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Abstract—NAND flash-based storage systems are expected to
become the next generation of primary storage devices due
to several key advantages inherent to NAND flash memory.
However, the limited endurance of NAND flash remains a major
obstacle to widespread adoption. To mitigate this issue, wear
leveling has been extensively researched, particularly for its
effectiveness in managing block erasure counts.

This paper presents a novel garbage collection approach, the
X-Mean Garbage Collection (X-Mean GC) scheme, which is
simple to implement and requires minimal system resources.
The X-Mean GC scheme enhances endurance by dynamically
adjusting a threshold to effectively limit the erasure count of
each block. Moreover, it can be seamlessly integrated with other
garbage collection algorithms. When combined with four existing
algorithms, the X-Mean GC scheme achieves an impressive
lifetime improvement of up to 133.35% compared to the original
methods.

Index Terms—Garbage collection, NAND flash memory,
wear-leveling.

I. INTRODUCTION

With advancements in cloud storage and big data
technologies [1], [2], the digital universe is expanding rapidly,
driving an urgent demand for high-speed, high-capacity
storage devices. However, traditional hard disk drives (HDDs)
face inherent mechanical limitations that restrict improvements
in access speed. Meanwhile, dynamic random-access memory
(DRAM) stores data by charging and discharging capacitors,
but as DRAM cells shrink, their ability to retain electric
charge diminishes, leading to reliability challenges that hinder
large-scale integration [3], [4].

In contrast, NAND flash-based storage systems offer several
advantages, including low power consumption, minimal noise,
faster access speeds, and improved seismic performance
[5]–[8]. Unlike HDDs, which rely on magnetic media,
NAND flash utilizes floating-gate field-effect transistors. Data
programming occurs when electrons are injected into the
floating gate of each memory cell via Fowler–Nordheim
tunneling, while erasure is achieved by releasing these
electrons, thereby enhancing reliability. However, each
program/erase (P/E) cycle degrades the tunnel oxide layer in
the transistors, significantly limiting NAND flash’s lifespan
compared to magnetic storage.
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This endurance challenge [9] becomes even more
pronounced in high-capacity NAND flash systems, where
increasing cell densities and thinner tunnel oxide layers
accelerate wear. For example, early NAND flash storage
systems using single-level cells (SLCs) could endure
approximately 100,000 P/E cycles, whereas modern
triple-level cell (TLC) NAND flash is typically limited
to around 2,500 P/E cycles [10], [11].

Wear-leveling techniques are designed to address endurance
challenges and ensure that NAND flash-based storage systems
maintain stable performance throughout their lifespan. A key
metric for evaluating wear-leveling effectiveness is the erasure
count of frequently accessed (hot) blocks. As a block’s
erasure count approaches the upper limit of program/erase
(P/E) cycles, errors may accumulate within the stored
data, compromising reliability. The fundamental principle of
wear-leveling is to distribute write and update operations
evenly across the NAND flash memory, thereby preventing
premature wear of individual memory cells [12]–[16].

Recent studies on wear-leveling [17]–[19] commonly
classify data as hot or cold based on access frequency. Memory
cells storing hot data experience accelerated wear compared
to those holding cold data, leading to uneven erasure counts
across blocks. To address this imbalance, hot data is frequently
migrated to blocks with lower erasure counts. However,
such approaches introduce additional read, write, and erase
operations, which can degrade both system performance and
endurance. These limitations primarily arise from garbage
collection algorithms that lack adaptive intelligence. Given the
pivotal role of garbage collection in wear-leveling, designing
an optimized garbage collection algorithm is essential to
achieving a balance between endurance and performance.

The out-of-place update mechanism in NAND flash-based
memory [20] generates numerous invalid pages during
operation. Garbage collection reclaims storage space by
erasing blocks containing these invalid pages [21]. To
minimize overhead, traditional approaches select blocks with
the fewest valid pages as victim blocks for garbage collection
[22]. This method reduces garbage collection response time
but does not effectively support wear-leveling.

