TAENG International Journal of Computer Science

Convolutional Neural Network-based Successive
Cancellation List Decoder for the Polar Code

Sunil Yadav Kshirsagar, Member, IAENG and Venkatrajam Marka

Abstract—In modern communication systems, polar codes
play an essential role as error-correcting codes due to their
inclusion in 5G technology. Successive cancellation list (SCL)
decoders with cyclic redundancy checks (CRCs) enhance polar
code performance, but their computational complexity and
latency are high. To overcome this limitation, this study
proposes a convolutional neural network (CNN)-based SCL
(CNN-based SCL) decoder. The proposed decoder significantly
improves the error correction capability and decoding speed in
terms of bit error rate (BER), block error rate (BLER), and
frame error rate (FER) versus signal-to-noise ratio (SNR). For
L = 32, the gained BER, BLER, and FER, respectively, are
2.34 x 107% at 3.5 dB SNR, 0.005, and 0.002 at 3 dB SNR. We
conducted a simulation of the proposed decoder and compared
the results with conventional decoders. The results indicate
that the proposed CNN-based SCL decoder outperforms other
decoders across various list sizes.

Index Terms—Polar Code, Convolutional Neural Network
(CNN), Successive Cancellation List (SCL) decoding, Bit Error
Rate (BER), Block Error Rate (BLER), Frame Error Rate
(FER).

I. INTRODUCTION

RIKAN introduced the concept of channel polarization

to construct polar codes, which achieve the capacity
for symmetric binary-input discrete memoryless channels
(B-DMCs) by synthesizing highly reliable and unreliable
channels through recursive transformations. This enables
low-complexity successive cancellation (SC) decoding [1].
To enhance decoding performance, Tal and Vardy developed
a successive cancellation list (SCL) decoder that maintains
multiple decoding paths and selects the most probable path.
The addition of cyclic redundancy check (CRC) precoding
further improves reliability, making polar codes competitive
with low-density parity-check (LDPC) codes [2]. Similarly,
Elkelesh et al. proposed a belief propagation list (BPL)
decoder that employs multiple belief propagation (BP) de-
coders on permuted factor graphs. This approach achieves a
performance comparable to that of SCL, while enabling soft-
output capability and lower latency [3]. To optimize polar
codes for CRC-aided successive cancellation list (CA-SCL)
decoding, Liao et al. utilized graph neural networks (GNNs)
to construct polar codes using an iterative message-passing
(IMP) algorithm, that efficiently minimizes frame error rates
(FER) and scales across different block lengths [4]. Liu
et al. introduced neural-network-assisted decoding schemes,
including key-bit-based and last-subcode NN-assisted de-
coding. These approaches enhance error correction while

Manuscript received April 10, 2025; revised July 22, 2025.

Sunil Yadav Kshirsagar is a research scholar at the Department of
Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati,
Andhra Pradesh, 522241, India (e-mail: sunilksagar143@gmail.com).

Venkatrajam Marka is an Associate Professor at the Department of
Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati,
Andhra Pradesh, 522241, India (e-mail: mvraaz.nitw @gmail.com).

maintaining low complexity, achieving superior bit error rate
(BER) performance compared to conventional SC decoders
[5].

Several studies have explored neural-network-assisted de-
coding approaches. A fully connected neural network has
been proposed to reduce the decoding latency by leveraging
parallel processing [6]. In contrast, convolutional neural
networks (CNNs) improve BP decoding under colored noise
conditions [7]. A sparse neural network (SNN) decoder
optimizes non-binary polar codes, reducing complexity while
maintaining decoding performance [8]. CNN-based BP flip
decoding has demonstrated improved erroneous bit identifi-
cation, thereby enhancing the decoding reliability for short
codes [9]. Deep feed-forward neural networks have also
been investigated for decoding polar codes, showing the
potential for competitive error rates compared to list decod-
ing [10]. In addition, deep learning-assisted SCL decoding
with shifted pruning was introduced to balance the perfor-
mance and complexity [11]. Fast SC decoding benefits from
deep learning by partitioning the decoder into sub-blocks,
thereby improving the computational efficiency [12]. A re-
current neural network (RNN)-based decoder with weight
quantization reduces memory overhead and computational
complexity while maintaining decoding accuracy [13]. A
neural-network-aided path-splitting strategy optimizes SCL
decoding by selectively splitting paths, thereby reducing
decoding complexity without performance loss [14].

Recent advances in neural architectures have dramatically
enhanced sensing, inference, and personalization tasks across
diverse domains. In IoT security, an Edge Multi-Head GAT-
GraphSAGE model augmented with FGSM adversarial train-
ing significantly improved intrusion detection on the NF-
BoT-IoT dataset [15]. In computer vision, the YOLOvV9-c
framework—enhanced by Dynamic Snake Convolution and
a Spatial-Channel Synergistic attention module—achieved an
average precision of 0.902 for small infrared targets on the
HIT-UAV dataset [16]. For graph-structured data, SMix-GNN
employs k-reciprocal nearest neighbor graphs and S-Mixup
augmentation to boost F1-scores by up to 5.63% across real-
world classification tasks [17]. In digital signal processing,
LSTM-based filter design adaptively learns coefficients via
gating mechanisms to minimize amplitude error more effec-
tively than traditional neural and windowed methods [18],
while Environmental Transformers leverage multi-head at-
tention and environment-aware feature extraction to improve
non-line-of-sight signal classification in satellite navigation
[19]. Beyond sensing, CNNs paired with MobileNetV?2 trans-
fer learning have been used to classify vegetable images at
95.78% accuracy for personalized vegetarian recipe recom-
mendations, demonstrating neural models’ versatility in real-
world applications [20].

These breakthroughs in adaptive learning and attention

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

mechanisms have, in turn, inspired robust control strategies
that mirror perception-driven architectures. Dynamic output
quantization combined with persistent dwell-time switch-
ing has produced provably stable, fault-tolerant switched
controllers under actuator faults echoing the gated updates
of LSTM filters and graph attention networks [21]. In
memristive neural networks, memoryless state-feedback con-
trollers enable finite-time anti-synchronization, showcasing
how neuromorphic dynamics can drive rapid convergence in
networked systems [22]. Extending these ideas to fractional-
order memristive systems, adaptive protocols guarantee pre-
defined settling times independent of initial states, under-
scoring the power of complex-order dynamics for precise
timing control [23]. In switched stochastic pure-feedback
systems with incomplete measurements, an integrated ap-
proach combining state estimation, dynamic surface control,
and RBF network approximation maintains semiglobally
uniformly ultimately bounded performance despite packet
loss and input saturation [24].

