyzed to provide a clear insight 

into the value of the application of intelligent algorithms in 

the problem solving domain. Based on this, PSO algorithm is 

introduced in this paper for the specific and critical context of 

optimal parameter finding. 

To guarantee the efficacy of encryption algorithms in 

practical implementations, Liu X et al. built a chaotic 

cryptographic encryption system grounded in discrete 

memristor and meminductor tech on the DSP platform [15]. 

Mohamed G et al. successfully built a sturdy system for 

real-time image encryption and decryption on an FPGA 

platform [16]. The practical applicability of FPGAs has 

facilitated the offline implementation of encryption 

algorithms in various application scenarios. In this context, 

this paper explores the hardware implementation of the 

encryption system designed for the ZYNQ platform, 

emphasizing its technical rigor and practical applicability. 

In summary, this paper presents an image encryption 

system using a 4D chaotic system and PSO parameter 

optimization. Here, the knowledge of chaos theory, nonlinear 

system, control theory and intelligent algorithm is 

comprehensively utilized to construct a complex chaotic 

system and use them in the data encryption system. The 

designed encryption algorithm's reliability and complexity 

are boosted by maximizing the Lyapunov exponent of the 

built chaotic system. 

 

II. PARAMETER OPTIMIZATION OF FOUR-DIMENSIONAL 

CHAOTIC SYSTEM 

A. Construction of a Four-dimensional Chaotic System and 

its Dynamics Analysis 

The simplified Lorenz chaotic system is represented by the 

following Eq. (1) [17]: 

 

( )

(24 4 )

x m y x

y g x gy xz

z nz xy

= −


= − + −
 = − +

 (1) 

In Eq. (1). The system dimensions are denoted by , ,x y z , 

while the system parameters are denoted by , ,m n g . The 

usual setup parameters are
8

2, , 2
3

m n g= = = .The simplified 

Lorenz chaotic system is a simplification of the classical 

Lorenz system, which retains the chaotic properties but is 

simpler to compute, and exhibits complex dynamical 

behavior with a small number of variables and equations. 

Using the simplified Lorenz chaotic system from Eq. (1), a 

four-dimensional chaotic system is built with the Eq. (2): 
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In Eq. (2). , , ,x y z w  is the dimension of the system and 

, ,a b c  is the system parameter. The dissipative nature of this 

system is articulated in Eq. (3): 

 

. . . .

3 2
x y z w

V a cz y
x y z w

   
 = + + + = − − + −

   
 (3) 

Thus when 03 2a cz y− − + − ＜  the system shows 

dissipative traits and converges an exponential rate 
3 2a cz ye − − + −（ ）, so that as time t  tends to infinity, every tiny 

volume element in the dynamic trajectory of the system 

follows an exponential decay law, gradually shrinking to zero, 

implying that all of the system's trajectories will ultimately 

converge and be confined to a zero-volume set of limit points. 

This process reveals that the asymptotic dynamical behavior 

of the system will be fixed to an attractor, thus confirming the 

possible existence of a chaotic attractor within the system. 

Let 0x y z w= = = = , which gives the equilibrium point 

of the system as 0 0 0 0（，，，）, and through linearizing the 

system at the equilibrium state point, we obtain the Jacobi 

matrix of the system: 

0 0

18 2 0 0 0

0 0 3 0

0 0 7 0

a a

c
J

− 
 

−
 =
 
 
 

. 

To derive the characteristic equation associated with J at 

the equilibrium point, let 0E J − = , then the characteristic 

equation at the equilibrium point is expressed as Eq. (4). 

 ( )( )23 (2 18) 0a a c   − + + − =  (4) 

Solving Eq. (4) yields 
1 20, 3, = =  

2

3,4

4 (2 18)

2

a a a c


−  − −
= , and the Routh–Hurwitz 

stability criterion posits that for a system to remain stable, it 

is necessary for the real part of all its eigenvalues to be 

negative. However, according to the calculated eigenvalues, 

it can be seen that there are eigenvalues with positive and 

solid parts in the system, which indicates the system presents 

unstable characteristics when at the equilibrium point 

0 0 0 0（，，，）. It is therefore possible that the system may exhibit 

chaotic or more complex hyperchaotic behavior. 