Several algorithms attempt to balance garbage collection
efficiency with wear-leveling. The cost-benefit (CB) algorithm
and cost-age-time (CAT) algorithm [23] incorporate block
age information to differentiate between hot and cold data.
While these methods improve wear-leveling, they require
additional hardware timers, imposing significant overhead on
NAND flash-based storage systems. Other approaches, such
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as the write-order-based garbage collection (WO GC) [24]
and the wear-conscious garbage collection scheme (WECO)
[25], integrate erasure counts by calculating scores based on
a block’s individual erasure count (Nerase) relative to the
maximum erasure count among all blocks (Max.Nerase).
These scores prioritize garbage collection, but the non-linear
relationship between score and Nerase results in a small
number of hot blocks accumulating disproportionately high
erasure counts, ultimately undermining wear-leveling efforts.

Although existing research has mitigated wear-leveling
issues to some extent, no effective method explicitly limits
erasure counts. Algorithms that consider erasure counts
[26], [27] suffer from non-linear score-to-erasure count
relationships, allowing some blocks to experience excessive
wear. This lack of precise control disrupts wear-leveling and
reduces NAND flash system stability. Since erasure counts
continuously evolve, fixed thresholds for restricting erasure
counts are impractical. Instead, an adaptive reference point
for dynamically managing erasure counts is both necessary
and crucial for enhancing NAND flash endurance.

In this paper, we propose a novel wear-leveling scheme,
the X-mean garbage collection (X-mean GC) scheme. This
scheme involves building a candidate pool, where candidate
blocks are selected based on the average erasure count of all
blocks in NAND flash-based memory. The average erasure
count is updated in real-time, ensuring that the candidate pool
consistently maintains a sufficient number of candidates. To
achieve effective wear-leveling, we limit the erasure counts of
candidate blocks within the pool to a dynamic threshold that
adapts to current conditions. The main contributions of this
manuscript are as follows:

• We introduce a novel wear-leveling scheme, X-mean GC,
based on a dynamically maintained candidate pool.

• We integrate X-mean GC with four existing garbage
collection algorithms, each showing improved
wear-leveling performance after modification.

• We analyze the impact of the parameter X on both
wear-leveling performance and system overhead, and
identify an optimized X value based on a comprehensive
evaluation.

The remainder of this paper is organized as follows:
Section II provides a brief review of related work on existing
wear-leveling schemes. Section III describes the architecture
of the proposed X-mean GC scheme. Section IV is divided into
four parts: Section IV-A outlines the experimental simulation
environment; Section IV-B introduces the lifetime model used
to evaluate the lifespan of NAND flash-based storage systems
under various wear-leveling strategies; Sections IV-C and
IV-D present the experimental results focused on different
objectives. Finally, we conclude our work in Section V.

II. RELATED WORK

The purpose of X-mean GC is to build a new mechanism to
strictly restrict the erasure count of each block among NAND
flash-based memory to a reasonable bound. In this section, we

briefly describe the existing garbage collection algorithms and
wear-leveling schemes.

As the object of garbage collection is block [28], a
good garbage collection algorithm should take different
characteristics of blocks into full consideration. Firstly, the
ratio of valid page in a block influences the efficiency of
the garbage collection. The garbage collection course of a
block with more valid pages involves more read and write
operations and certainly consumes more time. As a result, less
free space is released in this course. Secondly, the P/E cycles
of every block are finite. A high erasure count of block means
this block is nearly worn out and impacts the performance
of NAND flash-based storage system. Thirdly, old age blocks
which haven’t been updated for a long time will most probably
not be updated in the near future because most data have time
locality. Data in old age blocks can also be called cold data and
they always contain more errors compared with hot data. In
the meantime, avoiding cold blocks being released for a long
time will enlarge the difference of the erasure count of hot
blocks, which is harmful to wear-leveling. These guidelines
can also be found in the researches we introduce below.

In early garbage collection algorithms, only the ratio of valid
page is considered. Wu et al. [29] proposed a greedy garbage
collection scheme in 1994. In greedy garbage collection
scheme, the garbage collection algorithm only select the block
with least valid pages to be the victim. Greedy is a simple and
efficient solution, but it is far away from a good wear-leveling
performance. The cost benefit (CB) garbage collection scheme
[30] combines age information and ratio of valid page together,
and the score of a block is calculated according to the two
factors. Garbage collection course will erase the block with
the highest score when the number of free blocks is below
the assigned threshold. In order to calculate the age, a timer
to record the system time is needed. The age of a block is
calculated by the current time minus the previous update time.
As the lifetime of a NAND flash-based storage system can
reaches several years, the ages of blocks may be a series
of huge numbers which occupy a lot of memory space and
DRAM space for storing them. Despite the defects above, the
CB scheme shows good performance in efficiency and lifetime.