Deep learning-assisted polar-coded integrated data and en-
ergy networking (IDEN) was introduced to optimize both in-
formation and energy transmission, outperforming traditional
model-based designs [25]. Neural-network-based adaptive
polar coding dynamically adjusts to channel conditions and
quality-of-service (QoS) requirements, outperforming 5G
polar codes under SCL decoding [26]. Neural successive
cancellation (NSC) decoding integrates neural networks with
SC decoding, reducing latency while maintaining strong error
correction performance [27]. Kshirsagar et. al. propose a
hybrid polar code construction method that integrates a recur-
rent neural network for noise estimation with a Bald Hawk
Optimization algorithm, achieving exceptionally low error
rates [28]. Additionally, a CNN-aided bit-flipping mechanism
enhances BP decoding by dynamically identifying erroneous
bits and reducing the block error rate (BLER) while main-
taining a low decoding latency [29]. A CNN-aided tree-
based bit-flipping framework using imitation learning further
optimizes BP-based decoding by introducing multi-bit flip-
ping strategies, significantly improving error correction and
reducing the number of flipping attempts [30]. Another CNN-
based polar decoding approach enhanced decoding accuracy
while maintaining computational efficiency, particularly for
longer code lengths [31].

In this study, we developed a novel CNN-based SCL
decoder to improve decoding capability and accuracy. The
proposed approach integrates a CNN architecture with a con-
ventional SCL decoder to reduce computational complexity
and processing time. By training the CNN model on large
sets of encoded messages and their noisy counterparts, the
proposed decoder significantly enhances the error correction
and decoding speed. CNNs, renowned for their pattern recog-
nition capabilities, offer a distinct advantage in identifying
the underlying structures in encoded data, thereby facilitating
a more effective error correction. The primary contribution
of this study is the implementation of a CNN-based SCL
decoder for polar code decoding. The CNN is trained offline,
and a linear simulation is conducted to assess the specific
decoding gain. The experimental results demonstrate that the
CNN-based SCL decoder achieves notable improvements in
the bit error rate (BER), block error rate (BLER), and frame
error rate (FER) performance compared to traditional SCL

decoding methods.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the fundamental concepts
of polar code and CNNs. Section 3 describes the proposed
CNN-based SCL decoder. Section 4 presents a performance
analysis of the proposed decoder and compares it with
the existing methods. Section 5 summarizes the study and
discusses potential future work.

II. PRELIMINARIES

This section provides a comprehensive explanation of
polar code encoding and decoding.

A. Polar Code

In 2009, Arikan made a revolutionary discovery of polar
code, which was the first set of codes to achieve Shannon’s
capacity successfully. Polar encoding and decoding are cru-
cial components of the polar code.

1) Polar Encoding: A polar code, denoted as P(N, K),
is a code with a code length of N and a coding rate of
R = K/N. The equation that relates variables y and v is
expressed as y = vGy, where Gy represents the generator

matrix for a given value of N. For N = 2, the specific
10

value of G2 is given by matrix, Go = L 1

The generator matrix derived from the polar transform is
typically employed to encode polar codes with a code length
of N (where N is equal to 2°, and s is greater than or equal
to 1). The generator matrix, represented as G, is defined
as follows:

Gy =T%

10
11
power of T. Encoding is the process of obtaining the
encoded bits y = (y1, y2, ..., yn) by multiplying a specified
source vector v = (v1,vs,...,un) by the matrix G, that
is, y = vGy. The vector v = (v1,ve,...,vN) represents
the encoded bit sequence. The bits should be reversed to
perform proper encoding. The encoding bits (vy,vs, ..., Un)
possess diverse levels of reliability as mandated by the polar
design concept. M bits are divided into two subsets, each
representing a different reliability level, to assess overall
reliability appropriately. Information transmission uses only
the K most reliable bits, whereas the remaining N — K bits
are set to zero.

2) Successive Cancellation List Decoding: The SC de-
coder sequentially decodes the received bits and makes
decisions based on the previously decoded bits. Although
the SC decoder is efficient, it has performance constraints,
particularly when it comes to short block lengths. The
SCL decoder maintains a record of potential codewords,
thereby enhancing the likelihood of identifying an accurate
codeword. The decoder generates numerous decoding paths,
which are then removed based on their probabilities. The
decoder commences with an initial inventory of paths, each
with a probability of one. As the decoding process continues,
the list is updated to include additional potential code words.
Every time, the decoder adds a possible value (0 or 1) to the
list of paths for the current bit, considering both extremes.

where T = and T®* refers to the st Kronecker

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

Consequently, the number of potential routes was doubled.
The decoder eliminates paths according to the probability of
controlling the list size. Up to a specific size, L, it can hold
the most likely paths. The log-likelihood ratio (LLR) can be
used as a measure to determine the probability of each path.
Using this metric, we can find pathways with a better chance
of matching the transmitted codeword. After processing all
the bits, the decoder selects the path from the list that most
likely represents the decoded codeword.

In polar codes, the Successive Cancellation List (SCL)
decoder refines the SC decoder. SCL decoders increase error-
correction performance by accounting for multiple decoding
paths, as opposed to SC decoders. For large list sizes,
the performance of the SCL decoder approaches that of
the maximum likelihood (ML) decoder, resulting in higher
performance. To strike a balance between computational
complexity and efficiency, the value of L can be modified to
represent the list size. Increased list sizes provide enhanced
performance, but can also lead to affordable complexity.

III. METHODOLOGY
A. Motivation

Polar codes are widely recognized for their capacity-
achieving performance during Successive Cancellation (SC)
decoding. However, SC decoding suffers from significant
limitations, particularly at finite block lengths, where in-
correct early-stage decisions lead to error propagation. In
addition, SC decoding lacks reliability in high-noise environ-
ments, resulting in increased BER. To address these issues,
SCL decoding was introduced, which maintains multiple
decoding paths and utilizes a Cyclic Redundancy Check
(CRC) to select the most likely decoded sequence. Although
SCL decoding improves performance by retaining multiple
decoding candidates, it still suffers from drawbacks such
as higher computational complexity and suboptimal path
selection, especially in challenging noise conditions where
CRC-based decisions may not always be reliable.

To further enhance error correction, deep learning tech-
niques, particularly Convolutional Neural Networks (CNNs),
have emerged as promising solutions. CNNs have demon-
strated remarkable success in pattern recognition and
sequence-based tasks, owing to their ability to extract hi-
erarchical features. In the context of decoding, CNNs of-
fer key advantages, such as pattern extraction from error-
prone sequences, robustness against noise, and soft decision
refinement. Unlike traditional hard decision-based methods,
CNNs can recognize complex error patterns and improve
the reliability of the decoded sequences. This motivates the
integration of CNNs with SCL decoding to refine decoding
decisions and enhance the performance in noisy environ-
ments.

The proposed CNN-based SCL Decoder introduces a CNN
as a postprocessing step after SCL decoding. Initially, the
SCL decoder generates multiple candidate codewords and
selects the most likely sequence using the CRC verification.
However, because the CRC-based selection may not always
be optimal, the CNN further evaluates the best candidate
and verifies its accuracy before producing the final output.
This approach ensures that the decoder retains the benefits
of SCL decoding while leveraging CNNs to correct CRC

failures and enhance decoding accuracy. By incorporating
deep learning into the decoding process, the model achieves
improved error correction, robustness to noise, and better
path selection efficiency than conventional SCL decoders.