The parameter variations of the system are not only 

concerned with the maintenance of its equilibrium point's 

stability, but also affect the chaotic phenomena within the 

system, prompting its changes. In order to deeply observe and 

analyze the chaotic dynamics' trajectory alterations in the 

system the paper examines the dynamics behaviors of the 

system in terms of Lyapunov exponents of different 

variables. 
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(a)                                                             (b)                                                                (c) 

Fig. 1.  Dynamic analysis of parameter variations: (a) 4.00, 2, (19,26)b c a= =  ,(b) 24, 2, (4,15)a c b= =  ,(c) 24, 4, (0,3)a b c= =   

 

The Lyapunov exponent is a quantitative measure that 

provides an average estimation of the rate of convergence or 

divergence of neighboring trajectories in a system's phase 

area. For a system with attractors of chaotic nature, its 

characteristics are: (1) a positive Lyapunov exponent can at 

least be identified, (2) there must be one Lyapunov exponent 

that is zero, (3) the sum of all Lyapunov exponents must be 

negative. The maximum Lyapunov exponent plays a pivotal 

role in the exploration of chaotic phenomena, which is not 

only a key symbol for judging whether a system is 

characterized by chaotic behavior or not in a given state, but 

also able to elucidate the extent of chaos and reveal the high 

sensitivity of the system to minor discrepancies in the initial 

conditions. In light of the fact that the system constructed in 

this paper has a dimension of four, the system has four 

corresponding Lyapunov exponents. By monitoring and 

evaluating the maximum values of these four indices, it is 

possible to determine whether the system is in a chaotic state 

with a high degree of certainty. Specifically, when the 

magnitude of the maximal Lyapunov exponent exceeds zero, 

it means that the system is diverging exponentially between 

trajectories. 

Varying the parameters    , , 19,25 , 4,15 ,a b c a b  （  

 0,3c ）, respectively, the values of the Lyapunov 

exponents for the system are depicted in Fig. 1(a)(b)(c) under 

the assumption that all other parameters remain constant. In 

Fig. 1(a)(b)(c), a state of chaos is exhibited by the system 

when the maximum Lyapunov exponent takes on a positive 

value and the other Lyapunov exponents satisfy the above 

characteristics. 

 

B. Optimization Of System Parameters 

This paper utilizes the PSO algorithm to conduct 

optimization on chaotic parameter tuning to construct a 

chaotic system with obvious chaotic features, and the 

proposed implementation flowchart is shown in Fig. 2. 

The Particle Swarm Algorithm (PSO), an intelligent 

optimization methodology grounded in the group dynamics 

observed in nature, is harnessed in this paper to conduct 

exploratory research and determine the optimal configuration 

of the chaotic system parameters , ,a b c .By adjusting these 

parameters, the optimization process is carried out on the 

system's maximum Lyapunov exponent with the aim of 

achieving its maximum possible value, which in turn 

optimizes the chaotic properties of the system and improves 

its performance in applications.  

The specific of the PSO algorithm to find the optimal 

, ,a b c  to obtain the optimal system are as follows: 

Step 1 Specific parameters are configured as follows: the 

population dimension is assigned a value of 3, the particle 

count is set at 20, and the upper limit for the number of 

iterations is established as 301, the position restriction 

     19,26 , 0,8 , 0,5 a b c   , the particle velocity 

restriction is set to 
min max1 1u u= − =， , the inertia weight 

1 = , the individual learning factor 
1 1.5d = , the population 

learning factor 
2 1d = , additionally, the initial values for the 

chaotic system (5,1,5,1)  are determined and specified. 

Step 2 Initialize the number of iterations 0k = , and 

randomly initialize the particle velocity and particle position 

within the set position and velocity limits, and subsequently 

for each particle position corresponding to the parameters 

, ,a b c , substitute them into the chaotic system model to 

calculate the maximum Lyapunov exponent of the system, 

which is taken as the value of the objective function as shown 

in Eq. (5). By comparing the fitness of each particle, the 

initial best individual position and the best group position are 

determined, additionally, the value of the maximum 

Lyapunov exponent corresponding to this instance is 

documented. 
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Then the value of the maximum Lyapunov exponent is
4Ly , 

while the above equation needs to satisfy 
4

4 2 3

1

0 & 0 & 0i

i

Ly Ly Ly Ly
=

 =＞ ＜ . In Eq. (5) ( )ijtriu •  

denotes i  rows and j  columns of • , ( )sort •  denotes the 

sorting of all elements in •  from smallest to largest, E  is the 

unit matrix, J  is the Jacobi matrix of the system as shown in 

Eq. (6). 
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Set initial 

parameters

Initialize iteration count 

and particle states

Construct the functional relationship 

between the parameters of the chaotic 

system and the Lyapunov exponent

Update the velocity and position of 

particles through the best 

individual and global positions

Calculate the Lyapunov exponent 

to update the best individual and 

group positions

Increment iteration count
Is it greater than or equal

 to the set iteration count

Stop optimization and output the optimal 

parameters and the corresponding 

maximum Lyapunov exponent 

No

Yes

 
Fig. 2.  Implementation flowchart 

 

Step 3 Implementing the refreshment of particle velocities 

and positions by the individual optimal position 
idW  and the 

population optimal position 
odW ,as shown in Eq. (7). 

