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Abstract—ABSTRACT: This study focuses on firefighters
and the post-traumatic stress disorder (PTSD) symptoms they
experience. As a crucial rescue force in society, firefighters
often encounter high-risk and high-stress work environments,
such as fires, natural disasters, and accident rescues, which
can readily lead to PTSD. Currently, the diagnosis of PTSD
primarily relies on the patient’s medical history, symptoms, and
professional psychological evaluations. By leveraging the spatio-
temporal characteristics of EEG signals, we employed convo-
lutional neural networks (CNN) and long short-term memory
networks (LSTM) to process the spatial and temporal features
of EEG signals, respectively, resulting in the construction of
a CNN-LSTM model. Firstly, the differential entropy features
of different frequency bands were extracted after time-domain
segmentation. The differential entropy data structure for each
frequency band was then transformed from one-dimensional
to two-dimensional, based on electrode positions using two-
dimensional mapping. Subsequently, the two-dimensional dif-
ferential entropy maps for each frequency band were stacked
to form a three-dimensional dataset. Finally, this segmented
three-dimensional data was processed to yield four-dimensional
data. Secondly, the data were fed into the CNN-LSTM model.
Firstly, the spatial features in the EEG signals were processed
using a convolutional neural network.The processed data were
then fed into a long short-term memory (LSTM) network,
where the temporal sequence information was further pro-
cessed. The experimental results demonstrate that the CNN-
LSTM model achieves an accuracy of 80%, a precision of
55.26%, a recall of 57.32%, and an F1 score of 56.27% in
predicting PTSD. This performance represents a significant
improvement compared to common machine learning models
and other deep learning models.This study introduces an
innovative electroencephalogram (EEG) - driven approach. By
integrating time - frequency domain feature extraction with
a deep hybrid neural network, it enables effective prediction
of post - traumatic stress disorder (PTSD). Initially, the study
segments the raw EEG signals in the time domain and extracts
differential entropy features across multiple frequency bands.
These features are highly sensitive to the nonlinear complexity
changes in EEG activities. To address the limitation of tradi-
tional one-dimensional features that overlook spatial structures,
based on the spatial distribution of electrodes, the differential
entropy data of each frequency band is transformed into two-
dimensional scalp topographic maps, thereby retaining spatial
adjacency information. Subsequently, the two - dimensional fea-
ture maps of different frequency bands are stacked along
the channel dimension to form a three - dimensional data
matrix that encapsulates spatiotemporal information. Through
the application of a sliding time - window technique, this
matrix is further expanded into a four - dimensional tensor
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(channel x frequency x space x time), enabling comprehensive
capture of the dynamic spatiotemporal patterns of EEG. In the
model construction phase, a CNN - LSTM cascade architecture
is employed. The initial convolutional layers leverage multi -
scale kernels to process the three - dimensional EEG data in
parallel, automatically extracting high - order features in the
spatial - frequency domain. The subsequent LSTM network
then models the sequential features output by the CNN, effec-
tively capturing the long-term dependencies in EEG activities.
Experimental results demonstrate that this hybrid model excels
in the PTSD prediction task, achieving an accuracy of 80%, a
precision of 55.26%, a recall of 57.32%, and an F1 - score
of 56.27%. These results represent a substantial improvement
over single models. This study not only validates the efficacy
of multimodal EEG features in characterizing the pathology
of PTSD but also offers a novel deep - learning framework
with spatiotemporal modeling capabilities for predicting mental
disorders using neuroimaging. It holds significant promise for
facilitating the clinical translation of objective biomarkers for
PTSD.

Index Terms—EEG signals; PTSD prediction; Convolutional
neural network; Long short-term memory network; Hybrid
neural network CNN-LSTM.

I. INTRODUCTION

TSD , also known as Post-Traumatic Stress Disorder, is

a severe psychological condition. It is a mental disorder
that arises when an individual experiences, witnesses, or is
confronted with one or more events involving actual death,
threats of death, or serious physical injury to themselves or
others [1]. PTSD is not contagious, but it can significantly
impair the quality of life for those affected and increase
the risk of suicide. High-risk groups primarily consist of
military personnel directly involved in combat and disaster
relief, rescue workers, and witnesses of major accidents
[2].For firefighters, they often engage in rescue operations
during fires, earthquakes, floods, and various other accidents.
These high-risk and high-stress environments make them
a high-risk group for PTSD. Therefore, predicting PTSD
in firefighters is crucial for preventing the development of
serious mental health issues. Early detection allows for tar-
geted interventions and treatments, which can help mitigate
the severe consequences of PTSD. Currently, the primary
diagnostic methods for PTSD include clinical assessments,
history collection, and the use of standardized assessment
tools such as structured interview tables and self-rating scales
[3]. EEG, or electroencephalogram, records the electrical
signals generated by neurons in the brain. These signals
reflect the state of brain function. In patients with PTSD,
there are characteristic changes in EEG patterns that may
be closely related to the pathophysiological mechanisms of
the disorder. Specifically, individuals with PTSD may exhibit
abnormal arousal responses, altered frontal and temporal
lobe activity, and reduced connectivity in their EEG activity.
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TABLE 1
CRITERIA FOR CLASSIFYING THE SEVERITY OF PTSD BY SELF-RATING
SCALE SCORES

Self - rating scale score ~ PTSD rating

0-20 Class 1
21-35 Class 2
36 - 50 Class 3
>50 Class 4

Therefore, monitoring and analyzing the EEG of firefighters
can provide crucial information for the diagnosis, treatment,
and prevention of PTSD.