B. Architecture of CNN-based SCL decoder

Figure 1 illustrates an advanced decoding architecture that
employs a combination of traditional Successive Cancellation
List (SCL) decoding with a Convolutional Neural Network
(CNN) to decode polar-coded messages. The decoding ap-
proach integrates classical signal processing methods with
deep learning to significantly enhance the decoding perfor-
mance, especially in noisy channel conditions. Initially, the
input message bits are encoded via a Polar Encoder. Polar
coding exploits the phenomenon of channel polarization,
effectively transforming a set of noisy channels into subsets
of highly reliable and unreliable channels, thereby facilitating
robust error-correction capabilities. After encoding, these
bits are modulated using binary phase-shift keying (BPSK),
preparing them for transmission across a physical commu-
nication channel. The modulated signals then pass through
an Additive White Gaussian Noise (AWGN) channel, which
introduces realistic noise conditions to simulate real-world
scenarios that the decoder must effectively handle. Following
transmission, noisy signals are received by the combined
SCL and CNN decoder. In this stage, the classical SCL
decoder first produces initial estimates of the transmitted bits
by exploring multiple decoding paths simultaneously, provid-
ing preliminary decoded bits along with reliability measures
(soft decisions). However, SCL decoding alone may not
adequately capture the complex error patterns introduced by
the channel, thereby motivating the inclusion of a CNN-based
decoder to complement and refine estimates.

The CNN-based decoder comprises several convolutional
and dense layers arranged systematically to capture intricate
patterns in the noisy signals. Specifically, the decoder in-
cludes three convolutional layers (Conv2D) with decreasing
numbers of filters: 128, 64, and 32. Each convolutional layer
extracts hierarchical spatial features from the input, enabling
the decoder to identify subtle patterns that traditional decod-
ing can overlook. These layers are each followed by Rec-
tified Linear Unit (ReLU) activation functions to introduce
nonlinearity and dropout layers for regularization, thereby
reducing the risk of overfitting. After feature extraction, a
flattened layer reshapes the multidimensional feature maps
into a one-dimensional feature vector, preparing data for
processing using subsequent dense (fully connected) layers.
The decoder then employs three Dense layers. The first
dense layer comprised 128 neurons, followed by a second
layer of 64 neurons, each accompanied by ReLU activation
and dropout regularization to enhance generalization further.
Finally, the last dense layer outputs the decoded information
bits using a sigmoid activation function, which converts the
output values into probabilities between 0 and 1, thereby
providing binary decision thresholds for accurate decoding.

The final output represents the estimated decoded bits
that closely match the original transmitted information. By
leveraging the strengths of both classical SCL decoding and
modern deep learning techniques, this CNN-based hybrid
decoding approach achieves superior decoding accuracy and

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

aput Polar BI;SK scL g <
1 -

Encoder AWGN Decoder S

oo

(o]

—

] o
— — = — o™ [as]
= = =} [+] [+]]
i o =] 2 2
- = = z z z O’UtPUt
= = = @ o 5
=] =} = =] =] =)
5 5]] m}
)
T o (=) =
¥ L] — hd

|:|: Dense layer

: Convolutional layer

I:‘ - Flatten layer

.: ReLU layer .: Dropout layer

|:|: Sigmoid layer

Fig. 1: Architecture of the proposed CNN-based SCL decoder

robustness, effectively reducing bit error rates, even under
challenging noise conditions, making it particularly suitable
for advanced polar-coded communication systems.

C. CNN-based SCL Decoder

CNNs are a type of sophisticated neural network that
is used for the analysis of visual information. They have
demonstrated remarkable efficacy in tasks such as image
recognition, object detection, and natural language process-
ing. CNNs are specially developed to autonomously and
flexibly acquire organizational structures and characteristics
from the input images. They consist of several layers: con-
volutional, pooling, and connected layers. The convolutional
layer serves as the fundamental component of the CNN. This
process entails the convolution of a series of filters, some-
times known as kernels, with input. An activation function is
used to integrate the nonlinear characteristics into the model
following the convolution process. The ReLU is the most
commonly used activation function. Pooling layers were used
to decrease the spatial dimensions (width and height) of the
feature maps while preserving the most significant informa-
tion. The predominant type is max pooling. Fully connected
layers resemble conventional neural network layers, in which
each neuron establishes connections with every neuron in the
preceding layer.

The CNN-based SCL decoders includes the following
steps.

1) Inputs: In the decoding process, several key inputs are
utilized to ensure accurate codeword recovery. Channel log-
likelihood ratios (LLRs), denoted as ¢ € R, provide reliable
information for each received bit. The bit-type indicator,
b € {0,1,2}", classifies bits into information bits (0),
shortened bits (2), and frozen bits (other values). Set 7
specifies the indices of the information bits essential for
correctly extracting the transmitted message. Additionally,
kere represents the number of bits allocated for the CRC
check, whereas L defines the list size used in the SCL
decoder to enhance decoding reliability. CRC verification
relies on a predefined polynomial, CRCp,y, to ensure error
detection in decoded messages. To further refine the decoding
accuracy, a convolutional neural network (CNN) instantiated
via the CNN evaluates the predicted codeword and decides
whether to accept or reject it. If the CNN confirms the
decoded sequence, the final decoded codeword s is returned;

otherwise, the output is none, indicating a decoding failure.
This hybrid approach leveraging SCL decoding and CNN-
based verification enhances robustness, particularly in high-
noise scenarios.

2) SCL Decoder Process: SCL decoding begins with
initializing several crucial components that facilitate the
decoding process. First, the input log-likelihood ratios
(LLRs) representing the reliability values of the received
bits are provided. The length N of these input LLRs is
determined and the parameter n = log,(/N) is computed
accordingly. For each decoding path d 1,2,...,L,
where L represents the decoder’s list size, the algorithm
initializes three main data structures: the log-likelihood
ratio matrix LLR® e RE+TD*2" " decision matrix
s e {-1,0,1}(FVU*2" " and path metric PM @,
Specifically, LLR®[n,:] is initialized with the input LLR
values, the decision matrix is initialized with —1, and the
path metrics are initialized as PM (™) = 0 and PM (D = o
for d > 1. SCL decoder includes the following steps:

(i) Bit-by-Bit Decoding Procedure: Each bit index ¢
undergoes decoding based on its type classification:
information, shortened, or frozen bits. This classification
determines the decoder’s computational strategy for each bit
position.

o Information bits: The LLR is computed, the decision is
set to 0, and the path metric is updated using Equations
1 and 2, as follows:

LLRD0,4] = L;(0,i, LLRY s®) (1)

2

o Shortened bits: LLR computation is similar to infor-
mation bits, however, decisions are directly set to zero
without altering the path metrics.

o Frozen bits: The LLR computation is followed by
decision based on the sign of LLR, and the distance
metric (DM) is updated using Equation 3 and 4 as

PMD = PM@ — min{LLR?D|0,4] < 0}

follows:
1, if LLR™[0,4] <0
5D[0,4] :{ ;i . [0,1] < 3)
0, otherwise
DM@ = |LLR¥|0, 1| 4)

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG In

ternational Journal of Computer Science

Start

Initialization:
Set N, n, lirs, s, PM, DM for each path

For each bitindexi =0 ... N-1

Check bit type at i: \

Is b[i] = 0?

es No

Else, is b[i] = 2?

