
  
Abstract—With the rapid development of deep learning 

technology, deep learning-based object detection algorithms 
have found widespread applications across various fields. In 
particular, fall detection plays a crucial role in elderly care and 
safety monitoring. This paper presents a deep learning-based 
human pose estimation algorithm and applies it to the task of 
fall detection. The proposed algorithm utilizes the lightweight 
network Lightweight HRNet to detect human keypoints, 
ensuring accuracy through high-resolution feature map outputs. 
Subsequently, a VGG16 network is employed to classify the 
concatenated images and pose maps, effectively capturing 
high-level features from the images to identify fall events. 
Experimental results demonstrate that the proposed algorithm 
achieves high accuracy in fall detection. Compared with 
traditional methods, the proposed approach can adaptively 
learn scene-specific features, thereby enhancing robustness and 
generalization. These properties meet the practical 
requirements for real-time and accurate fall detection. 
Comprehensive experiments validate the effectiveness of the 
proposed algorithm, providing a feasible solution for 
applications in elderly care and safety monitoring. 

 
Index Terms—Human Pose Estimation, Lightweight 

Networks, HRNet, VGG16, Fall Detection 
 

I. INTRODUCTION 
ITH the increasing aging population, fall incidents 
have become a major healthcare issue for the elderly in 

contemporary society. Sending an immediate alarm to 
caregivers when an elderly person falls can prevent further 
injuries, reduce treatment costs, and enhance recovery 
opportunities [1]. Approximately 30% of individuals over the 
age of 65 experience falls annually [2]. Falls are the leading 
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cause of accidental injuries and deaths among the elderly 
population over 65 years old [3]. Rapid assistance following 
a fall can reduce the risk of hospitalization by 26% and the 
risk of death by 80% [4]. Fall detection technology plays a 
crucial role in identifying falls promptly and enabling timely 
rescue efforts, thereby reducing the risk of injury for the 
elderly. Human pose estimation is a key technology in fall 
detection. By analyzing the changes in human keypoint 
positions in images or videos, it can determine whether a 
person is in a fallen state. 

In recent years, significant progress has been made in deep 
learning-based human pose estimation and fall detection 
methods. Numerous researchers have proposed various 
complex deep learning models, such as the OpenPose 
algorithm by Z. Cao et al. [5] and the AlphaPose algorithm by 
H. Fang et al. [6]. While these models demonstrate excellent 
accuracy, they are computationally demanding and difficult 
to deploy in real-time applications. Additionally, some fall 
detection methods rely on supplementary human object 
detection tasks, which increase system complexity and 
latency. To address these challenges, researchers have begun 
exploring the application of lightweight networks in fall 
detection. 

This paper presents a deep learning-based human pose 
estimation algorithm and applies it to fall detection. The 
proposed algorithm utilizes the Lightweight HRNet [7] 
network for detecting human keypoints, and employs the 
VGG16 [8] network to classify concatenated images and 
pose maps for fall status recognition. Experimental results 
demonstrate that the proposed algorithm achieves high fall 
detection accuracy while maintaining robust performance, 
particularly in complex background environments. 
Compared to traditional methods, the approach based on 
VGG16 and Lightweight HRNet can adaptively learn 
scene-specific features, thereby enhancing robustness and 
generalization ability. This meets the practical requirements 
for real-time and accurate fall detection. 

In recent years, deep learning-based visual fall detection 
methods have been extensively studied abroad. Kim D. et al. 
[9] analyzed abnormal behavior of pedestrians in surveillance 
camera environments, discussing the advantages and 
disadvantages of various algorithms and how to improve 
detection performance in real-world applications. They noted 
that although deep learning methods perform excellently in 
terms of accuracy, their high computational resource 
requirements make them difficult to deploy widely in 
real-time systems. Dubey S. et al. [10] conducted a survey on 
various 2D and 3D human pose estimation techniques, 
covering both classical and deep learning approaches. These 
methods provide solutions to various computer vision 
problems and also examine different deep learning models 
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used in pose estimation. Their study highlights the significant 
application potential of human pose estimation; however, 
they also emphasize that existing methods still have room for 
improvement in terms of real-time performance and 
robustness. 

Additionally, Ibrahim M. R. et al. [11] conducted a study 
on detecting cycling-related accidents using video streams, 
exploring the combination of video processing techniques 
and deep learning models, and suggesting future research 
directions. Their research indicates that real-time video 
stream processing plays a crucial role in detection; however, 
it is necessary to address the balance between computational 
resources and real-time performance. Gao J. et al. [12] 
proposed several pioneering deep learning models for 
integrating multimodal big data. Their study found that 
multimodal data can significantly improve detection 
accuracy and robustness, although data fusion techniques still 
require further optimization. 

In China, deep learning-based fall detection technology 
has also received considerable attention. Zhao R. et al. [13] 
proposed a novel Dynamic Centroid Model (DCM) for 
detecting abnormal pedestrian behavior in public spaces, 
particularly focusing on common anomalies such as turning 
and falling. 

Despite significant progress in deep learning-based fall 
detection both domestically and internationally, several 
challenges remain. Existing methods often require high 
computational resources, hindering the feasibility of 
real-time detection on embedded devices. Although 
multimodal data fusion techniques can enhance detection 
performance, the increased complexity of data preprocessing 
and fusion algorithms complicates system implementation. 
Additionally, detection performance under varying lighting 
conditions and complex background environments requires 
further improvement, as these factors can adversely affect the 
robustness and generalization ability of the algorithms. 

To address the aforementioned challenges, this paper 
proposes a fall detection method based on the Lightweight 
HRNet and VGG16 networks. Specifically, the Lightweight 
HRNet network is utilized for human keypoint detection, 
ensuring accuracy through high-resolution feature map 
outputs. The main advantage of Lightweight HRNet lies in its 
bottom-up approach, which eliminates the need for additional 
human object detection tasks, thereby offering inherent 
advantages in detection speed. The VGG16 network is 
employed to classify the concatenation of images and pose 
maps, enabling the identification of fall states. The key 
contribution of VGG16 is its demonstration that increasing 
network depth can improve performance under certain 
conditions [14]. Known for its simple architecture and 
excellent performance, VGG16 effectively extracts 
high-level features from images, making it a classic model 
for image classification and object detection tasks. 
Experimental results show that the proposed algorithm 
achieves high accuracy in fall detection. This research not 
only provides technical innovation but also offers a feasible 
solution for elderly care and safety monitoring. The 
effectiveness of the algorithm is validated through 
experiments, and it holds potential for application in various 
real-world scenarios to enhance the quality of life and safety 
of the elderly. 