The cost-age-times (CAT) garbage collection algorithm [31]
adds the erasure count into its expression of the score which
is shown in Table I. Owe to the effect of the erasure count,
the CAT algorithm performs better in terms of lifetime than
the CB scheme.

The fast and efficient garbage collection (FeGC) algorithm
[23] takes the sum of all invalid pages’ age in a block as
the score to choose the victim block, which is an efficient
and novel garbage collection scheme. The way FeGC uses is
helpful to raise the accuracy of distinguishing old blocks and is
certainly good to prolong NAND flash-based storage system’s
lifetime. However, the granularity of age information used in
FeGC is smaller and thus the age information occupies more
memory space than CB and CAT.

Swap-aware garbage collection policy (SG) [32] is a
garbage collection policy used in flash-memory-based swap
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system. Flash-memory-based swap system treats NAND flash
memory as swap area and this policy can alleviate the huge
performance gap between DRAM and HDD. However, this
brings in a lot of I/O operations which adds a great burden
to the NAND flash memory. SG takes full account of the
characteristics of NAND flash and shows a good performance
in terms of wear-leveling.

Swap-aware garbage collection policy (SCATA) [33] and
swap time-aware garbage collection policy (STGC) [34] both
take the swap time of the swap system into account. Due to
this new characteristic, they can reduce the time consumption
of garbage collection effectively with good wear-leveling
performance simultaneously.

As the key role of the erasure count information playing in
wear-leveling, the wear-conscious garbage collection (WECO)
scheme [25] inclines more towards it. As shown in Table
I, there are more parameters related to the erasure count
in the expression of the score. WECO takes not only the
erasure count of a single block into account, but also takes the
Maximum and Minimum erasure count among all blocks in
NAND flash-based memory into consideration. Thus, WECO
could control the intensity of wear-leveling depending on
current wear conditions. Comparing with the greedy algorithm,

this scheme makes a good trade-off between the
performance and the wear-leveling. The write order-based
garbage collection (WO-GC) scheme [24] is an advanced
garbage collection algorithm which take all guidelines into
account. Different from other algorithms considering the age
information, WO-GC doesn’t need an extra timer. In the
WO-GC scheme, age information is tracked by WSN (write
sequence number), which means the order to receive the latest
write request for the block. Owe to WSN, WO-GC performs
better in power consumption and memory space occupation.

Adaptive wear-leveling [35] keeps a table to record erasure
counts of all data blocks, and this list is used to identify
the blocks that have hot or cold data as well. Adaptive
wear-leveling detects the current status of the difference
between the maximum erasure count and the minimum
erasure count among all data blocks. If the difference
exceeds the threshold, adaptive wear-leveling will be triggered.
Adaptive wear-leveling depends on cold data migrations to
achieve prolonging lifetime, so it will lead to bigger write
amplification.

DWARAM [36] divides the non-volatile memory (NVM)
pages into different wear ranges according to their write count.
Every wear range has its own maximum write count and
minimum write count, and all pages’ write counts in this
range fall between these two extremes. The divided ranges can
reduce the retrieve overhead and performs better response time
of garbage collection. There is a limit to the number of pages
in a range in order to keep the retrieve course efficient enough.
If there is a range exceeds the limit number of pages, this
range will be split into two new ranges according to the write
counts’ median of the original range. If there is a page’s write
count bigger than all range’s maximum write count, a new
range will be created and its maximum write count equals this

page’s write count. DWARAM can achieve good wear-leveling
performance, but it doesn’t take the ratio of valid page and the
age information into account.