 

1

1 1 2 2

1 1

( ) ( )k k k k k k

i i id i od i

k k k

i i i

U U d e W Q d e W Q

Q Q U

+

+ +

= + − + −

= +
 (7) 

In Eq. (7), 1,2,i N= , N  is the length of the 

sequence,
1d  is the individual learning factor, and 

2d  is the 

population learning factor, k  represents the count of 

iterations at the present stage, 
iU  is the velocity of the 

particle, 
iQ  is the position of the particle,   is the inertia 

weight, 
1e  and 

2e  are random numbers belonging to the 

interval [0,1]. 

Step 4 Recalculate the fitness (maximum Lyapunov 

exponent) of each particle after the update and compare it 

with the previous best individual and population fitness. If 

better fitness is found, update the best individual position and 

the best population position. At the same time, the number of 

iterations k  is added by one. 

Step 5 Loop steps 3 and steps 4, and when the number of 

iterations k  reaches a set value, the search for the optimal 

parameter superiority is stopped and output the final optimal 

population position (the optimal parameter , ,a b c  ) and the 

corresponding maximum Lyapunov exponent. 

After the above steps, 20 sets of experimental tests were 

completed, and the results of one of the experiments were 

taken to obtain the optimal parameters of the 

four-dimensional system at this point in time as 

24.76225, 3.803894, 1.394659a b c= = =  , and the 

maximum Lyapunov exponent as 7.171601 . The parameter 

results of this experimental test satisfy the parameter range 

mentioned in the previous section, Substituting the 

parameters , ,a b c  obtained from optimization into Eq. (2) so 

that the system can output the chaotic sequence with the 

maximum Lyapunov exponent. The optimization graph 

obtained from the experimental test is shown in Fig. 3, and 

the test results of Lyapunov exponent obtained from other 

experiments fluctuate between 6.7 and 7.8, which is close to 

the results of other experiments in the past, showing good 

consistency and stability. 

 

         
            (a)                                                                                   (b) 

               
            (c)                                                                                   (d) 

Fig. 3.  Optimization curve diagram: (a) Parameter an optimization, (b) Parameter b optimization, (c) Parameter c optimization, (d) Maximum Lyapunov 

exponential optimization 
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(a)                                                                   (b)                                                                  (c) 

  
(d)                                                                   (e)                                                                  (f) 

Fig. 4. Phase portrait of attractor for simplified Lorenz chaotic system: (a)x-y, (b)y-z, (c)-z. Phase portrait of attractor for simplified Lorenz chaotic system:(d) 

x-y-z, (e)x-y-w, (f)y-z-w. 

 

C. Comparative analysis of the dynamics of the optimized 

chaotic system and the original chaotic system 

Establishing the parameter values of the simplified Lorenz 

system to be 
8

2, , 2
3

m n g= = = ,  the initial value is 

   30, 0, 0 1 2,x y z = ， , Phase diagram of the system can be 

obtained as shown in Fig. 4(a)(b)(c). 

Taking the optimal parameter obtained above 

24.76225, 3.803894, 1.394659a b c= = =  and the initial 

value of the chaotic system is    0, 0, 0, 0 5,1,5,1x y z w = , the 

phase diagram of the chaotic system as shown in Fig. 

4(d)(e)(f) is generated. In Fig. 4, it can be seen that the states 

in which both the simplified Lorenz system and the optimized 

system in this paper are located have relatively obvious 

chaotic characteristics. And the phase trajectory of the 

chaotic attractor shows a large number of distortions and 

folding in the phase space, forming a seemingly disordered 

curve, and this complexity makes the behavior of the chaotic 

system difficult to be predicted and control. Therefore, the 

output sequence of the system has sufficient complexity and 

is characterized by sensitivity to its initial value and system 

parameters, non-periodicity, etc., which makes it suitable for 

application in confidential communication. 

The 0-1 test constitutes a testing algorithm that can 

measure whether a time series is chaotic, and for non-chaotic 

systems, the trajectory motion of the 0-1 test demonstrates 

bounded movement, indicating that the domain of values is 

restricted to a finite range, For a system that has entered a 

chaotic state, the trajectory motion of the 0-1 test exhibits 

unbounded properties similar to Brownian motion, and then 

the value can be assumed to fluctuate infinitely over time 

without being confined to any fixed range. 

The graph of the 0-1 test results for the optimized 

four-dimensional chaotic system is shown in Fig. 5. The 

trajectory motion obtained for the optimized 

four-dimensional chaotic system exhibits properties 

analogous to those observed in Brownian motion, thus, it 

suggests that the system is experiencing a chaotic state. 

The complexity of a chaotic system can measure how 

closely a chaotic sequence approximates a random sequence. 

As the complexity value increases, the degree of randomness 

in the sequence also rises, and correspondingly, the better the 

chaotic characteristics. Among the measures of chaotic 

system complexity, both SE  complexity and 
oC  complexity 

are of particular importance. These indicators mirror the 

inherent characteristics of the system in the frequency 

domain through different computational methods. 