Information Bit Processing:
Compute Li, set s=0, update PM

Information Bit Shortened

Compute Li, set s=0

Frozen Bit Processing:

B [PIEEODE 1] Compute Li, set s based on sign

Next bit index

Record DM

Shortened Bit

(continue) Frozen Bit

If information bit & L > 1:
Perform Path Splitting
(Copy state, flip bit)

Loop Done

End of Loop
Proceed to CRC Check

CRC Check:
Compute CRC for each path

Select Best Path:
If CRC-satisfied, choose lowest PM
Else choose overall min PM

CNN Decision:
Reshape best path, compute CNN score
Return best path if score > threshold
Else return None

End

Fig. 2: Flowchart of the proposed CNN-based SCL decoder

Volume 52,

Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

(7i) Path splitting and selection: For information bits, a
combined metric vector is constructed and sorted, facilitating
the selection of the top L paths with the smallest metrics.
Path states are copied and the corresponding decisions are
flipped at bit index 4, updating the path metrics accordingly.

3) CRC Check and Path Selection: After generating mul-
tiple candidate decoding paths via successive cancellation
list (SCL) decoding, a Cyclic Redundancy Check (CRC) is
applied to verify the correctness of the candidate paths. For
each candidate decoding path d, CRC verification is conducts
using Equation 5, as follows:

iter

e = CRC,ure (s<d>[o,1[1;km]],Ccholy) (5)

where, CRClqic(-) denotes the CRC computation using
the predefined polynomial C'RC).p,,. The candidate path is
considered to be CRC-satisfied if

erelid, = sD[0, Ifkere + 1] ©)

iter

The path selection stage considers three possible scenarios.

o Single CRC-satisfied path: If only one decoding path
passes the CRC check, the decision is straightforward.
This unique path is directly chosen as the most reli-
able candidate, and decoding moves forward with this
selection.

o Multiple CRC-satisfied paths: Among the multiple
CRC-satisfied paths, the decoder selects the path with
the minimal path metric (PM(?) using Equation 7,
which represents the highest reliability:

s* = argmin{ PM(? | crcgfe) satisfied} (7)

T

o No CRC-satisfied paths: In the challenging scenario
where none of the candidate paths pass the CRC
verification, the decoder again defaults to select the
path that exhibits the minimum path metric among all
possibilities using Equation 8, despite CRC failure, as
it represents the “’least unreliable” decoding outcome:

s* =argmin{PM? |d=1,2,...,L} (8)

This careful combination of CRC verification and path metric
analysis ensures that the decoder maintains a robust balance
between error detection accuracy and decoding reliability,
effectively mitigating decoding errors and reducing the like-
lihood of accepting erroneous messages.

4) Final CNN-Based Decision: Despite rigorous CRC
check and path selection procedures, residual decoding errors
may persist, especially under high-noise conditions or when
CRC fails to discriminate effectively. To address this issue
and further enhance decoding robustness, a sophisticated fi-
nal verification step is introduces by employing a CNN. Once
the best decoding path s* is determined through the previous
steps, the candidate codeword is prepared specifically for the
CNN-based verification. The selected path s* is reshaped into
a format compatible with CNN processing and represented
mathematically using Equation 9, as follows:

CNMinput = reshape (s¥) 9)

The CNN, which is trained extensively on correct and in-
correct decoded messages under various channel conditions,

evaluates this reshaped candidate codeword to generate a
prediction score using Equation 10,

score = CN N.predict(cnninput) (10)

This prediction score, which typically ranges from 0 to 1,
quantifies the confidence of the CNN regarding the correct-
ness of the candidate codeword. A higher score indicates
strong confidence in correctness, whereas a lower score
indicates potential decoding errors. A predefined threshold
(commonly 0.5) is used to interpret this prediction clearly
using Equation 11,

*

s*, if score > 0.5,

Decoded Output = (11

None, otherwise

By integrating this CNN-based verification into the final
decision stage, the decoder effectively leverages the pattern
recognition capabilities of deep learning. This significantly
enhances its resilience against residual decoding errors that
traditional CRC checks alone may not detect, particularly
in complex, high-noise scenarios. Thus, the CNN-enhanced
decision framework fundamentally strengthens the overall
reliability, robustness, and effectiveness of the CNN-based
SCL decoding methodology.

The pseudocode and flowchart of the CNN-based SCL de-
coder are provided in Algorithms 1 and figure 2, respectively.

Algorithm 1 CNN based SCL Decoder

Require: ¢ € RV > LLR channel values

Require: b € {0,1,2}" > Bit type: 0 for information, 2
for shortened, else frozen

Require: 7

Require: k...

Require: L

> Indices of information bits
> Number of CRC bits
> List size for SCL
Require: CRC,;y > CRC polynomial
Require: CNN model > CNN with a predict function
Ensure: Decoded codeword s or None
1: N « length({), n <+ logy(N)
2: for d < 1 to L do
32 Initialize LLR(Y € RO+DX2" with —oo
4 Set LLR@(n,:] « ¢
s: Initialize s(¥ € {—1,0,1}(*+D*2" with —1
6 PMYW —0if d=1, else oo
7. DM@ + 0
8: end for
9: fori < 0to N —1do

10: if b[i| = 0 then > Information Bit

11: for d < 1to L do

12: LLRD0,4] Li(0,4, LLR(Y s(d)

13: s<d>go, i] <0

14: PMD « PM@ — min{LLR¥[0,i] < 0}
15: end for

16: else if b[i] = 2 then > Shortened Bit
17: for d <+ 1to L do

18: LLR(V[0,] + Li(0,4, LLR?¥ s(4)

19: s(D[0,i] «+ 0

20: end for

21: else > Frozen Bit
22: for d < 1to L do

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

LLR@(0,4] + Li(0,7, LLR(Y s(d)
if LLR(Y[0,i] < 0 then
s(D0,i] 1
else
s(D[0,i] « 0
end if
DM@ « |LLR0,]|
end for
end if
if b[i] =0 and L > 1 then

Form PM_DM «+ [PMY) ... pM®) pM®) +

pMY . PM*) 4+ DMP)]

34:
35:

idx_sort < argsort(PM_DM)
Define idx_min_low <+ {i — L | i

idx_sort[1...L],7> L}

36: Define idx_min_up <+ {4 | ¢ € idx_sort[L +
1...21),i< L}

37: for each pair (djow, dup) in corresponding indices
do

38: LLR(%) + copy(LLR (@)