II. DATA SOURCE AND PREPROCESSING
A. Sources of data

The data used in this study were EEG data from the
2024 Applied Statistics professional degree graduate case
competition, aimed at predicting PTSD in rescue workers.
The CNN-LSTM model was validated in the processing
of EEG signals. This dataset collected EEG signals from
25 subjects during the experiment, and the corresponding
subjects’ PCL total scores were provided as an indicator
of PTSD presence. The EEG data included eight types
of brain wave data: Delta, Theta, Alphal, Alpha2, Betal,
Beta2, Gammal, and Gamma?2, recorded once per second.
To achieve optimal results in data processing, we chose to
use Python software, which is well-suited for handling and
analyzing EEG data.Based on the scores from the self-rating
scale, PTSD can be categorized into four levels, with the
classification criteria presented in Table I: As shown in the
table, scores ranging from 0 to 20 are classified as Class 1,
indicating no significant PTSD symptoms. Scores between
21 and 35 fall into Class 2, characterized by mild PTSD
symptoms, such as mild re-experiencing of trauma, a certain
degree of avoidance behavior, and mild increased alertness.
Class 3 encompasses scores from 36 to 50, reflecting more
severe PTSD symptoms, including an increased frequency
of traumatic experiences, heightened alertness, avoidance,
and numbness, often accompanied by sleep disturbances.
Scores above 50 are categorized as Class 4, which is marked
by severe PTSD symptoms. In addition to the significant
intensification of the aforementioned characteristics, indi-
viduals may also experience severe depression, changes in
their outlook on life and values, and significant personality
alterations [4].

B. Data preprocessing

In terms of data processing, the acquired EEG data un-
dergo preprocessing, which includes noise removal, artifact
removal, data standardization, and normalization. Once the
preprocessing is complete, the 200 seconds of experimental
data are segmented, using a ten-second interval to divide each
participant’s data into 20 segments. Individuals with PTSD
often experience severe emotional issues, including persistent
negative emotions such as anger, anxiety, depression, and
fear, as well as a decrease in emotional stability. They
may become irritable, overreactive, and highly sensitive to
external stimuli. Based on the findings of pertinent research,

it has been established that DE features exhibit superior
recognition capabilities in the realm of emotion recognition
and classification [5]. Therefore, in this paper, we opt to
calculate the differential entropy for each time period [6],
and the formula of the differential entropy is:

+oo
Wx) = [ fa)log(f(a) de m

In the above equation, X is a random variable; f(x)
represents the probability density function of X. In a fixed
frequency band, its distribution can be approximated as
Gaussian distributionN (i, 02) . After replacing f(x) with
Gaussian normal distribution, h(X) can be expressed as
follows:

h(X) = %10g(27re(7i2) ()

In the above equation, e denotes the Euler constant, and
o; represents the standard deviation of the time series.

According to previous research results, the location in-
formation of the motor of EEG signal plays an extremely
important role in emotion recognition [7]. Therefore, we
retain the spatial information of electrodes, and use the
spatial position of electrodes to transform the DE data
structure of each frequency band from one-dimensional to
two-dimensional mapping [8]. The mapping rule is illustrated
in Fig 1. Subsequently, we stack the two-dimensional differ-
ential entropy feature maps of different frequency bands to
obtain a three-dimensional feature set. This set encapsulates
the spatial and frequency information of the EEG signal, as
well as complementary information across various frequency
bands. Initially, we divided the original EEG signal into 20
equal segments and processed each segmented EEG segment
individually. Ultimately, we derived the four-dimensional
features through these operations. Consequently, each EEG
segment can be represented asS,, € R7*XWxMx2T" " where
H and W represent the height and width of the two-
dimensional feature map respectively. M denotes the number
of bands; 27 denotes 2 times the time slice .

To mitigate the common issue of overfitting in image
classification tasks, we utilize data augmentation techniques
to expand the dataset [9].By applying transformations such as
flipping, zooming, and cropping to the images, we generate
additional data samples. This approach enhances the model’s
generalization capabilities and reduces the risk of overfitting
[10].