 
Fig. 5 The 0-1 test graph of the optimized chaotic system. 

 

SE  complexity: By calculating the relative power 

spectrum predicated on the energy allocation situation in the 

Fourier transform domain, and subsequently incorporating 

Shannon entropy probability, the corresponding spectral 

entropy value can be derived. Eq. (8) for SE  complexity is 

shown as follows. 
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N  stands for the length measurement of the chaotic 

sequence, 
kP  indicates the relative power spectrum 

probability associated with the sequence. 

oC  complexity: Disassemble the chaotic sequence into 

regular and irregular parts, and then compute the percentage 

that the irregular part occupies within the chaotic sequence. 

Eq. (9) for 
oC  complexity is shown as follows. 
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N  stands for the length measurement of the chaotic 

sequence, ( )x i  represents the chaotic sequence 

 ( ), 0,1,2, , 1x i i N= − , ( )x i  represents the result of 

applying an inverse Fourier transform 0after performing a 

Fourier transform on ( )x i  and removing the irregular 

components. 
 

TABLE I 

Complexity of Different Chaotic Systems 

System SE  Complexity oC  Complexity 

Simplified Lorenz system 0.4041 0.1337 
Original system 0.6318 0.4126 

Optimized system 0.6560 0.4495 

 

As shown in Table 1, the optimized chaotic system 

demonstrates the highest SE  complexity and 
oC  complexity, 

followed by the constructed original chaotic system, in 

contrast, the simplified Lorenz chaotic system occupies the 

lowest position in the ranking. This indicates that the chaotic 

sequence produced by the optimized system exhibits greater 

complexity, with enhanced chaotic characteristics, thereby 

providing greater security in image information transmission. 

III. ENCRYPTION SYSTEM AND EXPERIMENTAL ANALYSIS 

Digital images contain more information compared to data 

information and are a representative data structure. In order 

to verify the optimized four-dimensional chaotic system 

which is based on the PSO optimization algorithm presented 

in the context of the present study, it is employed for the 

purpose of image encryption and the related analysis and 

evaluation are carried out. The complexity and practicality of 

it for data encryption are further confirmed through 

experimental analyses. 

Taking the encryption of color image data with grey level 

256L =  and size 3M N   as an example, the formulated 

data encryption system process predicated on the four - 

dimensional chaotic framework and PSO parameter 

searching is shown in Fig. 6. To begin with, the PSO 

algorithm is applied to identify the most suitable parameters 

, ,a b c  of the chaotic system and then the parameters , ,a b c  

of the optimal system are substituted into the 

four-dimensional chaotic system, so that the system outputs 

the chaotic sequence with the maximum complexity. Finally, 

using the sequence of the output of the chaotic system 

optimized by the PSO algorithm, chaotic disruption and 

diffusion matrices were created, and these two matrices were 

subsequently applied to the encryption process of plaintext 

images to achieve disruption and diffusion processing of the 

images.  

 

Four-dimensional 

Chaotic System

Utilize the Particle Swarm Optimization (PSO) 

algorithm to optimize the parameters a, b, and c of the 

chaotic system

Optimized chaotic system parameters yield enhanced 

chaotic sequences

Plaintext 

Image
Permutation and 

Diffusion

Encrypted 

Image
 

Fig. 6. Image encryption process based on parameter-optimized 

four-dimensional chaos 

 

In the disruption process, the generated chaotic disruption 

matrix is employed to modify the positional configuration of 

pixels in the plaintext image. The pixel positions within the 

disrupted image undergo modification, yet the gray - level 

value of every pixel remains unaltered, so the distribution of 

the grey value and the related statistical characteristic 

information of the image are not affected. In the subsequent 

diffusion stage, the diffusion matrix constructed using chaos 

theory transforms the grayscale intensities of the image with 

dislocated pixels, it adeptly conceals the statistical traits 

inherent in the original image. Meanwhile, the decryption 

stage acts as the inverse operation of encryption, bringing the 

image back to its initial condition. 

The initial value  0, 0, 0, 0x y z w  of the four-dimensional 

chaotic system is used as the encryption and decryption key, 

and the default key used in this paper is 

   0, 0, 0, 0 5,1,5,1x y z w = . Fig. 7 presents the outcomes 

derived from the encryption and decryption experimental 

procedures of some common color images, as shown in the 

figure, in which the size of Lena image is 256 256 3  , the 

size of House image is 256 256 3  , and the size of Baboon 

image is 512 512 3  . From the figure, it can be clearly 

observed that the plaintext data within the ciphertext image is 

entirely concealed. Moreover, the decrypted image precisely 

matches the original plaintext image, and the image 

encryption method proposed in this paper is effective in 

encrypting and decrypting the image using the parameter 

optimized four-dimensional chaotic system. This manuscript 

presents a four - dimensional chaotic system - based image 

encryption approach, which is grounded on parameter 

optimization, which can effectively perform image 

encryption and decryption. 
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Fig. 7. Experimental diagram of image encryption and decryption: (a) Lena plaintext image, (b) Lena ciphertext image, (c) Lena decrypted image, (d) House 

plaintext image, (e) House ciphertext image, (f) House decrypted image, (g) Baboon plaintext image, (h) Baboon ciphertext image, (i) Baboon decrypted imag 