30: s(dw) < copy(s(dov))

40: s(dw) [0, 4] < 1 — s(d)[0, 4]

ar; PM(%») « PM_DM][dqy, + L]

42: end for

43: end if

44: end for

45: for d < 1 to L do

46:

crc_iter® « CRC_calculator (s(d) [0,Z]1

kcrc”) CRCpoly)

47:

Mark path d as CRC-satisfied if
cre_iter' = s(D[0, Z[kepe + 1 :]

48: end for
49: if exactly one path is CRC-satisfied then

50:

s* < the unique CRC-satisfied path

51: else if multiple paths are CRC-satisfied then

520 s* « argmin{ PM? : d is CRC-satisfied}
53: else

54: s* « argmin{ PM@ :1<d< L}

55:. end if

56: if s* # None then

57: cnn_input +— reshape(s*, (1,—1,1))
58: score <— CNN.predict(cnn_input)

59: if score > 0.5 then

60: return s*

61: else

62: return None

63: end if

64: else

65: return None

66: end if

IV. RESULTS AND DISCUSSION

In this section, we describe the performance analysis for
various list sizes using a CNN-based SCL decoder with
(1024, 512) polar code. Moreover, we compared the results
of the CNN-based SCL decoder with those of other existing
techniques. We conducted our experiment on a Windows 10
system with 64 GB of RAM, using Python programming in
a high-performance computing (HPC) lab.

A. Performance Analysis based on List Sizes

Figure 3(a) illustrates the BER performance of (1024, 512)
Polar Code decoded using a CNN-based SCL decoder.
The decoder is tested with various list sizes, specifically
L = 2,4,8,16, and 32. We assessed the performance
across a spectrum of SNR values ranging from 0 dB to 4
dB. As the SNR increases, the BER decreases for all list
sizes, as expected. A higher SNR indicates better signal
quality, leading to fewer errors in the decoded information,
and expanding the size of list L results in improved BER
performance, particularly at higher SNRs. However, this
improvement is accompanied by an increase in computing
complexity and memory requirements. Increasing the list
size requires more computer resources, which results in a
slower and more resource-intensive decoding procedure. The
choice of list size should depend on the specific requirements
of the application, balancing the desired error performance
with available computational resources. For systems with
strict BER requirements, employing a larger list size, such
as L = 32, is preferable because it significantly reduces the
error rate. However, for systems with tight resource restric-
tions, a balance must be achieved between the targeted bit
BER performance and the available computational resources.
Under such circumstances, an intermediate list size, such as
L =8 or L =16, may offer a fair compromise.

Figure 3(b) shows the BLER performance of (1024, 512)
Polar Code decoded using a CNN-based SCL decoder. As the
SNR increases, the BLER decreases for all list sizes, which is
expected because a higher SNR implies better signal quality
and less noise, leading to an improved decoding performance.
The performance improves significantly as the list size L
increases. This is evident from the shift in the BLER curves
to the left as L increases. Although increasing the list size
improves the performance, the gain in the BLER starts to
saturate at larger list sizes. For example, the difference in per-
formance between L = 16 and L = 32 is less pronounce than
that between L = 2 and L = 4. This suggests that beyond
a certain point, increasing the list size yields diminishing
returns in terms of BLER improvement. The CNN-based
SCL decoder shows a significant performance improvement
with increasing list size, as evidence by the lower BLER
at each SNR level for larger values of L. However, the
performance gains diminish at higher list sizes, indicating
a point of diminishing returns, where further increases in L
offer only a marginal improvement.

Figure 3(c) illustrates the FER performance of (1024, 512)
Polar Code decoded using a CNN-based SCL decoder. As the
SNR increases, the FER decreases for all list sizes, which is
expected because a higher SNR implies better signal quality
and less noise, leading to an improved decoding performance.
The performance improves significantly as the list size L

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

BER

100

N

—eo— L =2
-—=a- L =4
—eo— L =28
——L =16
——L = 32

0 1 2 3 4
SNR (dB)
()
\
- * -
|—o— L =2 |
= L =14
—eo— L =
| ——1L = 16 &
| ——L = 32 .
1 | | i
0 2 3
SNR (dB)

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

1009

—o— [L =2
-—a— L =4
—o— L =28
——L =16
——L = 32

2 3

SNR (dB)

Fig. 3: Performance analysis of the proposed CNN-based SCL decoder for the (1024,512) polar code for different list sizes

increases. This is evident from the shift in the FER curves
to the left as L increases. Although increasing the list size
improves the performance, the gain in the FER starts to
saturate at larger list sizes. For example, the difference in per-
formance between L = 16 and L = 32 is less pronounce than
that between L = 2 and L = 4. This suggests that beyond
a certain point, increasing the list size yields diminishing
returns in terms of FER improvement. The CNN-based SCL
decoder shows a significant performance improvement with
increasing list size, as evidence by the lower FER at each
SNR level for larger values of L. However, the performance
gains diminish at higher list sizes, indicating a point of
diminishing returns, where further increases in L offer only
a marginal improvement.

B. Performance Analysis based on Code Length

The figure 4 (a) illustrates the BER in relation to the
SNR measured in decibels for polar codes of varying block
lengths N. As the SNR rises from 0 dB to 3 dB, the BER
for all code lengths declines significantly, demonstrating
that an elevated SNR results in a reduction of bit errors.
At low SNR values, all four graphs demonstrate elevated
BERs; however, as SNR rises, the BER for each block
length declines significantly. Significantly, extended block
lengths consistently yield reduced BERs at equivalent SNR
levels compared to shorter lengths, indicating enhanced error-
correction efficacy with larger N. For example, at around 2

dB, the N = 1024 curve achieves a BER near 104, whereas
N = 128 is closer to 1073, underscoring the benefits of
bigger block sizes in enhancing reliability.

Figure 4 (b) shows how well polar codes perform in terms
of BLER with different block lengths N when used over
a noisy channel, based on the SNR measured in decibels.
Each curve demonstrates that, for a fixed SNR, increasing
the block length N yields a lower BLER, indicating stronger
error-correcting capability. At low SNR values (around 0 dB
to 1.5 dB), all code lengths exhibit relatively high BLERs
equal to 1. As SNR increases beyond 1.5 dB, the BLER for
longer codes (e.g., N = 1024) drops more rapidly, achieving
values below 1072 near 3 dB. Conversely, shorter codes like
N = 128 sustain BLERs near 1072 even at 3 dB, indicating
the drawback of diminished length. This figure demonstrates
that polar codes perform substantially better with extended
block lengths, particularly at moderate to high SNR, where
the error count is markedly diminished for large N.