III. ESTABLISHMENT OF CLASSIFICATION MODEL
A. Convolutional Neural Networks

The convolutional neural network progressively extracts
abstract features from images by stacking multiple layers. In
the convolutional layer, filters perform sliding convolution
operations on the input image to extract local features.
Subsequently, the pooling layer samples the output from the
convolutional layer, thereby reducing the dimensionality of
the feature map. Finally, the fully connected layer integrates
the extracted features and outputs the final prediction result
[11]. The basic structure of a CNN typically includes an input
layer, convolutional layer, pooling layer, fully connected
layer, and output layer [12]. The convolutional layer is the
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(alMap of the spatial location of
the 32-lead electrode

Fig. 1.
mapping of the electrode position into a two-dimensional feature map

core component of the CNN, responsible for extracting local
features from the image. This is achieved by sliding a filter
of a specific size across the input image and performing a
convolution operation on each region [13]. The calculation
formula of convolutional layers mainly involves the size of
the output feature map, and the number of parameters. The
formula for calculating the size of the output feature map of
a convolutional layer is:

W —F42P
S

Nrepresents the size of the output feature map; W denotes
the size of the input feature map;F' is the size of the
convolution kernel; Prefers to the padding size. Padding
involves adding extra zero values around the boundaries
of the input feature map to control the size of the output
feature map; S stands for the stride, which is the distance the
convolution kernel moves across the input feature map.When
the calculation result is not an integer, it is usually rounded
down, which is represented by the notation [z]for the floor
function.

The formula for calculating the number of parameters in
a convolutional layer is:

N=| J+1 3)

params = c_o X (k_w x k_h x c_i) +b )

The c_o represents the number of channels in the output
feature map; k_w andk_h denote the width and height of
the convolution kernel, respectively; c_: is the number of
channels in the input feature map; b refers to the bias term.

The pooling layer primarily reduces the dimensionality
of the feature map and minimizes noise interference, which
helps to mitigate overfitting and enhance the model’s gener-
alization capability to some extent. The fully connected layer
integrates the extracted features and performs classification
or regression predictions. The modules of a convolutional
neural network are illustrated in Fig 2: CNNs possess several
advantages, including local perception and weight sharing,
invariance to translation, rotation, and scale, multi-level

Mapping
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TS0 PS 0 Pz 0 P4 0 T6
0 0 0 PO30 PO40 0 0
0 0 0 0102020 0 0

(b)2D feature map

The two-dimensional mapping relationship diagram of the electrodes, (a) represents the spatial position of the electrodes, and (b) represents the

feature extraction, and efficient computational performance.
These strengths have made CNNs notably successful in the
fields of image processing, speech recognition, and natural
language processing, establishing them as the technology of
choice in these domains [14].Convolutional neural networks
can be categorized into one-dimensional, two-dimensional,
and three-dimensional CNNs. One-dimensional CNNs are
commonly used to process time series data. Two-dimensional
CNN:ss are typically employed for processing data such as text
and images. Three-dimensional CNNs are often utilized for
processing medical images, videos, and other volumetric data
[15].The basic operation process of CNN is as follows:

1) Data Preparation: Given an image dataset X =
{x1,22, -+ ,x,}, the images are first pre - processed. This
pre - processing step is crucial as it standardizes the input
data, making it more suitable for the subsequent operations.
Common pre - processing techniques include normalizing
pixel values and resizing the images to a consistent size.
Once pre - processed, the data is loaded into the system
and divided into batches. These batches are essential for the
training process, as they allow for efficient handling of the
data and enable the model to learn from the dataset in a
structured manner.

2) Feature Extraction: CNN model with multiple con-
volutional layers is constructed. In the first layer, filters
are employed to extract primary features from the input
images, resulting in the generation of feature maps. The
Rectified Linear Unit (ReLU) activation function is then
applied to introduce non - linearity. This non - linearity is
vital as it enables the model to learn complex patterns and
relationships within the data. Subsequently, convolutional
layers are alternated with pooling layers. Pooling layers, such
as max - pooling or average - pooling, play a significant role
in reducing the dimensionality of the feature maps while
retaining the most important features. After several layers of
such operations, feature maps at different levels are obtained.
These feature maps encapsulate the abstract features of the
images, ranging from low - level to high - level, and are used
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Input layer Convolution layer

MaxPooling
layer

E=]

Fig. 2. Structural diagram of CNN

for subsequent decision - making processes.

3) Classification Decision: The feature maps from the last
layer are flattened into a one - dimensional vector. This vector
is then fed into a fully - connected layer, where both linear
and non - linear transformations are applied. The number
of neurons in the output layer is equal to the number of
classes in the classification task. For example, in a 10 - class
classification problem, the output layer will have 10 neurons.
The softmax activation function is used in the output layer
to transform the output values into a probability distribution.
This probability distribution indicates the likelihood of the
input image belonging to each class. The class with the
highest probability is selected as the prediction result. During
the training process, the prediction is compared with the true
labels, and the cross - entropy loss is calculated to evaluate
the accuracy of the model’s predictions. This comparison and
loss calculation are essential for guiding the model’s learning
process and improving its performance over time.