II. RELATED WORK 
Recent research in fall detection has made significant 

strides through the use of deep learning models, particularly 
human pose estimation and image classification. Several 
approaches have focused on improving the accuracy and 
efficiency of fall detection systems by combining lightweight 
networks and human pose estimation techniques. 

Human pose estimation is a key component in fall 
detection as it involves detecting keypoints of the human 
body to understand its posture. The OpenPose algorithm (Cao 
et al., 2017) and AlphaPose (Fang et al., 2017) are popular 
methods in pose estimation, but their high computational 
costs limit their application in real-time systems. To address 
this, the use of lightweight networks like Lightweight HRNet 
has been explored. This network offers efficient pose 
estimation with reduced computational overhead, making it 
suitable for real-time applications on embedded platforms. 

VGG16, a classic convolutional neural network (CNN), 
has been widely used for image classification tasks, including 
fall detection. In recent work, combining VGG16 with pose 
estimation maps has shown improved performance, as the 
network can leverage both visual features from images and 
spatial information from pose maps for more accurate 
classification. The integration of these two sources of data 
allows for a more robust fall detection system, especially in 
complex environments with varying conditions. 

Fall detection systems are increasingly being deployed on 
embedded devices like the NVIDIA Jetson Xavier NX. These 
platforms offer powerful computational capabilities for 
real-time processing, which is essential for fall detection 
applications. Lightweight networks like HRNet and VGG16 
are optimized for these systems to ensure that the models can 
run efficiently without compromising on performance, 
making real-time detection feasible even in 
resource-constrained environments. 

This paper builds upon these prior works by proposing a 
novel combination of Lightweight HRNet for pose estimation 
and VGG16 for fall classification. The proposed system aims 
to achieve high accuracy while maintaining real-time 
performance, making it suitable for practical deployment in 
elderly care and safety monitoring systems. 

III. PROPOSED METHOD 

A. System Overview 
The proposed fall detection system is based on deep 

learning and human pose estimation, leveraging the 
Lightweight HRNet and VGG16 networks. The overall 
system architecture is designed to accurately detect falls 
using input from images and human pose maps, while 
ensuring efficient real-time performance. 

The system operates in the following sequence: first, the 
input image or video frame is processed using the 
Lightweight HRNet to detect human keypoints. The 
Lightweight HRNet is a lightweight network specifically 
designed for real-time human pose estimation, offering 
efficient keypoint detection without the need for additional 
human object detection tasks. This approach significantly 
reduces the computational complexity compared to 
traditional methods, making it ideal for embedded systems 
with limited resources. 
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Once the human keypoints are detected, the pose map is 
generated. This pose map is then concatenated with the 
original input image, resulting in a combined feature map. 
The concatenated image and pose map are passed through the 
VGG16 network for classification. VGG16, a 
well-established deep learning model known for its simple 
and effective architecture, classifies the combined feature 
map to determine whether the person is in a fall state or 
standing. 

The system’s main advantage lies in its combination of a 
lightweight pose estimation model with a classic deep 
learning classifier. This hybrid approach allows the system to 
efficiently detect falls while maintaining high accuracy in 
diverse real-world scenarios. Additionally, the use of a 
lightweight network such as Lightweight HRNet ensures that 
the system can run in real-time on embedded devices like the 
NVIDIA Jetson Xavier NX, which is used in this study for 
practical deployment. 

In summary, the system consists of three primary 
components: (1) the Lightweight HRNet for pose estimation, 
(2) the VGG16 network for fall classification, and (3) a 
real-time detection pipeline running on the Jetson Xavier NX 
platform. The system is designed to be both computationally 
efficient and accurate, meeting the needs of real-time 
applications in elderly care and safety monitoring. 

B. Lightweight HRNet for Pose Estimation 
In recent years, the rapid advancement of deep learning has 

led to significant improvements in human pose estimation 
technology. Despite these developments, traditional pose 
estimation networks generally require considerable 
computational resources and large amounts of storage, which 
limits their applicability in real-time environments where 
efficiency is crucial. To overcome these challenges, 
researchers have introduced lightweight pose estimation 
networks. These networks are specifically designed to 

minimize computational load and storage requirements, 
while striving to maintain high levels of accuracy in pose 
estimation tasks. By using such networks, it becomes feasible 
to implement pose estimation models on devices with limited 
resources. The architecture of the Lightweight HRNet 
network, which embodies these advancements, is illustrated 
in Figure 1.  

The Lightweight HRNet, a lightweight network based on 
the HRNet architecture, has gained widespread attention due 
to its excellent performance and efficiency. Proposed by 
Jinzhen Liao et al. in 2024, the Lightweight HRNet is an 
efficient network designed specifically for bottom-up 
multi-person human pose estimation tasks. By employing a 
multi-resolution, multi-branch parallel network architecture, 
Lightweight HRNet enables real-time human pose estimation. 
Its main advantage lies in the bottom-up approach, which 
eliminates the need for additional human object detection 
tasks [7], thereby providing an inherent advantage in 
detection speed. The Lightweight HRNet shows great 
potential for real-time application scenarios, such as fall 
detection.  

The key advantage of the Lightweight HRNet is its ability 
to detect human keypoints directly from the input image, 
without the need for additional human object detection tasks. 
This simplifies the system by eliminating the need for 
separate object detection algorithms, which are commonly 
used in other pose estimation models. By directly estimating 
keypoints, the network speeds up the process and reduces the 
computational overhead. The architecture of the Lightweight 
HRNet consists of multiple parallel branches operating at 
different resolutions, which are then fused to produce a final 
pose map. This multi-branch, multi-resolution design is 
essential for capturing both fine-grained details and global 
context, which is critical in detecting human falls, especially 
in crowded or complex environments. 