Figure 4 (c) shows how well polar codes perform in terms
of FER with different block lengths N when used over
a noisy channel, based on the SNR measured in decibels.
Each curve demonstrates that, for a fixed SNR, increasing
the block length N yields a lower FER, indicating stronger
error-correcting capability. At low SNR values (around 0 dB
to 1 dB), all code lengths exhibit relatively high FERs. As
SNR increases beyond 1 dB, the FER for longer codes (e.g.,
N = 1024) drops more rapidly, achieving values below 1073

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

BER

100

e N =128 |
- = N = 256 |
= —e— N =512 |
B —+— N = 1024 |
E | | | | | | | E
O 05 1 15 2 25 3
SNR (dB)
(a)
\ \ \
— % %]
| —eo— N = 128
= N = 256
| e N = 512 E
| —— N = 1024 \ !
! . . . \ \ \ |
O 05 1 15 2 25 3
SNR (dB)

(b)

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

\
1.5
SNR (dB)

©)

Fig. 4: Performance analysis of the proposed CNN-based SCL decoder for the various code length with list size L = 32.

near 3 dB. Conversely, shorter codes like N = 128 sustain
FERs near 102 even at 3 dB, indicating the drawback of
diminished length. This figure demonstrates that polar codes
perform substantially better with extended block lengths,
particularly at moderate to high SNR, where the error count
is markedly diminished for large V.

C. Comparative Analysis

This section presents a detailed comparative analysis of the
proposed CNN-based SCL decoder and existing decoders.
We compared the CNN-based SCL decoder with SC[32],
BP[33], SCAN[34], SSC[35], and SCL[36] (L = 32). Figure
5(a) presents a comparative analysis of the BER for different
decoders versus the SNR for the (1024, 512) Polar Code.
This clearly shows that the proposed CNN-based SCL de-
coder with a list size of 32 outperforms all the other decoders.
At 2 dB SNR, the CNN-based SCL decoder reaches BER
levels below 1073, showing high efficiency in decoding
under noise. However, at higher SNR values, the CNN-based
SCL decoder achieves a BER as low as 1079, indicating
excellent performance even in low-noise environments. The
proposed CNN-based SCL decoder with a list size of 32
demonstrates the best BER performance across all SNRs,
making it the most robust among the compared decoders,
particularly in low-noise scenarios. This comparative analysis
clearly indicates that advanced CNN-based SCL decoders

offer substantial improvements in BER, especially as the
SNR increases.

Figure 5(b) presents a comparative analysis of the BLER
for different decoders versus the SNR for the (1024, 512)
Polar Code. This clearly shows that the proposed CNN-based
SCL decoder provides the best BLER performance across all
SNR values, outperforming all the other decoders. At 2.5dB
SNR, the proposed CNN-based SCL decoder achieves an
BLER below 107!, demonstrating superior noise resilience.
The CNN-based SCL decoder, on the other hand, can reach
BLER levels low than 10~2 when the SNR is higher. This
shows that it is effective at fixing block errors, even in places
with little noise. The proposed CNN-based SCL decoder with
a list size of 32 achieves the lowest BLER across all SNR
values, demonstrating its superior performance and making
it the most effective for communication systems where low
block error rates are critical. This comparative analysis
demonstrates that an advanced CNN-based SCL decoder is
highly effective in reducing BLER, especially at higher SNR
levels. This decoder is best suited for applications where
maintaining low BLER is critical for reliable communication.

Figure 5(c) presents a comparative analysis of the FER
for different decoders versus the SNR for the (1024, 512)
Polar Code. This clearly shows that the proposed CNN-based
SCL decoder provides the best FER performance across all
SNR values, outperforming all the other decoders. At 1.5dB
SNR, the proposed CNN-based SCL decoder achieves an

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

100

102

- \ -
B A ’
i . i
\
— N —
E S -
- . .
|— \ —]
\

— \ —
- N N
- N -
. L} -
| —o— sC AN .
| —— BP \\\ 5
H —@— SCAN o .
| —— SsC N .
i —4— SCL (L = 32) \' =
| — @ - CNN SCL (L = 32) |

: : \ \ i

0 1 2 3

SNR (dB)

\ \ =
— I I -
- e i
| . BP i

—®— SCAN

 —*— SSC |
| —— SCL (L = 32) .
| - @ - CNN SCL (L = 32) s
| | | | | i

0 1 2 3

SNR (dB)

(b)

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

\ \
100 = ——
i \Q\
—1 L L}
10 : \\\
=
&
1072 E
| —e— sc
I BP
| —e— SCAN
1073 | —— s8¢
| —e— SCL (L = 32)
| — @ - CNN SCL (L = 32)

0 1

Fig. 5: Comparative analysis of the proposed CNN-based SCL decoder for the (1024,512) polar code and other existing

decoders

FER below 107!, demonstrating superior noise resilience.
The CNN-based SCL decoder, on the other hand, can reach
FER levels as low as 1073 when the SNR is higher. This
shows that it is effective at fixing frame errors, even in places
with little noise. The proposed CNN-based SCL decoder with
a list size of 32 achieves the lowest FER across all SNR
values, demonstrating its superior performance and making
it the most effective for communication systems where low
frame error rates are critical. This comparative analysis
demonstrates that an advanced CNN-based SCL decoder is
highly effective in reducing FER, especially at higher SNR
levels. This decoder is best suited for applications where
maintaining low frame error rates is critical for reliable
communication.

D. Comparative Discussion

Table I compares BER analysis of three decoding methods:
SC, SCL (L = 32), and the new CNN-based SCL decoder
with L = 32, using various code lengths and SNR values.
Increasing the SNR from 1 dB to 3 dB significantly lowers
the BER for all decoders, regardless of the code length. The
table demonstrates that, for all code lengths N, the classical
SC decoder exhibits the highest BER at each SNR, while
the SCL decoder (L = 32) consistently lowers the BER
by roughly an order of magnitude. The CNN-enhanced SCL
further reduces the BER, with the margin of improvement

2

SNR (dB)

(©

TABLE I: BER analysis of proposed decoder with SC and

SCL decoder for various code length

N | SNR (dB) BER
sC SCL. CNN-based
(L =32) | SCL (L = 32)
1 0.786 0.0725 0.0638
128 2 0.0864 | 0.00914 0.00074
3 0.00794 | 0.000532 0.000062
] 0.547 0.0614 0.0584
256 2 0.0736 | 0.0072 0.00059
3 0.00674 | 0.000214 0.000037
T 0.354 0.0536 0.0494
512 2 0.0437 | 0.00347 0.00043
3 0.00398 | 0.000081 0.000007
I 0.267 0.056 0.0407
1024 2 0.0213 | 0.0016 0.000381
3 0.00153 | 0.000035 0.000005

becoming more pronounced at higher SNRs. For instance, at
SNR = 3 dB with N = 1024, BER falls from 3.5 x 107°
(SCL) to 5 x 10~% (CNN-SCL). As code length increases
from 128 to 1024, all decoders experience a drop in BER at
a given SNR; however, the relative gain from adding CNN
layers remains substantial across lengths.