4) Model Optimization: Based on the calculated loss
value, backpropagation is used to compute the gradients of
the loss with respect to the network’s parameters. These
gradients indicate the direction in which the parameters
should be adjusted to minimize the loss. The parameters
are then updated in the opposite direction of the gradients.
An appropriate optimizer is selected to perform this update
operation. The optimizer takes into account the gradients
and the specified hyperparameters to adjust the parameters
effectively. Additionally, hyperparameters and the model’s
structure can be adjusted to optimize the model’s perfor-
mance further. This may involve tuning parameters such as
the learning rate and weight decay, or making changes to the
architecture, such as adding or removing convolutional and
fully - connected layers.

5) Model Evaluation and Application: he trained CNN
model is evaluated using a validation set or a test set. Key
performance metrics, such as accuracy, recall, and the F1 -
score, are calculated to assess the model’s performance. If the
evaluation results are satisfactory, indicating that the model
has achieved a sufficient level of accuracy and generalization
ability, the model is applied to real - world image classifi-
cation tasks. In these tasks, the model predicts the classes
of new, unseen images, demonstrating its practical value
in various applications, such as image recognition, object
detection, and content - based image retrieval. The specific
steps of the CNN algorithm are as follows:

Convolution layer

: Full-connection layer
_ Full-connection layer
MaxPooling

layer

Output
layer

Algorithm 1 CNN Training Algorithm
Input: Input Images X, Number of Classes C, Learning
Rate 7, Epochs E
Qutput: Trained Model Parameters W, b
1: Initialize: Weights W and Biases b for all layers
2: for e < 1 to E do
3: for x € X do

4 h+«—x > Input layer

5: for Convolutional Layer [ do

6: h <= ReLU(Conv(h, W;) + b;)

7 h < MaxPool(h)

8 end for

9: h < Flatten(h) > Flatten features

10: for Fully Connected Layer [ do

11 h <~ ReLU(h - W; + b))

12: end for

13: p < Softmax (h - Woy + bour) > Output
probabilities

14: Compute Loss L and Gradients VL

15: Update parameters: W < W —n - VW, b +
b—n-Vb

16: end for

17: end for

18: return W, b

B. Long Short-Term Memory network

LSTM is a specialized type of recurrent neural network
designed to address the issues of vanishing and exploding
gradients, thereby effectively managing long-term dependen-
cies that are common in traditional recurrent neural networks
[16]. LSTM possesses robust expressive capabilities and
is extensively utilized in various domains such as natural
language processing, speech recognition, and time series
prediction. The fundamental structure of an LSTM comprises
three gating mechanisms: the forget gate, the input gate, and
the output gate. These gates determine which information
to discard and which to retain. Through intricate interactions
and cooperation, these gating units empower LSTM to effec-
tively capture long-term dependencies within sequential data
[17]. The initial component of an LSTM is the forget gate,
which discerns the information to be discarded. The forget
gate can be mathematically represented as:

fir = o(Wizy, hy—q] + by) &)

The second component of an LSTM is the input gate,
which decides what information to retain. The input gate
can be mathematically represented as:
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W ),

Fig. 3. Structural diagram of LSTM

iy = o(Wi[xe, he—1] + b;) (6)

The third component of an LSTM is the output gate, which
decides what information to output. The output gate can be
mathematically represented as:

or = o(Woxt, he—1] + bo) @)

Here, f; represents the forget gate and ranges from [0,1],
where 0 means all information is discarded and 1 means all
information is retained. ¢; denotes the input gate; o, denotes
the output gate; o; is the Sigmoid function. x;is the input at
time t, and h; — 1 is the output at time t-1. Let o; denote
the activation function; Wy denotes the weight matrix for the
forget gate; by is the bias vector. The output h; at time t can
be expressed as:

ht = O¢ tanh(é’t) (8)

Where tanh is the hyperbolic tangent function; Cy repre-
sents the memory information at time ¢ and is calculated as
follows:

Cy = fer1 + itanh(Welzy, hy_1] + be) )

The input gate, output gate, and forget gate allow the
LSTM unit to store, retrieve, and update long-term sequence
information, and together they determine the final output
result. The structure diagram of LSTM is shown in Fig 3
[18]:

Based on the LSTM flowchart and the formulas provided,
the forgetting gatef; , the input gate 7; and the output gate
o; are obtained by Sigmoid transformation of the current
input z; and the previous output h; — 1. The forget gate f;
is applied to the previous memory information c¢; — 1. The
input gate ¢; is applied to the input information processed
by the hyperbolic tangent function of x; and h; — 1. The
memory information ¢; — 1 processed by the forget gate f;
and the input information processed by the input gate i,
are summed to obtain the current memory information C;
. By applying the output gate to the memory information C,
processed by the hyperbolic tangent function at this time, the

current output h; is obtained. At the same time, the current
output h; also serves as the input for the next time step. The
basic operation process of CNN is as follows:

1) Data Preparation: Data Input: Given a time series
dataset T = {t1,%a,...,t,}, where each t; represents a
time series sample. For example, in the context of analyzing
financial data, each sample could be a sequence of stock
prices over a specific period.