 

IV. ENCRYPTION SECURITY ANALYSIS 

A. Histogram Analysis 

Histogram analysis techniques are applied to perform an 

evaluation on the allocation pattern of various grey levels 

across an image, and ideally, the histogram should exhibit a 

uniform distribution, meaning that all grey values are 

employed in the encrypted image in approximately equal 

amounts, consequently, it becomes highly challenging to 

infer any details regarding the original image based on the 

frequency distribution of its gray values. 

Fig. 8 shows a plaintext histogram and a ciphertext 

histogram of the Lena image. As depicted in the figure, the 

histogram corresponding to the plaintext image indicates an 

irregular distribution pattern among individual gray values, 

which reflects the original image content, while the gray 

value distribution in the ciphertext histogram tends to be 

uniform, and the encrypted image can be better protected 

against statistical attacks. 

B. Relevance Analysis 

Correlation between neighboring pixels is also a detection 

metric in statistical analysis, including horizontal 

neighboring pixel point correlation, vertical neighboring 

pixel point correlation, orthogonal neighboring pixel point 

correlation, and anti-diagonal neighboring pixel point 

correlation. Ideally, in a plaintext image, neighboring pixels 

are strongly correlated with each other, there is not supposed 

to be any correlation between neighboring pixels in a 

ciphertext image. 

While two interdependent and uncorrelated random 

sequences have a theoretical correlation coefficient of 0, 

indicating that there is no linear correlation between them, on 

the contrary, when two random sequences are completely 

linearly correlated, their correlation coefficients will reach a 

theoretical maximum value of 1, which signifies that there is 

a complete positive linear relationship between them. 

 

 
(a)                                                                                     (b) 

Fig. 8.  Image histograms: (a) Lena plaintext image with plaintext histogram, (b) Lena ciphertext image with ciphertext histogram 
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(b) 

Fig. 9.  Lena image: (a) correlation of plaintext image in each direction, (b) correlation of ciphertext image in each direction 

 

Fig. 9 presents the relationship of correspondence between 

the Lena plaintext image and its encrypted ciphertext image 

after the optimization proposed in this paper as an encrypted 

sequence in all directions of the Lena image. Table 2 lists its 

correlation coefficients in each direction, with the additional 

presentation of the correlation coefficients of the resulting 

ciphertext images, when the simplified Lorenz system and 

the unoptimized system proposed in this paper are used as 

encryption sequences, respectively. 
 

TABLE II 

Correlation Coefficients 

Image 
Horizontal 

Direction 

Vertical 

direction 

Forward 
diagonal 

direction 

Anti-diago
nal 

direction 

Plaintext 
Image 

0.9568 0.9343 0.9166 0.9248 

Encrypted 

Image1 
0.0096 0.0094 0.0092 0.0093 

Encrypted 

Image2 
0.0095 0.0094 0.0092 0.0093 

Encrypted 
Image3 

0.0095 0.0093 0.0092 0.0093 

 

The correlation coefficients presented in Table 2 represent 

the mean values derived from 1000 experimental trials, and 

these values indicate that the relevance of the plaintext image 

between neighboring pixels is strong in each direction, while 

the relevance of the three ciphertext image is quite different, 

and the relevance of the neighboring pixels approaches to 

zero in every direction, presenting an approximate 

uncorrelated state. And Encrypted Image 1 corresponds to the 

image encrypted employing the chaotic sequence that is 

produced through the simplified Lorenz chaotic system. 

Encrypted Image 2 corresponds to the image encrypted 

employing the chaotic sequence that is produced through the 

constructed original chaotic system. Encrypted Image 3 

corresponds to the image encrypted employing the chaotic 

sequence that is produced through the optimized chaotic 

system. 

As shown in Table 2, in the forward diagonal direction, the 

correlation coefficients of encrypted image 1, encrypted 

image 2, and encrypted image 3 are all 0.0092. In the 

anti-diagonal direction, they are all 0.0093. In the horizontal 

direction, the correlation coefficients for encrypted image 2 

and encrypted image 3 both register at 0.0096, which is 

0.0001 lower than that of encrypted image 1 and closer to 0. 