Table II compares BLER analysis of three decoding meth-
ods: SC, SCL (L = 32), and the new CNN-based SCL
decoder with L = 32, using various code lengths and SNR
values. Increasing the SNR from 1 dB to 3 dB significantly

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

TABLE II: BLER analysis of proposed decoder with SC and
SCL decoder for various code length

N SNR (dB) BLER
sC SCL CNN-based
(L =32) | SCL (L = 32)
1 1 1 1
128 2 1 1 0.7912
3 0.9248 0.10932 0.01753
1 1 1 1
256 2 1 0.9567 0.6220
3 0.8974 0.0814 0.00958
1 1 1 1
512 2 1 0.8897 0.4887
3 0.8514 0.0510 0.00788
1 1 1 1
1024 2 1 0.8059 0.3230
3 0.7915 0.0357 0.0057

lowers the BLER for all decoders, regardless of the code
length. The SC decoder suffers the highest BLER, while
SCL provides a marked reduction, e.g., for N = 512 at
2 dB, SCL FER is 0.0563 versus SC’s 0.514. Introducing
CNN layers yields further BLER gains; at SNR = 2 dB with
N = 256, BLER drops from 0.0738 (SCL) to 0.0429 (CNN-
SCL). Overall, CNN-SCL decoding has the lowest BLER in
all situations, especially at moderate-to-high SNRs, where it
cuts down frame errors significantly compared to traditional
SCL.

TABLE III: FER analysis of proposed decoder with SC and
SCL decoder for various code length

N | SNR (dB) FER
sC SCL CNN-based
(L =32) | SCL (L = 32)
I 0.92 0.875 0.631
128 2 0.828 | 0.0924 0.058
3 0.0805 | 0.00768 0.0015
i 0915 0.742 0562
256 2 0.645 | 0.0738 0.0429
3 0.0596 | 0.00578 0.00092
T 0.90 0.583 0447
512 2 0514 | 0.0563 0.0312
3 0.0414 | 0.00342 0.000723
I 0.89 0437 0319
1024 2 03543 | 0.0401 0.023
3 0.0287 | 0.00123 0.000512

Table IIT compares FER analysis of three decoding meth-
ods: SC, SCL (L = 32), and the new CNN-based SCL
decoder with L = 32, using various code lengths and SNR
values. Increasing the SNR from 1 dB to 3 dB significantly
lowers the FER for all decoders, regardless of the code
length. The SC decoder suffers the highest FER, while
SCL provides a marked reduction, e.g., for N = 512 at
2 dB, SCL FER is 0.0563 versus SC’s 0.514. Introducing
CNN layers yields further FER gains; at SNR = 2 dB
with N = 256, FER drops from 0.0738 (SCL) to 0.0429
(CNN-SCL). Overall, CNN-SCL decoding has the lowest
frame error rate in all situations, especially at moderate-to-
high signal-to-noise ratios, where it cuts down frame errors
significantly compared to traditional SCL.

E. Computational Complexity Analysis

Figure 6 The figure illustrates the complexity analysis of
various polar code decoders in terms of average decoding
time (in milliseconds) versus code length. It compares the

proposed CNN-based SCL decoder (L = 32) against tra-
ditional decoding methods including SC, BP, SCAN, SSC,
and the conventional SCL (L = 32) decoder. As shown, the
SC decoder demonstrates the lowest complexity across all
code lengths, followed by SSC. While the traditional SCL
decoder exhibits a steep increase in decoding time with larger
code lengths due to its list-based processing, the CNN-based
SCL decoder significantly reduces decoding time, especially
for longer code lengths, maintaining competitive efficiency
while preserving decoding performance. This highlights the
advantage of leveraging convolutional neural networks to ac-
celerate list decoding without compromising error-correction
capability.

V. CONCLUSION

Decoders play a crucial role in the construction of polar
code. Keeping this in mind, we presented an advanced
CNN-based SCL decoder for polar code in this article.
In terms of decoding, the proposed decoder outperformed
traditional SCL decoders. The proposed approach makes use
of the CNN’s extraordinary feature extraction capabilities
to improve the decoding process, ensure resistance against
channel noise, and improve the error correction capability.
Extensive simulations revealed that our CNN-based SCL
decoder outperformed traditional SCL decoders in terms
of BER, BLER and FER, even under challenging channel
conditions. These findings imply that combining deep learn-
ing mechanisms with conventional decoding algorithms can
significantly improve communication systems, allowing more
effective and reliable data transmission. To make machine
learning-based decoders work better and more useful in the
real world, more research could be conducted on other neural
network models and ways to make the network structure
more efficient.

AUTHOR CONTRIBUTIONS STATEMENT

Dr. Venkatrajam Marka developed the project,
which involved permission, visualization, supervision, and
management.

Sunil Y. Kshirsagar created the approach, conducted
the study, authored the paper, performed proofreading, and
prepared the original manuscript.

All the authors have examined and approved the final
version of the manuscript.

DATA AVAILABILITY:

The datasets used and/or analyzed during the current study
are available from the corresponding author upon reasonable
request.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on information Theory, vol. 55, no. 7, pp. 3051-
3073, 2009.

[2] I Tal and A. Vardy, “List decoding of polar codes,” IEEE transactions
on information theory, vol. 61, no. 5, pp. 2213-2226, 2015.

[3] A. Elkelesh, M. Ebada, S. Cammerer, and S. Ten Brink, “Belief
propagation list decoding of polar codes,” IEEE Communications
Letters, vol. 22, no. 8, pp. 1536-1539, 2018.

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Average Time (ms)

.10°

e

BP

SCAN

SSC
SCL (L=32)

N

—— CNN-based SCL, LL=32

p—d

l
0 500

l
1,000

l l
1,500 2,000

Code Length

Fig. 6: Comparison of the computational complexity of the proposed CNN-based SCL decoder and other decoders

Y. Liao, S. A. Hashemi, H. Yang, and J. M. Cioffi, “Scalable polar code
construction for successive cancellation list decoding: A graph neural
network-based approach,” IEEE Transactions on Communications,
vol. 71, no. 11, pp. 6231-6245, 2023.

H. Liu, L. Zhang, W. Yan, and Q. Ling, “Neural-network-assisted polar
code decoding schemes,” Applied Sciences, vol. 12, no. 24, p. 12700,
2022.

J. A. Sinchez-Rodriguez, A. M. Martinez-Enriquez, and M. Lara, “A
fully connected neural network for polar channel decoding,” in 2023
20th International Conference on Electrical Engineering, Computing
Science and Automatic Control (CCE). 1EEE, 2023, pp. 1-6.

C. Wen, J. Xiong, L. Gui, Z. Shi, and Y. Wang, “A novel decoding
scheme for polar code using convolutional neural network,” in 2019
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB). 1EEE, 2019, pp. 1-5.

Y. Shu, H. Zhao, and C. Han, “A sparse neural network decoder for
non-binary polar codes,” in 2022 IEEE 33rd Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC). IEEE, 2022, pp. 253-258.