 

 
Fig. 1.  Lightweight HRNet architecture 
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In our system, the pose map generated by the Lightweight 
HRNet represents the human body's keypoints and their 
respective locations in the image. These keypoints are used to 
identify the human pose, and any significant changes in the 
pose, such as falling, can be easily detected. By leveraging 
the efficient design of the Lightweight HRNet, the system 
can estimate human poses in real-time, which is essential for 
timely fall detection. 

The Lightweight HRNet offers a remarkable balance 
between strong performance and enhanced computational 
efficiency, making it ideal for use in fall detection systems 
deployed on embedded devices with limited resources. Its 
ability to detect human keypoints quickly and accurately, 
importantly without the need for any extraneous additional 
detection tasks, makes it a key and indispensable component 
of our proposed method. 

C. VGG16 Model 
The VGG network employs the technique of stacking 

multiple 3 × 3 convolution filters to replace larger filters, 
which not only increases the depth of the network but also 
helps in reducing the total number of parameters, thus 
improving the computational efficiency without sacrificing 
performance [8]. The VGG16 model, specifically, is 
composed of five convolutional blocks, three fully connected 
layers, and one final softmax layer. The network is organized 
into five distinct stages, each containing several 
convolutional layers followed by a 2 × 2 max-pooling layer. 
More specifically, the first two stages each have two 
convolutional layers, whereas the remaining three stages 
contain three convolutional layers. This structure ensures a 
gradual extraction of more abstract and complex features 
from the input images, starting from basic low-level features 
such as edges and textures and progressing to more high-level 
object-related features. 

The architecture of VGG16 is designed with the aim to 
capture increasingly complex patterns through its layered 
convolution process. After the convolutional layers and 
pooling operations, the model utilizes three fully connected 
layers for image classification. In the final layer, the softmax 
function is applied, which generates a probability distribution 
for the possible classes, with each node representing the 
probability of a particular class being the correct 
classification. Despite the fact that the model contains a 
substantial number of parameters — approximately 138 
million—and requires significant computational resources 
for training, VGG16 has proven to be highly effective in 
various tasks such as image classification and object 
detection. It has become a foundational model for those 
starting in deep learning, often serving as a benchmark for 
comparison in numerous computer vision tasks. 

The depth and design of VGG16 allow it to capture 
intricate details from images and perform exceptionally well 
on large-scale image recognition challenges. Although the 
model's complexity may require powerful hardware to train 
efficiently, its ability to generalize well across diverse 
datasets has made it an invaluable resource in the field of 
computer vision. Moreover, VGG16's architecture and 
performance have influenced the development of subsequent 
models, demonstrating its lasting impact on the field. 

The STM32 series microcontrollers, which are based on 

the ARM Cortex-M core, offer robust support for the 
deployment of neural networks, making them suitable for 
applications such as fall detection. In this context, the fall 
detection task is formulated as a multi-label classification 
problem, where the VGG16 neural network is utilized to 
classify input images. The architecture of the VGG16 
network, as depicted in Figure 2, consists of multiple layers 
designed to extract increasingly complex features from the 
input image. The input image is standardized to a fixed size 
of 224×224 pixels, ensuring consistency across all processed 
data. During the convolutional process, the network 
exclusively employs 3 × 3 convolution kernels that are 
stacked together to form the layers. This design choice allows 
for the construction of a deeper network while minimizing 
the increase in the number of parameters and computational 
complexity. This approach helps strike a balance between the 
network's depth and its efficiency. The depth of the network 
plays a significant role in improving performance, as a deeper 
network has the capacity to learn more intricate and abstract 
representations of the input data. 

The 3 × 3 kernel size is particularly advantageous for 
capturing local features in the image, such as edges, textures, 
and other low-level features. These features are essential in 
many image processing tasks, as they help the model identify 
key elements of the image. The use of this kernel size is not 
only common but also proven to be highly effective in a 
variety of deep learning networks. Furthermore, the network 
incorporates pooling layers to reduce the spatial resolution of 
the feature maps, as opposed to using convolution with a 
stride of 2. This design choice helps to minimize the 
network's computational load and reduces the total number of 
parameters, making the network more efficient. Pooling 
layers, particularly max-pooling, are known to be effective in 
extracting the most relevant features from the feature maps 
by selecting the maximum value within local regions. This 
process serves to retain the most important information while 
discarding irrelevant details and noise. As a result, the 
network can focus on the most salient features in the image, 
enhancing its ability to make accurate predictions. In addition, 
pooling layers increase the translational invariance of the 
learned features. This means that slight variations in the 
position of features within the input image have minimal 
impact on the network's output. Such translational invariance 
is crucial in tasks like object recognition, where objects may 
appear at different locations in the image. 

The VGG16 network's terminal phase, for classification 
results, employs several fully connected layers as depicted in 
Figure 2. These layers adeptly process high-level features 
from earlier convolutional stages. This procedure generates 
an output feature map, a vector of size n, where n denotes the 
distinct image categories. The VGG16 architecture's 
recognized simplicity, its computational efficiency, and ease 
of implementation have established it as a foundational, 
reliable model in deep learning. Consequently, it has been 
widely applied in tasks like image recognition and 
classification, owing to its robust performance and 
user-friendliness. Given these merits and its proven visual 
understanding, employing VGG16 for accurate fall detection 
using static image analysis presents an appropriate and 
scientifically validated effective solution. 
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Fig. 2.  Network architecture of VGG16 

D. Jetson Xavier NX 
The NVIDIA Jetson series encompasses low-power 

embedded platforms designed for GPU-accelerated 
computing [15]. These systems offer powerful computational 
performance and are specifically engineered to support 
applications in deep learning, computer vision, and artificial 
intelligence (AI). They feature independent CPU, GPU, 
PMIC, and flash memory, making them ideal for real-time 
detection tasks on local devices. The Jetson Xavier NX, one 
of the platforms in the Jetson series, is equipped with the 
NVIDIA Volta GPU and a six-core ARM Cortex-A57 CPU, 
providing substantial computational power within a compact 
module. It is designed for deep learning and AI applications 
on edge devices and is suitable for applications requiring 
high-performance deep learning inference. This platform can 
be applied in lightweight human behavior recognition tasks 
and can also be used for object detection tasks. As shown in 
Figure 3. 