Similar to DWARM, runtime system approach [37] also
divides memory space into different ranges–generational
heaps. Generational garbage collectors divide all blocks into
young generation heap, hybrid generational heap and old
generation heap. In order to reduce write amplification and
relieve write traffic, young generation heap is stored in DRAM
temporarily. Once the garbage collection course is triggered,
the controller of the device will find the region with the
maximum write count among the generational heaps, then
valid data will be migrated to regions with smaller write count.
It is worth noting that the wear-leveling course and the garbage
collection course are executed at the same time. This will not
bring in extra page writes.

Masaru Nakanishi et al. [38] design an application-oriented
Wear-leveling algorithm for NAND flash-based storage
system. Their algorithm needs to record overwrite count of
each sector (WEsector) and hold overwrite count of each page
(WEth). When NAND flash-based storage system receives a
write request, the written page will compare its maximum
WEsector and (WEth). If the latter one is bigger than the
former one, the write request will be executed in this page.
Otherwise, WEth of this page will be added by five and
the write request will be assigned to another page. In this
algorithm, fine-gained overwrite count information occupies
a lot of storage space and the wear-leveling performance in
some extreme cases is debatable.

File-aware garbage collection algorithm (FaGC+) [39] is a
novel garbage collection algorithm that divides data into four
types. It can distinguish hot data and cold data according
to the parameter “h” meticulously. This algorithm shows
good wear-leveling degree and low overhead under the Zipf
distribution.

Besides the researches mentioned above, data compression
technique [40] and update data in DRAM [41]–[43] can also
prolong lifetime of NAND flash-based storage system. Their
main purpose is to reduce the amount of data access in NAND
flash-based storage system, but the unbalance of erasure counts
is still a problem they have to face. In addition, some previous
works such as [44] focus on the large-scale cluster memory
optimization.

III. X-MEAN GARBAGE COLLECTION SCHEME

A. OVERVIEW

As shown in Figure 1, there are two steps in X-mean GC.
Firstly, all used blocks will be filtrated by X-mean GC and
then be joined in the candidate pool. Secondly, victim block
is selected by X-mean GC according to the age or the ratio of
valid page factor from the candidate pool. We can see step one
and step two are two independent steps, they have no effect
on each other. The algorithm chosen by the step two is very
flexible. We can choose either the existing algorithm or create
a new algorithm.
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TABLE I: Summary of garbage collection schemes. u: percentage of valid page, Nerase: erasure count, age: time since last
data update, Sk: page sequence number of the kth page

GC algorithm Block recycling policy Block allocation policy Characteristic

Greedy
Choose the block with the lowest score

score = u
FIFO Short latency

Cost-benefit (CB)
Choose the block with the highest score

score = age(1−u)
u

FIFO
Short latency

Age considered

Cost-age-times (CAT)
Choose the block with the lowest score

score = u
1−u

× 1
f(age)

×Nerase

Youngest block first

Short latency

Age considered

Wear leveling considered

Swap-aware

garbage collection (SG)

Choose the block with the lowest score

score = 1
u+n×pages

× 1
Nerase

× f(age)
Not mentioned

Short latency

Age considered

Erase count considered

Wear leveling considered

FeGC
Choose the block with the highest score∑n

i=1 agei
Adaptive youngest block

Short latency

Age considered

Write order based

garbage collection (WO GC)

Choose the block with the lowest score

score = u
1−u

× 1
MaxWSN−WSN

MaxWSN

× Nerase
MaxNerase

FIFO

Short latency

Age considered

Erase count considered

FaGC+

Choose the block with the highest score

score =
∑

i = 0n(Di)

DI = Sk+1 − Sk

According to the value of h

Age considered

Erase count considered

Wear leveling considered

FIGURE 1. Victim block screening process of X-mean GC.

The overhead of step one is only a few registers of NAND
flash-based storage system which are used to track the average
erasure count of all blocks and the number of erase operation.
The average erasure count and the number of erase operation
of a new NAND flash-based storage system are both zero. As
shown in Algorithm 1, the average erasure count is added by
one whenever the number of the erase operation reaches the
sum of blocks, then the number of erase operation is cleared.

The overhead of step two is based on the algorithm chosen
and will not be expanded here.

Algorithm 1 Calculation of Threshold

Require: number of erase operation, the average erasure
count, X .