Data Preprocessing: Standardize the time series data by
mapping it to a specific interval.This standardization is
crucial as it accelerates the convergence of model training.
Additionally, based on the input requirements of the model,
split and pad the data to form fixed-length sequence samples.
This ensures that all input samples have a consistent format,
which is necessary for the model to process them efficiently.

Data Loading and Batching: Load the preprocessed data
into the memory and divide it into batches. Batching the
data is an essential step for subsequent model training as
it improves the training efficiency. By processing data in
batches, the model can update its parameters more effectively
and make better use of computational resources.

2) Feature Extraction and Temporal Modeling: Building
the LSTM Model: Each LSTM layer is composed of multiple
memory units. Each memory unit contains an input gate, a
forget gate, and an output gate. These gate structures play a
vital role in effectively handling the long-term dependencies
in time series data. They allow the model to selectively
remember or forget information over time, which is crucial
for capturing the underlying patterns in the data.

Feature Learning and Sequence Modeling: Feed the time
series samples into the LSTM layer step by step according to
the time steps. The memory units of the LSTM layer, based
on the current input and the state from the previous time
step, selectively retain or update the memory information
through the gating mechanism. In this way, the model can
learn the dynamic features of the time series, such as trends,
seasonality, and sudden changes.

Output Feature Mapping: After being processed by the
LSTM layer, output feature vectors that contain both the
long-term and short-term features of the time series. These
feature vectors serve as the basis for subsequent classification
or prediction tasks. They encapsulate the essential informa-
tion of the time series, enabling the model to make accurate
predictions or classifications.

3) Classification or Prediction Decision: Fully Connected
Layer and Output Layer: Input the feature vectors output by
the LSTM layer into the fully connected layer. Through the
weight matrix and bias vector, further fuse and transform
these features. For classification tasks, the number of neurons
in the output layer is equal to the number of classes. The
softmax activation function is used to generate the probability
distribution for each class, indicating the likelihood of the
input sample belonging to each class. For regression tasks,
the output layer has only one neuron, and a linear activation
function is applied to output the predicted value.

Decision Making and Evaluation: In classification tasks,
select the class with the highest probability as the prediction
result. In regression tasks, directly output the predicted value.
During the training process, compare the prediction results
with the true labels. For classification tasks, use the cross-
entropy loss function to measure the difference between the
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predicted probability distribution and the true distribution.
For regression tasks, use the mean squared error loss function
to evaluate the accuracy of the predicted values. These loss
functions provide a quantitative measure of the model’s
performance and guide the training process to improve the
model’s accuracy.

4) Model Optimization: Calculating Loss and Backprop-
agation: Based on the calculation result of the loss function,
use the backpropagation algorithm to compute the gradients
of the loss function with respect to each parameter (weights
and biases) in the network. Due to the relatively complex
structure of the LSTM model, the backpropagation process
needs to handle the gradient calculation of the memory
units and gating mechanisms carefully. This requires a deep
understanding of the internal workings of the LSTM model
to ensure accurate gradient calculation and parameter update.

Parameter Update and Optimization: Select an appropri-
ate optimizer, such as Stochastic Gradient Descent (SGD),
Adagrad, Adadelta, or Adam. According to the calculated
gradients and the set hyperparameters, update the network
parameters. In addition, optimize the model’s performance
by adjusting hyperparameters, such as the learning rate, the
number of hidden units, and the number of LSTM layers,
as well as modifying the model structure, such as adding
or removing LSTM layers or fully connected layers. These
adjustments can help the model better fit the data and
improve its generalization ability.

5) Model Evaluation and Application: Model Evaluation:
Evaluate the trained LSTM model using a validation set or
a test set. For classification tasks, calculate metrics such
as accuracy, recall, and Fl-score to measure the model’s
performance in correctly classifying samples. For regression
tasks, calculate metrics such as the mean squared error
(MSE) and the mean absolute error (MAE) to assess the
accuracy of the predicted values. These metrics provide a
comprehensive evaluation of the model’s performance on
new data and help determine whether the model is suitable
for practical applications.