 
Fig. 3.  Jetson Xavier NX 

The Jetson Xavier NX features two CSI camera interfaces, 
ensuring the completion of real-time computer vision and 
image processing tasks. It also includes an HDMI interface, 
enabling the device to connect to a display for real-time 
monitoring of program execution. Additionally, the system is 
equipped with four USB interfaces, allowing users to connect 
devices such as USB drives, keyboards, and mice for easy 
operation within the system. The RJ45 gigabit Ethernet port 
facilitates network connectivity, while a Micro USB OTG 

interface is included to support a wider range of device 
connections. 

The proposed fall detection system is implemented on the 
NVIDIA Jetson Xavier NX, a powerful embedded platform 
designed for high-performance computing and real-time 
processing. This platform is equipped with a Volta GPU, a 
six-core ARM Cortex-A57 CPU, and 8GB of LPDDR4x 
memory, which makes it suitable for running deep learning 
models with significant computational requirements. The 
Jetson Xavier NX is particularly well-suited for applications 
in edge computing, as it enables efficient deployment of AI 
models without the need for cloud-based processing. 

The fall detection pipeline leverages the powerful Jetson 
Xavier NX for robust real-time performance, skillfully 
integrating Lightweight HRNet for human pose estimation 
(detecting crucial body keypoints) and VGG16 for fall 
classification ("fall" or "normal"). The entire streamlined 
pipeline, from initial image capture to final classification, 
executes on the Jetson Xavier NX, ensuring consistently 
low-latency detection. 

Input images/frames are captured via a connected camera; 
Lightweight HRNet then processes these to extract keypoints 
and generate pose maps, crucial for understanding posture 
and dynamic movement. 

The pose map is then strategically concatenated with the 
original image, creating a combined feature map enriched 
with visual and pose information. This map is passed to 
VGG16 for definitive classification; its output probability 
distribution for the two classes determines the final 
prediction. 

Real-time operation is ensured by several key 
optimizations like efficient models (e.g., Lightweight HRNet, 
minimizing overhead while maintaining accuracy) and Jetson 
Xavier NX's GPU acceleration for both pose estimation and 
fall classification, enabling quick real-time response to 
incidents. 

This Jetson Xavier NX pipeline effectively integrates these 
models for accurate, real-time fall detection, enabling 
efficient edge deployment in elderly care, healthcare 
monitoring, and other similar safety-critical environments 
requiring immediate alerts. 
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IV. EXPERIMENTS AND RESULTS 

A. Dataset construction 
During the initial development of our fall detection method, 

a static image dataset was constructed as a foundational step 
to facilitate neural network training, offering a controlled 
environment for early model experimentation. The original 
dataset was sourced from the PaddlePaddle website, but it 
required significant and careful refinement before it could be 
effectively utilized for robust model development. This raw 
dataset, although extensive, was unfortunately highly 
disorganized, primarily because it was aggregated from 
diverse online sources, leading to a lack of cohesion. The data 
annotations within the original dataset were often 
inconsistent, with bounding boxes marking individual 
locations and labels indicating fallen or standing states 
sometimes varying in accuracy or format. To further improve 
its quality and comprehensiveness, a small portion of the 
dataset was meticulously supplemented by manually adding 
carefully selected images sourced from other existing 
video-based fall detection datasets. 

The images in these datasets depict a truly wide variety of 
highly complex scenes, with each image potentially featuring 
multiple individuals simultaneously at once, sometimes in 
rapid motion. These images were captured in two distinct 
primary contexts: athletes falling during various physically 
demanding sports activities and pedestrians experiencing 
falls in often unpredictable everyday urban environments. 
The majority of the images in the dataset were obtained from 
dynamic news coverage and often low-resolution 
surveillance footage, which greatly contributed to the sheer 
variety of the scenes captured. However, the dataset 
presented several notable challenges, as it included images 
with crowded scenes, often severe occlusions, and significant 
variations in the apparent size of individuals, making the task 
of recognizing falls particularly difficult indeed. Given these 
inherent complications, it was evident that the original 
dataset could not be directly applied to the model training 
without very substantial and meticulous preprocessing. 

TABLE I 
THE DISTRIBUTION OF THE DATASET 

Category Number of Images (Count) 

Training Set 2,839 

Validation Set 1,217 

Total 4,056 

As a result, a series of preprocessing steps were undertaken 
to prepare the dataset. Initially, individuals were cropped 
from the images according to the bounding box annotations. 
Subsequently, the images were manually reviewed to ensure 
that only clear, unobstructed images were retained, depicting 
either a fallen person or a person in a normal, upright position. 
After this selection process, the cropped and cleaned images 
were systematically renamed using a format that combined 
the state (either "fall" or "normal") with a serial number (e.g., 
"fall.00001" for the first image of a person in a fallen state). 
Following this extensive preprocessing, a total of 4,056 
images depicting falls were obtained. 

Due to the limited size of the dataset, no separate test set 
was created. Instead, the data was divided into a training set 
and a validation set at a ratio of 7:3, yielding 2,839 images for 

training and 1,217 images for validation. The distribution of 
the dataset is summarized in Table I. 

Some manually processed fall images from the dataset are 
shown in Figure 4. 