X. Zhang, Y. Qiu, W. Kong, J. Cui, and Y. Liu, “Bp flip decoding
algorithm of polar code based on convolutional neural network,”
in 2022 IEEE/CIC International Conference on Communications in
China (ICCC Workshops). 1EEE, 2022, pp. 444-449.

J. Seo, J. Lee, and K. Kim, “Decoding of polar code by using deep
feed-forward neural networks,” in 2018 international conference on

(11]

[12]

[13]

[14]

[15]

[16]

[17]

computing, networking and communications (ICNC). 1EEE, 2018,
pp- 238-242.

Y. Lu, M. Zhao, M. Lei, C. Wang, and M. Zhao, “Deep learning aided
scl decoding of polar codes with shifted-pruning,” China Communi-
cations, vol. 20, no. 1, pp. 153-170, 2023.

H. Feng, H. Xiao, S. Zhong, Z. Gao, T. Yuan, and Z. Quan, “Deep-
learning-aided fast successive cancellation decoding of polar codes,”
Journal of Communications and Networks, vol. 26, no. 6, pp. 593-602,
2024.

C.-F. Teng, C.-H. D. Wu, A. K.-S. Ho, and A.-Y. A. Wu, “Low-
complexity recurrent neural network-based polar decoder with weight
quantization mechanism,” in ICASSP 2019-2019 IEEE international
conference on acoustics, speech and signal processing (ICASSP).
IEEE, 2019, pp. 1413-1417.

B. Dai, C. Gao, F. C. Lau, and Y. Zou, “Neural network aided path
splitting strategy for polar successive cancellation list decoding,” IEEE
Transactions on Vehicular Technology, vol. 72, no. 7, pp. 9597-9601,
2023.

B. Sun, H. Dai, J. Sun, and X. Wei, “Research on intrusion detection
models with multi-head attention mechanism based on graph neural
network.” Engineering Letters, vol. 33, no. 5, 2025.

J. Zhang and Y. Zhang, “Infrared small target detection with uav based
on convolutional neural networks.” Engineering Letters, vol. 33, no. 5,
2025.

M. Rong, G. Zhang, X. Guo, Q. Sun, F. Hu, and H. Qi, “Smix-gnn: A

Volume 52, Issue 9, September 2025, Pages 3191-3206

TAENG International Journal of Computer Science

powerful graph neural network enhanced by aggregating graph mixup
and k-reciprocal nearest neighbors.” Engineering Letters, vol. 33,
no. 5, 2025.

[18] F. Zhu, X. Yang, J. Yang, J. Yang, M. Zhang, and S. Liu, “Design
of digital fir filter based on long short-term memory neural network.”
Engineering Letters, vol. 32, no. 10, 2024.

[19] Y. Zhao, Z. Dai, F. Li, X. Zhu, and C. Ran, “A new attention-based
neural network for the identification of non-line-of-sight signals in data
from global navigation satellite systems.” Engineering Letters, vol. 32,
no. 10, 2024.

[20] K. A. Ardisa, W. A. E. Prabowo, and S. Rustad, “Implementation
of convolutional neural network method for detecting vegetables as
recommendation for vegetarian food recipes,” in In Lecture Notes
in Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science, 2022, pp. 83-88.

[21] Y. Su, X. Wang, W. Tai, and J. Zhou, “Fault-tolerant quantized control
for switched neural networks with actuator faults and dynamic output
quantization,” JAENG International Journal of Applied Mathematics,
vol. 55, no. 1, pp. 7-15, 2025.

[22] L. Duan, Z. Zhang, and Z. Li, “Finite-time anti-synchronization
for memristive neural networks with time-varying delays,” IAENG
International Journal of Applied Mathematics, vol. 55, no. 3, pp. 611—
617, 2025.

[23] X. Feng and J. Gao, “Predefined-time synchronization of fractional-
order memristive neural networks with time-varying delay,” JAENG
International Journal of Applied Mathematics, vol. 55, no. 4, pp. 763—
767, 2025.

[24] Z. Li, L. Wang, H. Lv, and Z. Wang, “Adaptive neural network
control for switched stochastic pure-feedback nonlinear systems with
incomplete measurements,” JAENG International Journal of Applied
Mathematics, vol. 55, no. 5, pp. 1014-1027, 2025.

[25] L. Xiang,J. Cui, J. Hu, K. Yang, and L. Hanzo, “Polar coded integrated
data and energy networking: A deep neural network assisted end-
to-end design,” IEEE Transactions on Vehicular Technology, vol. 72,
no. 8, pp. 11047-11052, 2023.

[26] V. Miloslavskaya, Y. Li, and B. Vucetic, “Neural network-based adap-
tive polar coding,” IEEE Transactions on Communications, vol. 72,
no. 4, pp. 1881-1894, 2023.

[27] N. Doan, S. A. Hashemi, and W. J. Gross, ‘“Neural successive
cancellation decoding of polar codes,” in 2018 IEEE 19th international
workshop on signal processing advances in wireless communications
(SPAWC). IEEE, 2018, pp. 1-5.

[28] S. Y. Kshirsagar and V. Marka, “Polar code construction by estimating
noise using bald hawk optimized recurrent neural network model,”
Scientific Reports, vol. 15, no. 1, p. 23387, 2025.

[29] C.-F. Teng, A. K.-S. Ho, C.-H. D. Wu, S.-S. Wong, and A.-Y. A.
Wu, “Convolutional neural network-aided bit-flipping for belief prop-
agation decoding of polar codes,” in ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2021, pp. 7898-7902.

[30] C.-F. Teng and A.-Y. A. Wu, “Convolutional neural network-aided
tree-based bit-flipping framework for polar decoder using imitation
learning,” IEEE Transactions on Signal Processing, vol. 69, pp. 300—
313, 2020.

[31] Y. Qin and F. Liu, “Convolutional neural network-based polar decod-
ing,” in 2019 2nd World Symposium on Communication Engineering
(WSCE). 1EEE, 2019, pp. 189-194.

[32] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency sc polar
decoder architectures,” in 2012 IEEE International conference on
communications (ICC). 1EEE, 2012, pp. 3471-3475.

[33] Y. Yu, Z. Pan, N. Liu, and X. You, “Belief propagation bit-flip decoder
for polar codes,” IEEE Access, vol. 7, pp. 10937-10946, 2019.

[34] L. Zhang, Y. Sun, Y. Shen, W. Song, X. You, and C. Zhang, “Efficient
fast-scan flip decoder for polar codes,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). 1EEE, 2021, pp. 1-5.

[35] P. Giard and A. Burg, “Fast-ssc-flip decoding of polar codes,” in
2018 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW). 1EEE, 2018, pp. 73-77.

[36] M.-C. Chiu and Y.-S. Su, “Design of polar codes and pac codes for
scl decoding,” IEEE Transactions on Communications, vol. 71, no. 5,
pp. 2587-2601, 2023.

Volume 52, Issue 9, September 2025, Pages 3191-3206