In the vertical direction, the correlation coefficients of 

encrypted image 1 and encrypted image 2 are both 0.0094, 

and that of encrypted image 3 is 0.0001 lower than encrypted 

image 1 and encrypted image 2, closer to 0. This indicates 

that, in comparison to the simplified Lorenz chaotic system 

and the sufficiently simple original chaotic system, the 

chaotic sequence of the optimized chaotic system results in 

lower correlation after image encryption, demonstrating 

better performance. 

 

C. Information Entropy Analysis 

The concept of information entropy reflects the inherent 

disorder within digital images. Greater entropy levels 

indicate more complicated image structures and poorer visual 

distinctness. The computational formula for determining 

entropy is: 

 
2

0

( ) log ( )
L

i

H p i p i
=

= −  (10) 

In Eq. (10), L is the number of grey levels of the image and 

( )p i  is the occurrence probability of gray-level value i . 

Theoretical analysis shows that the upper bound of 

information entropy H for a grayscale random image is 8 

(based on the case where L is 256). As the image's 

information entropy approaches the theoretical maximum of 

8, it can be regarded as a random image. 
 

TABLE III 

Information Entropy 

Image Information Entropy 

Lena image 

(256×256) 

Plaintext Image 7.5176 

Encrypted Image 7.9991 

House image 

(256×256) 

Plaintext Image 7.0686 

Encrypted Image 7.9990 

Baboon image 

(512×512) 

Plaintext Image 7.7624 
Encrypted Image 7.9997 

 

From Table 3, the experimental results demonstrate that 

when employing the optimized chaotic sequence generated 

by our proposed system for encryption, the resulting 

ciphertext image exhibits significantly higher information 

entropy compared to the original plaintext. Notably, both 

entropy values approach the theoretical maximum of 8, 

confirming the superior performance of the encryption 

scheme. 
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Fig. 10.  Forward encryption and decryption of House image: (a) original image, (b) encrypted image, (c) wrongly decrypted image 

 

 
Fig. 11.  House image reverse encryption and decryption: (a) original image, (b) encrypted image, (c) incorrectly decrypted image  

 

D. Key Sensitivity Analysis 

The objective of the key sensitivity analysis is to examine 

the response characteristics in which a slight change in the 

key, even if the encryption is of the same original plaintext 

image, results in a notable disparity is observed between the 

two generated ciphertext images, such a difference to the 

extent that the original key can no longer be used to 

efficiently decrypt any of the images that were encrypted 

with the changed key, thus ensuring that the encryption 

process is highly security and robustness of the encryption 

process. 

As shown in Fig. 10, the original key 

   0, 0, 0, 0 5,1,5,1K x y z w ==  is set, and the original key is 

slightly adjusted to   1' 00, 0, 0, 0 5 10 ,1,5,1K x y z w − =  = + . 

The House image is encrypted by the original key K , and 

then the encrypted image is decrypted by 'K . 

On the contrary, the House image is encrypted by the key 

  1' 00, 0, 0, 0 5 10 ,1,5,1K x y z w − =  = + , and then the 

encrypted image is decrypted by the original key 

   0, 0, 0, 0 5,1,5,1K x y z w == , and the result of the 

encryption and decryption is illustrated in Fig. 11. 

Observing Fig. 10 and Fig. 11, it can be concluded that the 

small difference between keys (even if it is only of the order 

of 10-10) is enough to cause the encryption system to be 

unable to perform effective decryption, which reflects the 

good response sensitivity of the encryption system designed 

in this paper under key changes. 

 

E. Cryptographic Quality Analysis 

In order to analyze the cryptographic quality of the 

encryption algorithm proposed in this paper, Mean Square 

Error (MSE), Peak Signal to Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM) are used as evaluation 

metrics. MSE is a key quantitative measure of the degree of 

variation between image pairs, with increasing MSE values 

indicating greater differences, the more significant the 

alteration of the original information by the encryption 

process is, thus reflecting the better encryption effect. PSNR 

is defined according to MSE PSNR is a metric for evaluating 

the similarity between images, ranging from 0 to 1. For 

identical images without any changes, the SSIM value is 1, 

whereas for images with very different contents, the SSIM 

value tends to be zero. 

Table 4 summarizes the encryption quality assessment 

results obtained for various images. Observing the values of 

the metrics in Table 4, it can be obtained that all the color 

images present high MSE values after encryption under 

different color components, while the PSNR of these images 

are below 10 dB, in addition, the SSIM values are 

approaching zero. These data verify the effective obfuscation 

and protection of image information by the encryption 

algorithm. 