 
Fig. 4.  Illustration of the processed partial fall dataset 

B. The training of the network 
The model was trained on an NVIDIA GeForce RTX 3060, 

based on the computing power of the device. The number of 
samples selected for the training set was 32, and the learning 
rate was set as 0.00001. Due to the smaller dataset, the model 
was trained to prevent overfitting by setting the number of 
training epochs to 30. The loss function selected was the 
mean squared error, which is commonly used in classification 
tasks. It is assumed that the network outputs an image with 
two classes (fall, normal), and it performs classification 
based on each input image. The network outputs a 
two-dimensional vector of predicted values, where in Figure 
5, n = 2, and each dimension represents the output of the 
respective class predicted by the network. The ground truth 
bounding box for each image is represented as a 
two-dimensional vector, where the corresponding class is set 
to 1, and the other class is set to 0. If the image belongs to a 
particular class, the ground truth label for that class is set to 1.  

the experimental setup used in this study is summarized in 
Table II. 

TABLE II 
THE EXPERIMENTAL SETUP 

Parameter Name Parameter Settings 

epochs 30 

batch 32 

workers 0 

imgsz 224 

optimizer Adam 

learn_rate 0.00001 

The loss function is calculated using the square of the 
Euclidean distance between the predicted label and the 
ground truth label, as explicitly detailed in equation (1). This 
specific choice, the squared error loss function, was 
strategically employed to more significantly reduce large 
discrepancies between predictions and actual values, thus 
improving the overall precision and reliability of the 
classification task. 
 Loss(x) = [g(x) − f(x)]2 (1) 
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a) Illustration of the fall state dataset 

 
b) Graphical representation of the non-fall state dataset 

Fig. 5.  Illustration of posture graphs corresponding to some data sets

As mentioned earlier, during the experiment, not only were 
images used as input in the VGG16 network for the 
experiment, but also the corresponding pose maps of the 
images were input into the network for the experiment. 
Additionally, the pose maps corresponding to the images 
were input together with the images into the network for the 
experiment. In the training set, the pose maps of the 
characters were generated using HRNet-W48, and some of 
the dataset corresponding pose maps are shown in Figure 5. 
The pose maps were set as one-dimensional, so if the pose 
map corresponding to the image was input together with the 
image into the network, the pose map would be concatenated 
with the network, and finally a 4×224×224-sized feature map 
would be formed and input into the network for training. 

C. Evaluation Metrics 
Accuracy represents the overall proportion of correctly 

classified instances out of the total instances in the dataset. It 
is a widely used metric but can be less informative in the case 
of imbalanced datasets, where one class may dominate. In the 
context of fall detection, accuracy measures how often the 
model correctly identifies both falls and normal instances. As 
shown in equation (2). 
 Accuracy = True Positives+True Negatives

Total Instances
 (2) 

Loss is a measure of the error between the model's 
predicted outputs and the actual class labels. In this study, the 

cross-entropy loss function was used to calculate the 
discrepancy between the predicted probability distribution 
and the true class labels. The loss value is minimized during 
training, with a lower loss indicating better model 
performance. As shown in equation (3). 
 Loss = −∑True Labels × log (Predicted Probabilities)(3) 

D. Input Modality Comparison 
This section presents a detailed comparative analysis of the 

fall detection system's performance utilizing distinct input 
modalities, to rigorously assess their individual and 
combined effectiveness. The primary objective is to 
quantitatively and qualitatively evaluate the precise influence 
of different input data representations — specifically, raw 
RGB images, which capture rich visual context, derived pose 
maps, providing crucial skeletal abstraction, and their 
strategic concatenation—on the accuracy and operational 
robustness of fall detection across diverse challenging 
scenarios. This investigation provides valuable insights into 
the relative contributions of visual appearance cues and 
skeletal structure information to the classification task, 
thereby informing feature engineering and subsequent model 
optimization. The underlying architecture employs the robust 
Higher-HRNet for human pose estimation and a 
classification network based on an EfficientNet-B0 backbone, 
as detailed within the experimental setup and methodology 
section. 

 
a) Loss Curve (RGB Image Input Only) 

 
b) Accuracy Curve (RGB Image Input Only) 

Fig. 6. Training Dynamics for Baseline Classification using RGB Image Input. 
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a) Loss Curve (Pose Map Input Only) 

 
b) Accuracy Curve (Pose Map Input Only) 

Fig. 7. Training Dynamics for Classification using Pose Map Input Only 

In the first experimental configuration, only raw RGB 
images serve as input to the classification network. While 
human pose features are implicitly extracted by the 
Higher-HRNet module during preprocessing (as it's part of 
the overall pipeline design), the explicit pose map is not 
provided to the classification stage in this modality. This 
setup establishes a baseline performance assessment relying 
solely on visual features learned directly from the pixel data 
by the classifier. The model must discern fall states based on 
learned representations of shape, texture, context, and 
implicit postural cues within the image. The training 
dynamics and evaluation results for this modality are 
depicted in Figure 6 a) and Figure 6 b). While capable of 
capturing visual indicators, this approach may face 
challenges in scenarios with visual ambiguity, complex 
backgrounds, or significant variations in subject appearance, 
where explicit pose information could be beneficial. 

The second configuration utilizes only the pose map, 
generated by Higher-HRNet, as the direct input to the 
classification network. This modality isolates the 
contribution of skeletal keypoint information, representing 
the subject's posture and spatial configuration. By focusing 
exclusively on the relative positions and connections of body 
joints, the model can potentially achieve robustness against 
variations in clothing, illumination, and background clutter 
that might affect the image-only approach. The performance 
characteristics under this condition are illustrated in Figure 7 
a) and Figure 7 b). A potential limitation, however, is the 

exclusion of potentially valuable visual context and 
fine-grained details present in the raw image that might aid in 
differentiating ambiguous poses.  

The third configuration investigates a hybrid approach 
wherein the raw RGB image and its corresponding pose map 
are concatenated, typically channel-wise, to form a combined 
input tensor for the classification network. This strategy aims 
to synergistically leverage both the rich visual details 
inherent in the image and the explicit structural information 
provided by the pose map. The hypothesis is that this fusion 
allows the model to develop a more comprehensive 
understanding of the scene, integrating appearance cues with 
explicit postural geometry for enhanced fall detection 
accuracy. The training behavior and evaluation metrics for 
this combined modality are presented in Figure 8 a) and 
Figure 8 b).  