Model Application: Apply the trained and evaluated
LSTM model to practical time series classification or predic-
tion tasks. Use the model to classify or predict new, unseen
time series data. For example, in the field of finance, the
model can be used to predict stock price trends; in industrial
applications, it can be used to predict equipment failures.
By applying the model to real-world scenarios, its practical
value and effectiveness can be verified.The specific steps of
the CNN algorithm are as follows:

Algorithm 2 LSTM Training Algorithm

Input: Input Sequence X = {x1,x2,...,2r}, Hidden Size
h, Initial Hidden State hy = 0, Initial Cell State ¢ = 0
Output: Output Sequence H = {hy,ha,...,hr}

1: Initialize: Weights W;, W;, W, W and Biases
bi,bs,be, by

2: hi_q1 < hg, ci—1 <+ ¢ > Initial states

3 H + |] > Output sequence

4: for t < 1 to T do

5: Compute input gate: iz < o(W; - [hi—1,x¢] + b;)

6: Compute forget gate: f; <— o(Wy - [hy—1,2¢] + by)

7: Compute candidate cell state: ¢ < tanh(W, -
[Pt—1, ] + bc)

8: Update cell state: ¢; < f; ©@ ¢i—1 + 19 © &

9: Compute output gate: oy < (W, - [he—1, 2] + bo)

10: Update hidden state: h; < oy @ tanh(c;)
11: Append output: H < H U {h:}

12: end for

13: return H

C. CNN-LSTM model

The EGG signal is a typical time series signal, character-
ized by its spatio-temporal correlation and instability. CNN
can effectively extract spatial features from EGG signals,
while LSTM are adept at capturing their temporal features.
To classify the degree of PTSD suffered by rescue workers,
we employed a hybrid CNN-LSTM network model. This
model combines a convolutional neural network with a
long short-term memory network, skillfully handling both
the temporal and spatial features in EEG signals, and has
achieved excellent performance in EEG processing [19].

The combination of CNN and LSTM primarily presents
two architectures: series and parallel. Compared to paral-
lel architectures, series architectures demonstrate superior
performance in modeling time series data. The working
mechanism involves initially using CNN to efficiently extract
features from the input data, followed by passing these
informative feature sequences to the LSTM layer for further
time series analysis and modeling. This sequential processing
not only helps to capture temporal dependencies in the data
more accurately but also enhances the overall performance
of the model. Additionally, series architectures generally
exhibit better generalization because they mitigate the risk of
overfitting by processing data at different levels separately.
It is important to note that the feature sequence extracted by
the CNN is sparsified to some extent before being passed
to the LSTM, and this step is crucial for reducing the
model’s over-dependence on training data. Therefore, the
series architecture is chosen to construct the model in this
paper.

The model is composed of four main components. The
first component is the feature input, which takes in the four-
dimensional feature map of the differential entropy for each
segment of the preprocessed EEG signal. The second com-
ponent focuses on extracting spatial features from the EEG
signals, utilizing a convolutional neural network to capture
spatial information from the signals of each time period. The
third component is dedicated to extracting temporal informa-
tion, where a long short-term memory network is employed
to discern hidden temporal features from the output of the
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convolutional neural network. Finally, the fourth component
involves the fully connected layer and the SoftMax layer,
which are used to perform the final classification of the EEG
signals.The structure of the model is shown in Fig 4:

The specific steps of the CNN-LSTM algorithm are as
follows:

Algorithm 3 CNN-LSTM for Sequence Processing

Input: Input Sequence X = {x1,%2,...,z7}, Number of
Classes C', Learning Rate 1, Epochs F
Qutput: Trained Model Parameters
1: Initialize: CNN Weights W_,,,,, Biases b¢,
2: Initialize: LSTM Weights Wi, Biases bys¢p,
3: Initialize: Output Layer Weights W, Bias b,
4: for e <~ 1 to F do

5 for x € X do

6 CNN Feature Extraction:

7: Repn < T

8 for Convolutional Layer [ do

o: Benn < ReLU(Conv(hepn, WL, ) +08L.)

10: henn < MaxPool(hepyp,)

11: end for

12: henn < Flatten(heny,)

13: LSTM Sequence Processing:

14: hlstm — LSTM(hcnna I/Vlstma blstm)

15: Output Layer:

16: y < Softmax(W, - hystm + bo)

17: Compute Loss L and Gradients VL

18: Update Parameters: W, < Wenn — - VWenn

19: Update Parameters: Wist, < Wistmn — 1 -
VI/Vlstm

20: Update Parameters: W, < W, —n - VW,

21: end for

22: end for

23: return Trained Parameters We,.., Wistm, Wo

To adapt the data to the dimensional requirements of CNN
and LSTM, we employed the reshape function to process the
four-dimensional features, expanding the dimensions of the
EEG data to (samples, time_steps, height, width, channels).
Initially, the resolution of the DE features after processing
the raw data was 1000200. However, upon incorporating
CNN and LSTM, the data feature dimensions expanded
significantly. Consequently, we reduced the resolution of the
DE features to 20040, thereby lowering the computational
cost and saving time.