 

TABLE IV 

Correlation Coefficients Analysis of Quality Indicators 

Image 
MSE PSNR (dB) SSIM 

R G B R G B R G B 

Lena 

(256×256×3) 
8658 9456 10430 8.75 8.37 7.94 0.0095 0.0085 0.0095 

House 

(256×256×3) 
6829 8643 9598 9.78 8.76 8.30 0.0106 0.0094 0.0092 

Baboon 
(512×512×3) 

8649 7748 9508 8.76 9.23 8.34 0.0106 0.0087 0.0085 

Lena 
(256×256×3) 

8658 9456 10430 8.75 8.37 7.94 0.0095 0.0085 0.0095 
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Fig. 12.  Hardware circuit display result diagram: (a) the unencrypted image, (b) the image formed after encryption, (c) the image that has been decrypted and 

restored 

 

V. HARDWARE CIRCUIT EXPERIMENT 

The experimental setup utilizes the XILINX ZYNQ7000 

platform, featuring dual-core ARM Cortex-A9 processors 

and FPGA programmable logic components. The relevant 

chaotic circuits have been constructed using the platform, and 

chaotic encrypted sequences have been imported into the 

circuits. The confidential communication system formed by 

combining them with the chaotic diffusion algorithm has 

been mapped to the ZYNQ, and the experimental outcomes 

are illustrated in Fig. 12 and Fig. 13.  

The results of the images generated by the confidential 

communication system in the ZYNQ experimental platform 

and displayed on the display are shown in Fig. 13, and the 

images exported from the SD card are shown in Fig. 12, 

where Fig. 12(a) is the unencrypted image Fig. 12(b) is the 

image formed after encryption, and Fig. 12(c) is the image 

that has been decrypted and restored. Comparison of Fig. 

12(a) and Fig. 12(b) demonstrates that the unencrypted image 

and the image formed after encryption exhibit significant 

non-correlation, ensuring that it is difficult to establish a 

direct link between the two is challenging, whether visually 

or analytically. Comparison of Fig. 12(a) and Fig. 12(c) 

reveals that the unencrypted image is the same as the image 

that has been decrypted, and that the image has been 

completely restored through the decryption circuit. The 

experiments results demonstrate the efficacy of the secure 

communication system can correctly carry out secure 

communication, the image data can be concealed within the 

carrier, and the data content will not be lost during the secure 

communication process. The efficacy of the proposed secure 

communication system founded on the four-dimensional 

chaotic system and the PSO parameter optimization data 

encryption method is demonstrated by its practical 

application. 

 

 
Fig. 13. Confidential communication system in the ZYNQ experimental 

platform implementation and display results 

 

VI. CONCLUSION 

A four-dimensional chaotic system is suggested in this 

paper, and a data encryption method based on the 

four-dimensional chaotic system and PSO parameter 

optimization is constructed. Firstly, according to the 

mathematical relationship equation between the designed 

chaotic system parameters and the maximum Lyapunov 

exponent, the PSO algorithm is applied to optimize the 

parameters of the four-dimensional chaotic system to obtain 

the optimal chaotic system, so that the chaotic sequence 

output is more appropriate for signal encryption, and the 

optimized chaotic system is analyzed by attractor phase map, 

0-1 test map and complexity analysis to verify its good 

performance. Secondly, the digital image is scrambled and 

diffused using the chaotic sequence output from the 

optimized four-dimensional chaotic system, so as to achieve 

the purpose of encrypting the image information. The 

encryption effect security analysis is conducted from the 

histogram analysis, correlation analysis, information entropy 

analysis, key sensitivity analysis and encryption quality 

analysis of the plaintext image and the ciphertext image, and 

the test results verify the validity and dependability in the 

novel encryption scheme developed in this study, and the 

designed encryption method has a sound encryption and 

decryption performance, which provides reliable encryption 

scheme for the practical application of data encryption. 

Finally, an image encryption system based on 

four-dimensional chaotic system and PSO parameter 

optimization was implemented on the ZYNQ platform, and 

the software test and hardware experiment verify that the 

system has good confidentiality performance and practical 

application effect. 

 

REFERENCES 

[1] Tezcan C, “Key lengths revisited: GPU-based brute force cryptanalysis 

of DES, 3DES, and PRESENT,” Journal of Systems Architecture, vol. 
124, pp. 102402, 2022. 

[2] Ullah S, Zheng J, Din N, et al., “Elliptic Curve Cryptography, 

Applications, challenges, recent advances, and future trends: A 
comprehensive survey,” Computer Science Review, vol. 47, pp. 

100530, 2023. 
[3] Zhang F, Huang Z, Kou L, et al., “Data encryption based on a 9D 

complex chaotic system with quaternion for smart grid,” Chinese 

Physics B, vol. 32, no. 1, pp. 010502, 2023. 
[4] Wang X, Liu C, “A novel and effective image encryption algorithm 

based on chaos and DNA encoding,” Multimedia Tools and 
Applications, vol. 76, no. 5, pp. 6229-6245, 2017. 

[5] Dou Y ,Yue S ,Zhang X , et al., “A special image encryption strategy 

based on a novel digital chaotic system and binary block compressed 
sensing for fixed-point DSP,” Nonlinear Dynamics, vol. 113, no. 9, pp. 