The experiment evaluated three distinct input modalities: 
firstly, individual raw images; secondly, pose maps from the 
HRNet-w48 network; and thirdly, a synergistic combination 
of images with their pose maps. Final validation results from 
the dataset are presented in Table III. Findings demonstrate 
that concatenating images and pose maps yielded optimal fall 
detection performance, achieving 96.0% accuracy on the 
validation set. These results align with prior analytical work, 
robustly confirming that pose maps significantly aid the 
network in more accurately and reliably detecting individual 
fall states. 

 
a) Loss Curve (Combined RGB + Pose Map Input) 

 

 
b) Accuracy Curve (Combined RGB + Pose Map Input) 

Fig. 8. Training Dynamics for Classification using Combined RGB Image and Pose Map Inputs 
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TABLE III 
EVALUATING THE IMPACT OF DIFFERENT INPUTS ON FALL DETECTION 

Input Enter the picture 
dimensions Detection accuracy 

Figure diagram 224 95.2% 

Pose chart 224 94.0% 

Person map + pose map 224 96.0% 

These findings empirically validate the hypothesis that 
combining visual and explicit pose information yields the 
most effective fall detection system within the tested 
framework. The pose map itself provides substantial 
discriminative power, outperforming the image-only 
approach, confirming the critical role of skeletal structure 
analysis in this task. The synergistic effect observed in the 
concatenated modality suggests that the classifier effectively 
utilizes both sources of information to achieve higher 
accuracy and robustness. 

E. Baseline and Ablation Experiments   
To rigorously and systematically evaluate the multifaceted 

performance and operational efficiency of the advanced 
proposed fall detection system, which distinctively integrates 
the Lightweight HRNet for robust human pose estimation 
and the VGG16 network for subsequent, accurate fall 
classification, a comprehensive and meticulously designed 
set of baseline comparisons was diligently conducted. The 
primary baseline system, specifically selected for this 
in-depth comparative analysis, strategically employs a 
standard, yet computationally more intensive, pose 
estimation network, namely the HRNet-W48, in direct 
conjunction with the identical VGG16 classifier architecture. 
This carefully chosen experimental configuration facilitates a 
direct, unambiguous, and highly focused assessment of the 
tangible computational and memory-related benefits derived 
specifically and exclusively from the strategic utilization of 
the lightweight pose estimation component within the 
proposed framework. The key quantitative metrics employed 
for this critical comparison, which are meticulously detailed 
and presented in Table IV, encompass the total number of 
parameters (Params), the requisite floating-point operations 
(FLOPs), and the overall model size (FP32). These metrics 
are considered critically indicative and essential for 
determining the practical deployment feasibility of the 
system on resource-constrained edge devices. 

The comparative analysis, quantitatively detailed in Table 
IV, elucidates the substantial architectural advantages of the 
proposed fall detection system, particularly regarding its 
enhanced computational efficiency and optimized resource 
utilization when contrasted with a baseline that employs a 
heavier pose estimation model. The cornerstone of these 
significant efficiency gains is the strategic incorporation of 

Lightweight HRNet for the crucial initial human pose 
estimation stage. This lightweight network demonstrates a 
remarkable reduction in parametric complexity, requiring 
only 5.9M parameters versus approximately 63.6M for 
HRNet-W48. Correspondingly, its computational load is 
significantly diminished, at 5.5G FLOPs compared to an 
estimated 63.7G FLOPs for HRNet-W48 when processing 
comparable 448x448 inputs. Consequently, the model size 
for the pose estimation component is also drastically reduced, 
from about 254.4MB for HRNet-W48 to a mere 23.6MB for 
Lightweight HRNet. These pronounced reductions in both 
parameters and FLOPs directly translate to a considerably 
higher potential inference throughput for the pose estimation 
component of the proposed system. 

While both the proposed and baseline systems utilize the 
VGG16 network for the final fall classification stage—a 
network architecturally characterized by its considerable 
parameter count of approximately 138.36M and a moderate 
computational requirement of 15.5G FLOPs for 224x224 
input—the pivotal differences in the underlying preceding 
pose estimation stage translate directly to notable distinctions 
in overall system metrics and operational efficiency. The 
proposed system, representing an efficient synergistic 
combination of Lightweight HRNet and VGG16, totals 
144.26M parameters and 21.0G FLOPs, resulting in an FP32 
model size of approximately 577.0MB. In stark contrast, the 
baseline system (HRNet-W48 + VGG16) aggregates to a 
significantly larger 201.96M parameters and a considerably 
more demanding 79.2G FLOPs, with an estimated model size 
of 807.8MB, highlighting its greater resource requirements. 
These figures unequivocally demonstrate a substantial 
reduction of approximately 28.6% in total parameters and a 
highly significant, practically beneficial 73.5% decrease in 
total FLOPs for the proposed system, a critical advancement 
for applicability. Such considerable reductions in 
computational complexity and model footprint not only 
facilitate faster end-to-end inference times but also markedly 
enhance the system's suitability for deployment on 
resource-sensitive edge computing platforms, such as the 
Jetson Xavier NX, where computational capabilities and 
power are inherently constrained. The successful 
implementation and documented real-time functionality on 
this specific edge platform further substantiate this inference 
regarding its practical viability. Moreover, ablation insights 
from varying input modalities consistently reinforce the 
intrinsic value of high-fidelity pose information extracted by 
Lightweight HRNet, as the combined image and pose map 
input yielded optimal classification performance, thereby 
robustly validating the superior efficacy of the chosen 
lightweight pose estimator within the integrated system. 