In the CNN component, the model utilizes a dual Conv2D
layer to extract the spatial features from each sample data.
To help prevent overfitting when training with small sample
sizes, a Dropout technique is applied after the dual CNN.
The shape of the convolution kernel for Conv2D is defined as
(height, width, channels), where height and width represent
the dimensions of the convolution kernel, and channels
denote the number of input data channels. In this experiment,
the image data is in RGB format, with the number of input
channels being 3 (red, green, and blue). The shape of the
convolution kernel for the first Conv2D layer is set to (3,3),
meaning the height and width of the convolution kernel are
each 3 pixels. Sixteen 33 convolution kernels are employed
to extract features from the input image, that is, filters=16,
and the input image is processed through these filters. Note

that the convolutional layer will produce 16 feature maps.
The ReLU function is employed as the activation function
for the first Conv2D layer. For each time step, the input
to the convolutional layer has the shape (time_steps, height,
width, channels), and the output from the convolutional layer
has the shape (25, 20, 38, 198, 16). This output is then
fed into the pooling layer, which utilizes max pooling. For
the convolutional output at each time step, a 222 pooling
window is applied, reducing the height and width by half.
The resulting shape after max pooling is (25, 20, 19, 99,
16). The output from the first Conv2D pooling layer is then
passed into the convolutional layer of the second Conv2D,
which also uses a 3x3 convolution kernel, and the activation
function remains the ReLU function.After the convolution
operation, the data dimensions are (25, 20, 17, 97, 32).
The output from the convolutional layer is fed into the
pooling layer for max pooling, using a 222 pooling window.
Consequently, the data dimensions after the pooling layer
become (25, 20, 8, 48, 32). Following the pooling step, the
Flatten operation is applied to flatten the data, converting the
3D feature map of each time step into a 1D feature vector.
The resulting output dimension is (25, 20, 15360), meaning
that the 3D data of each time step is transformed into a 1D
format.

In the LSTM component, the model employs a two-layer
LSTM to extract temporal features. The input data for the
LSTM is the output from the two-layer CNN. The first LSTM
layer processes the 15360-dimensional features at each time
step and converts them into 64-dimensional hidden states,
resulting in an output shape of (25, 20, 64). The output from
the first LSTM layer is then fed into the second LSTM layer,
which further transforms the 64-dimensional hidden states at
each time step into the final 32-dimensional states. The final
output has a shape of (25, 32).

The data processed by the CNN and LSTM are fed
into the fully connected layer. This layer converts the 32-
dimensional input into an 8-dimensional output, using ReLU
as the activation function. The data type processed by the
first fully connected layer is (25, 8). Subsequently, the data
is passed into the second fully connected layer, where the 8-
dimensional input is transformed into a 4-dimensional output
representing class probabilities. The SoftMax function is
employed as the activation function to classify the EEG
signals, resulting in a final data shape of (25, 4). The Adam
optimizer is used, with a learning rate set to 0.0001 during
the training process. The batch size for the LSTM layer is
set to 128. To control overfitting during training, a Dropout
layer is introduced, and an early stopping condition is added.
The model will stop training if there is no improvement after
10 iterations.

D. Evaluation Criteria

To more scientifically evaluate the classification perfor-
mance of the network model, we employ accuracy, precision,
recall, and F1 Score as the evaluation metrics for the model.It
is calculated as:

TP+ TN
Accuracy_TP—kTN—i—FP—i—FNXlOO% (10)
TP
Precision = ——— x 1 11
recision TP FP x 100% (11)
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Fig. 4. Structural diagram of CNN-LSTM

TABLE II
THE RESULTS OF THE ABLATION EXPERIMENT

Model Accuracy  Precision  Recall  F value
CNN 72% 51.64% 50.72%  51.18%
LSTM 76% 5328%  51.39%  52.32%
CNN-LSTM 80% 5526%  57.32%  56.27%
TP
Recall = ————— x 100% 12
TP+ FN (12)
Precision x Recall
F1 Score =2 x x 100%  (13)

Precision + Recall

TP represents true positives, which is the number of
positive samples that the model correctly predicts as positive.
TN denotes true negatives, which is the number of negative
samples that the model correctly predicts as negative. FP
stands for false positives, which is the number of negative
samples that the model incorrectly predicts as positive (also
known as false alarms). FN indicates false negatives, which
is the number of positive samples that the model incorrectly
predicts as negative (also known as misses).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Ablation experiment

To demonstrate the superiority of this model, we con-
ducted ablation experiments on this dataset. By successively
removing a module and comparing the resulting classifi-
cation performance, we verified the effectiveness of the
corresponding module used in the model. This primarily
involved removing the LSTM layer while retaining only the
CNN layer, allowing us to assess the capability of the CNN
layer alone in capturing sequence information. Conversely,
we also removed the CNN layer and retained the LSTM
layer to evaluate the role of the LSTM layer in capturing
sequence information. The results of the ablation experiments
are shown in Fig.5 and TABLE II:

The table above presents the experimental results for
models using only CNN, only LSTM, and the hybrid CNN-
LSTM neural network. From the results, it is evident that the
model using only CNN performs the worst in terms of ac-
curacy, precision, and other metrics, while the hybrid CNN-
LSTM model achieves the best performance. CNN excels
at extracting spatial features but is less sensitive to temporal
features. On the other hand, LSTM has significant advantages
in processing time series data and can accurately capture
long-term dependencies in EEG signals. By combining the
strengths of both CNN and LSTM, the CNN-LSTM model is
capable of extracting spatial features and capturing temporal

features in EEG signals. This combination enables the CNN-
LSTM model to perform well in EEG recognition tasks.
When dealing with complex EEG signals, CNN-LSTM can
more comprehensively capture the useful information within
the signals, thereby improving the accuracy and robustness
of recognition.

B. Loss function and Accuracy

In classification problems, the loss function is a critical
metric for assessing a model’s performance. In this experi-
ment, the model utilizes Categorical Crossentropy as its loss
function. This is a widely used loss function in multi-class
classification tasks, which measures the difference between
the probability distribution predicted by the model and the
true label’s probability distribution.

The experimental results are shown in Fig 6, which shows
the trend plot of the loss values as the training iterations
goes deeper in the training set and the validation set. At the
beginning of training, the loss on both the training set and
the validation set decreases sharply, which indicates that the
performance of the model is improving and the model fits
the training data better and better. Accuracy is another crucial
metric for evaluating the performance of a model. We have
conducted experiments to assess the model’s accuracy, and
the experimental results are shown in Fig 7.

Similar to the loss function, the model’s accuracy increases
significantly at the beginning of training. However, after 25
iterations, the rate of improvement slows down and even-
tually plateaus. The training set’s accuracy can reach 80%,
while the validation set’s accuracy exceeds 60%, indicating
that the model’s accuracy is satisfactory

C. Confusion matrix

A Confusion Matrix is a specific table layout used to visu-
alize the performance of algorithms, particularly in classifica-
tion tasks within supervised learning. It helps us understand
the relationship between the predicted results of a classifica-
tion model and the actual outcomes. The classification report
derived from the confusion matrix serves as an evaluation
metric for assessing the performance of the CNN-LSTM
model in classification tasks. As illustrated in Fig 8, the
confusion matrix displays both accurately and inaccurately
predicted data points. The sum of samples in each column of
the confusion matrix represents the total number of samples
predicted for that category, while the sum of samples in
each row indicates the actual number of samples belonging
to that category. The values on the diagonal represent the
number of samples correctly predicted as instances of their
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Fig. 6. Loss functions on training sets and validation sets

respective categories. The results indicate that the CNN-
LSTM model achieves higher classification accuracy across
all four categories, with Class 1 demonstrating the best
performance.

D. Comparing machine learning models

Many machine learning algorithms have shown promising
results in the detection and diagnosis of PTSD. To thoroughly
verify the superior performance of the CNN-LSTM model
proposed in this study [20], we conducted a detailed com-
parative analysis of the experimental results against other

commonly used network models. This step is designed to
further highlight the advantages of the CNN-LSTM model
in the specific application scenario of this experiment by
comparing the performance metrics of different models. The
specific results are shown in TABLE III:

From the comparison of model performance presented in
the table above, it is evident that the hybrid neural network
model, CNN-LSTM, studied in this paper, achieves an accu-
racy level that surpasses other common models. Additionally,
it demonstrates excellent performance in precision, recall,
and F1 score.
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TABLE III
PERFORMANCE OF MODELS ON THIS CLASSIFICATION PROBLEM

Model Accuracy  Precision  Recall F value
SVM 48% 33.45% 34.64%  33.87%
KNN 46% 31.74% 27.02%  25.95%
RF 60% 53.32% 50.84%  51.29%
CNN - LSTM 80% 55.26% 57.32%  56.27%

V. CONCLUSION

The CNN-LSTM model is designed by combining the
strengths of convolutional neural networks in spatial feature
extraction and long short-term memory networks in time se-
ries modeling. To fully leverage the key information of time,
space, and frequency in EEG signals, a four-dimensional
feature structure incorporating this information is devised.
Initially, the preprocessed four-dimensional feature structure
is fed into the CNN layer to automatically capture its
spatial features. The output from the CNN is then passed
to the LSTM layer to further extract temporal features.
Finally, the classification task is completed through the fully
connected layer and the SoftMax layer. Compared to other
hybrid models, the CNN-LSTM model demonstrates superior
performance. An ablation experiment was conducted, and the
results indicate that the hybrid model outperforms the single
models. The results were visually analyzed, and a confu-
sion matrix was designed. The confusion matrix effectively
illustrates the model’s prediction accuracy, particularly for
Class 1. In summary, the model in this experimental study
has achieved promising results in predicting PTSD.
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