10535-10558, 2025. 

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3148-3158

 
______________________________________________________________________________________ 



 

[6] Tao Y, Cui W H, Zhang Z, and Shi T W, “An Image Encryption 
Algorithm Based on Hopfield Neural Network and Lorenz 

HyperChaotic System,” IAENG International Journal of Computer 
Science, vol. 49, no. 4, pp. 1201-1211, 2022. 

[7] Wang S, Peng Q, Du B, “Chaotic color image encryption based on 4D 

chaotic maps and DNA sequence,” Optics & Laser Technology, vol. 
148, pp. 107753, 2022. 

[8] Dingwell J B, “Lyapunov exponents”, Wiley encyclopedia of 
biomedical engineering, vol. 2104, pp. 127-133, 2014. 

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization", Proc. 

ICNN95–Int. Conf. Neural Networks, vol. 4, pp. 1942-1948, 1995.  
[10] Deng W, Yao R, Zhao H, et al. , “A novel intelligent diagnosis method 

using optimal LS-SVM with improved PSO algorithm,” Soft 
computing, vol. 23, no. 7, pp. 2445-2462, 2019. 

[11] Wang C N, Yang F C, Nguyen V T T, et al. , “CFD analysis and 

optimum design for a centrifugal pump using an effectively artificial 
intelligent algorithm,” Micromachines, vol. 13, no. 8, pp. 1208, 2022. 

[12] You Z P, Yi D J, Fang Z, Zhang W H, “Image Enhancement ANPSO 
Processing Technology Based on Improved Particle Swarm 

Optimization Algorithm,” IAENG International Journal of Computer 

Science, vol. 51, no. 11, pp. 1781-1792, 2024. 
[13] Bigdellou S ,Chen Q ,Beheshti S , “A novel Hybrid PSO-Heuristic 

Algorithm with Combinatorial Benders' Cuts for maximal evacuation 
planning in wildfire disasters,” Applied Mathematical Modelling, vol. 

145, pp. 116131-116131, 2025. 

[14] Allaoui M ,Belhaouari B S ,Hedjam R , et al., “t-SNE-PSO: Optimizing 
t-SNE using particle swarm optimization,” Expert Systems With 

Applications, vol. 269, pp. 126398-126398, 2025. 
[15] Liu X, Mou J, Zhang Y, et al. , “A new hyperchaotic map based on 

discrete memristor and meminductor: dynamics analysis, encryption 

application, and DSP implementation,” IEEE Transactions on 
Industrial Electronics, vol. 71, no. 5, pp. 5094-5104, 2023. 

[16] Gafsi M, Hajjaji M A, Malek J, et al. , “FPGA hardware acceleration of 
an improved chaos-based cryptosystem for real-time image encryption 

and decryption,” Journal of Ambient Intelligence and Humanized 

Computing, vol. 14, no. 6, pp. 7001-7022, 2021. 
[17] Sun K H, Sprott J.C., “Dynamics of simplified Lorenz system,” 

International Journal of Bifurcation and Chaos, vol. 19, no. 4, pp. 
1357-1366, 2009. 

 

 

 

 

 

 

 

 

 

 

Qi Liang received the B.E. degree in optoelectronic 

information science and engineering from the Hunan 
University of Science and Technology, Xiangtan, 

China, in 2022, where she is currently pursuing the M.S. 
degree. Her research interests include signal processing 

and circuit design. 

 

 

 

 

 
Qian Xiong received the B.E. degree in optoelectronic 

information science and engineering from the Hunan 

University of Science and Technology, Xiangtan, 
China, in 2024, where she is currently pursuing the M.S. 

degree. Her research interests include signal processing 
and circuit design. 

 

 

 

 

 

 
Chunsheng Jiang, associate researcher, graduated 
from the Department of Microelectronics and 

Nanoelectronics at Tsinghua University in July 2018 
with a PhD in Engineering. Research direction: 

Experimental preparation, mechanism modeling, and 

simulation of novel semiconductor low-power devices (FinFET, Tunneling 
FET, Junctionless Transistor, Negative capacitance Transistor, etc.) 

 
 

 

 

Wenxin Yu received the B.Sc. degree in applied 

mathematics from Hebei Normal University, 
Shijiazhuang, China, in 2005, the M.S. degree in 

wavelet analysis from the Changsha University of 

Science and Technology, Changsha, China, in 2008, 
and the Ph.D. degree in electrical engineering from 

Hunan University, Changsha, in 2015. He was with the 
Hunan University of Science and Technology, 

Xiangtan, China, where he is currently a Lecturer with 

the School of Information and Electrical Engineering. His interests include 
the research of intelligent control, fault diagnosis, signal processing, wavelet 

analysis, and its application. 
 

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3148-3158

 
______________________________________________________________________________________ 