TABLE IV 
. COMPARATIVE ANALYSIS OF FALL DETECTION SYSTEM COMPONENTS AND OVERALL PERFORMANCE 

COMPONENT/SYSTEM NETWORK ARCHITECTURE INPUT SIZE (POSE/CLASS.) PARAMS (M) FLOPS (G) MODEL SIZE (MB, FP32) 
POSE ESTIMATION LIGHTWEIGHT HRNET (R=-2) 448X448 5.9 5.5 23.6 

POSE ESTIMATION HRNET-W48 448X448  63.6 63.7 254.4 

CLASSIFICATION VGG16 224X224 138.36 15.5 553.4 
CLASSIFICATION VGG16 224X224 138.36 15.5 553.4 

OVERALL SYSTEM LWHRNET + VGG16 448X448 / 224X224 144.26 21 577 

OVERALL SYSTEM HRNET-W48 + VGG16 448X448 / 224X224 201.96 79.2 807.8 
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F. The implementation of fall detection 
Based on the experimental results above, the input of pose 

maps has significantly assisted the network in performing the 
fall detection task. Therefore, for the fall detection 
implementation, Lightweight HRNet is employed to detect 
the pose maps of individuals. These pose maps are then 
concatenated with the images and input into the network for 
the final detection of fall events, leveraging both structural 
and visual cues. Since Lightweight HRNet utilizes the AE 
algorithm for human pose detection, issues related to the 
duplication of keypoint detection may arise. To mitigate this, 
preprocessing techniques are applied to the detected 
keypoints, improving the visualization quality of the 
generated pose maps. This step ensures that the fall detection 
system remains robust, efficient, and accurate under varying 
environmental conditions. Furthermore, the AE algorithm 
plays a critical role in detecting the keypoints of the human 
body in the input image, which are then classified to 
successfully accomplish the human pose detection task. 
Notably, this algorithm does not automatically generate 
human detection boxes, focusing solely on the accurate 
identification of key body landmarks. In contrast, the trained 
VGG16 network specifically addresses the detection of fall 
statuses in single-person images, offering a more specialized 

approach to fall recognition. To enhance the model's 
versatility and accuracy in complex scenarios, the system has 
been designed to detect and locate all humans present in the 
input image. This is achieved by utilizing the pose map, 
which is generated by the network. As illustrated in Figure 9, 
the system is able to integrate multiple human detections, 
significantly improving the robustness of the fall detection 
process in environments with multiple individuals. 

After preprocessing the keypoints, non-overlapping and 
accurately predicted single-person poses are selected, as 
shown in Figure 9 a). Next, the pose map is used for human 
localization by constructing a bounding box around the 
keypoints, as shown in Figure 9 b). 

The bounding box is determined based on the keypoints, 
effectively encapsulating all the detected keypoints. However, 
in some cases, certain bounding boxes may fail to cover the 
entire human body. To address this issue, the bounding boxes 
are expanded as necessary to ensure that all detected humans 
are fully encompassed, as depicted in Figure 9 c). Once the 
bounding box is appropriately adjusted, individual human 
frames and their corresponding pose maps are extracted and 
concatenated. These processed data are then input into the 
VGG16 network for fall detection, and the corresponding 
results are displayed in Figure 9 d). 

  

a) Human pose map prediction results b) Make an external matrix for the pose map 

  

c) Extend the external matrix of the attitude map d) Fall detection results 
Fig. 9.  Realization process of fall detection 

G. Visual Analysis and Failure Cases   
This section provides an in-depth qualitative visual 

analysis of the proposed fall detection system's operational 
efficacy, critically evaluating its real-world performance 
and practical utility through meticulous visual evidence. It 
examines diverse successful detection instances from 
particularly challenging scenarios (e.g., varied lighting, 
occlusions) and representative failures. This granular 

visual inspection serves to develop a nuanced 
understanding of system behavior under varying 
conditions, clearly showing its strengths, inherent 
limitations, and specific actionable paths for future 
algorithmic refinement and system enhancement. The 
findings from this visual audit contribute directly to the 
ongoing iterative effort to build more robust, adaptable, 
and generalizable intelligent surveillance systems. 
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a) Fall Detection in a Complex Multi-Person Street Scene 

 
b) Fall Detection in a Specialized Sporting Domain (Ice Skating) 

Fig. 10. Examples of Fall Detection and Normal Action Classification in Complex and Specialized Application Scenarios 

In baseline scenarios characterized by optimal viewing 
conditions—specifically, a clear, unobstructed perspective of 
the subject with adequate illumination and minimal 
background clutter—the system reliably detects fall incidents. 
Under these favorable circumstances, the Higher-HRNet 
component consistently generates accurate and complete 
pose maps, capturing the subject's keypoints with high 
fidelity. The subsequent classification stage, leveraging the 
combined input of the raw RGB image and its corresponding 
high-quality pose map, then confidently and correctly 
identifies the fall state, establishing a strong benchmark for 
the system's core performance. 

Complex Multi-Person Environments: The system exhibits 
robustness in complex scenes containing multiple individuals. 
As illustrated in Figure 10 a), depicting a street scene with 
several pedestrians, the system successfully isolates and 
detects the fall event of one individual while correctly 
classifying others as 'normal'. The pose map distinctly 
represents the keypoints of all individuals, enabling the 
classifier to differentiate the fallen person based on the 
combined image and pose features. This highlights the 
discriminative power gained from incorporating pose 
context.    

Specialized Domains and Non-Fall Actions: The system's 
applicability extends to specialized domains, such as sports. 
Figure 10 b) demonstrates successful fall detection in an ice 
rink setting. Furthermore, the system accurately distinguishes 
dynamic, non-fall actions, such as athletic movements in 
soccer, classifying them correctly as 'normal'. This capability 
underscores the model's ability to interpret pose dynamics 

beyond simple static postures. 
Despite the generally robust performance, the system 

exhibits limitations under certain challenging conditions. 
Analyzing these failure cases is crucial for targeted 
improvements. Such critical scrutiny not only reveals the 
current boundaries of the system's capabilities but also 
highlights specific interactive elements that contribute to 
errors. 

Occlusion: Performance degradation occurs in 
environments where the subject is partially or significantly 
occluded by other individuals or objects. Occlusion impedes 
accurate keypoint localization by the Higher-HRNet module, 
potentially leading to incomplete or erroneous pose 
estimations or potentially the background figures in Figure 
11 a). This compromised pose information can subsequently 
lead the classifier to produce false negatives (missed falls) or 
misclassifications. The interaction scene in Figure 11 b) also 
presents occlusion challenges, potentially affecting pose 
accuracy for both individuals. 

Rapid or Kinematically Ambiguous Motion: Falls 
involving very rapid motion, rolling, or significant 
self-overlap can challenge the pose estimation network. The 
temporal dynamics or the spatial superposition of limbs may 
exceed the model's capacity for accurate keypoint tracking 
and association within a single frame or short sequence. This 
kinematic ambiguity, potentially exemplified by the dense 
keypoints in Figure 11 c), can result in misinterpretation of 
the body's configuration and, consequently, misclassification 
of the fall event. 

   

a) Occlusion: Background Interference b) Occlusion: Interaction Impact c) Kinematic Ambiguity: Rapid Motion  
Fig. 11. Analysis of Failure Cases for the Fall Detection System under Challenging Conditions 
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The system's performance can be notably compromised 
when confronted with atypical fall postures—those unusual 
or out-of-distribution configurations, such as falls occurring 
at extreme or oblique angles, which were insufficiently 
represented during the model's training phase. When 
encountering such novel scenarios, the generated pose map, 
which is crucial for understanding body mechanics, may 
become distorted or fail to capture sufficient discriminative 
features truly representative of a fall event. This deficiency 
can subsequently mislead the classification stage, causing it 
to misinterpret the event as a 'normal' state, simply because 
the pose representation is unfamiliar, incomplete, or lacks the 
tell-tale signs of a typical fall. While specific images 
perfectly matching the "extreme angle" description aren't 
provided, scenarios like those hinted at in Figure 11 c), 
potentially involving less common body positions during an 
interaction, could exemplify these challenging situations 
where the system's learned patterns are less applicable.  

Furthermore, suboptimal image quality, characterized by 
issues like low resolution, significant visual noise, or 
severely poor illumination (even though successful low-light 
detection was noted in less extreme cases, severe degradation 
remains a formidable challenge), adversely impacts overall 
system performance. Such poor visual clarity directly 
degrades the richness and reliability of features extracted by 
the EfficientNet-B0 backbone. Concurrently, it significantly 
hinders the precision of keypoint detection by the 
Higher-HRNet module, making accurate skeletal tracking 
difficult. Although the derived pose maps are designed to 
offer a degree of resilience to minor image imperfections, the 
combined loss of crucial visual detail can ultimately 
compromise the final classification accuracy, particularly 
when the system needs to differentiate genuine falls from 
ambiguous non-fall states that may share superficial 
similarities.  

Overall, the visual analysis underscores the system's 
general effectiveness in standard and moderately complex 
scenarios, effectively leveraging the synergistic combination 
of visual and pose-based features. Key strengths undeniably 
include its capability to handle multiple persons within a 
scene and reliably distinguish falls from a diverse range of 
normal daily activities. However, the principal failure modes 
consistently emerge from challenges such as occlusion, 
where parts of the body are hidden; rapid or highly complex 
motion dynamics that lead to inaccuracies in pose estimation; 
the aforementioned atypical fall configurations that defy 

learned patterns; and significant image quality degradation 
that starves the algorithms of necessary information. 
Addressing these identified limitations is paramount. Future 
research should therefore prioritize avenues such as 
enhancing the robustness of pose estimation, perhaps by 
more explicitly incorporating temporal information across 
frames to predict and correct body part locations. 
Additionally, developing sophisticated data augmentation 
strategies, specifically targeting these edge cases and 
underrepresented scenarios, and investigating advanced 
techniques for effectively handling low-quality inputs will be 
critical for bolstering the system's reliability and broadening 
its generalization capabilities in real-world deployments. 

H. Real-time Performance on Jetson NX  
In the previous section, the process of constructing the 

Jetson Xavier NX was described in detail. This section 
focuses on the implementation of fall detection on the device. 
The application leverages the lightweight human pose 
estimation network, as discussed earlier, to generate human 
pose maps, and employs the VGG16 network to classify the 
fall status of individuals. 

The implementation of fall detection begins by importing 
the pre-trained weights of the lightweight HRNet, which is 
used for pose estimation, and the VGG16 network, which has 
been trained for fall detection. Once the input image is 
received, it is processed through the lightweight HRNet to 
produce a human pose map. This pose map is then subjected 
to a preprocessing technique designed to enhance the 
visibility of the pose detection results. In order to improve the 
quality of human pose detection, the pose map is transformed 
into a one-dimensional image, which is then concatenated 
with the original input image. This combined image is 
subsequently passed through the VGG16 network. The 
network analyzes the image and determines the fall status of 
the individual depicted. 

Fall detection outcomes are subsequently displayed on the 
device's interface, a representation of which is shown in 
Figure 12, allowing real-time viewing of results. This 
procedure ensures accurate system detection and 
classification of fall events, offering valuable user feedback 
and facilitating real-time monitoring in varied settings. The 
effective integration of these neural networks and 
preprocessing steps is crucial for optimizing model 
performance on the Jetson Xavier NX, thereby providing 
efficient and dependable fall detection capabilities.

 
a) Fall Detection Interface 1  

b) Fall Detection Interface 2 
Fig. 12.  Fall detection screen

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3178-3190

 
______________________________________________________________________________________ 



 

V. CONCLUSION 
This study introduces a novel deep learning-based human 

pose estimation algorithm for fall detection, utilizing the 
Lightweight HRNet and VGG16 networks. The proposed 
method effectively detects human keypoints with HRNet's 
high-resolution output, facilitating accurate pose recognition. 
Subsequently, VGG16 processes the concatenated images 
and pose maps to classify fall events, offering robust 
performance even in complex environments. Experimental 
evaluations demonstrate that the algorithm achieves high 
accuracy, with significant improvements in both detection 
precision and generalization. Moreover, the system maintains 
low computational overhead, making it ideal for real-time 
deployment in elderly care and safety surveillance 
applications. Despite its promising performance, challenges 
remain in scaling the algorithm to handle larger datasets 
efficiently. Future research will focus on optimizing the 
computational efficiency of the system, enhancing its 
applicability in diverse real-world scenarios, and addressing 
the limitations in large-scale dataset processing. 
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