Ensure: threshold
0: if an erase operation comes then
0: number of erase operation← number of erase operation

+ 1;
0: while number of erase operation = sum of blocks do
0: average erasure count ← average erasure count + 1;
0: number of erase operation ← 0;
0: end while
0: threshold ← average erasure count + X;
0: end if=0

B. THE CANDIDATE POOL
As discussed in Section I, the reference object of the

threshold of the erasure count should be variable. The most
ideal wear-leveling is that all blocks have the same erasure
count that equals to the average erasure count of all blocks,
so we choose the average erasure count as the reference
object. However, the erasure count of a single block is always
floating in practical use. If we can limit the fluctuation in an
appropriate range which is close to the average erasure count,
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TABLE II: Flash memory information

Flash memory information

Block size 256KB

Page per block 64

Page size 4KB

Read latency 25us/page

Write latency 200us/page

Erase latency 2ms/block

TABLE III: Flash memory information

Write request

ratio

Total request

count

Average request

size (KB)

Financial 76.80% 5334987 4.38

Pro 89.20% 5585886 10.03

Systor 25.30% 2761269 24.42

a good wear-leveling performance can be expected. According
to the analysis above, we decide to add the average erasure
count by a constant X as the threshold of the erasure count.
There are two extreme cases of X:

• X is too big that it can’t not restrict the erasure count
efficiently;

• X is too small that every erase operation will bring in a
lot of page copies because there are little blocks suitable
for garbage collection and they always have a high ratio
of valid page.

In this paper, we set X to 10, as will be explained in Section
IV-D. We call the blocks, whose erasure count is equal to or
smaller than the threshold, candidate blocks. Candidate blocks
compose candidate pool and wait for the next step of X-mean
GC.

IV. EVALUATION

In this section, we evaluate the effectiveness of X-mean GC
and answer the following questions:

• How does X-mean GC behave against other garbage
collection schemes?

• How much does X-mean GC prolong the device lifetime
by?

• How does the value of X affect the performance of
X-mean GC?

We will firstly describe the simulation environment and
the lifetime model, and then evaluate X-mean GC with three
benchmarks.

A. SIMULATION ENVIRONMENT

Since our work concentrates on wear-leveling, an
appropriate simulation software is needed. We select a widely
used NAND flash simulation software called flashsim [45]
that works under linux 10.10 as the simulation environment.
Flashsim is consisted by various modules which can realize

TABLE IV: Algorithms of step two

GC algorithm Step two algorithm

GX-mean GC score = u

CX-mean GC score = age(1−u)
u

CAX-mean GC score = u
1−u

× 1
f(age)

WX-mean GC score = u
1−u

× 1
MaxWSN−WSN

MaxWSN

most functions of NAND flash-based storage system. Through
setting key parameters, flashsim can simulate different
NAND flash chips, address mapping algorithms and garbage
collection algorithms. In this paper, we select the Micron
chip MT29F16G08ADACA as simulation object with the
detail parameters shown in Table II. Because the scheduling
algorithm of channels may affect the performance of the
garbage collection algorithm, our NAND flash-based storage
system has only one channel, 8192 targets and a 32MB
DRAM. There are three built-in address mapping algorithms
(pagemap, FAST and DFTL) in flashsim. Demand-based
flash translation layer (DFTL) [46] is selected to be the
address mapping algorithm because it is more efficient than
fully-associative sector translation (FAST) and closer to the
real conditions of NAND flash-based storage system than
pagemap. In order to increase the credibility, three realistic
traces (financial, prn and systor) are applied in our experiment.

B. THE LIFETIME MODEL

We need a methodology to evaluate the effectiveness of
X-mean GC, so we choose the lifetime model which is first
used in the previous work of wear-leveling [9]. The lifetime
model borrowed the idea of Gini coefficient, which is used
to present the wealth distribution of a nation’s residents in
economics. In this model, a device is considered unusable
when t% pages reach their endurance limits. The expression
of the lifetime improvement (X) is as follows:

X =

∑
i∈St

wi∑
i∈S∗

t
w∗

i

In this paper, we change pages to blocks because the unit
of erase operation in NAND flash memory is block. In other
words, St and S∗

t denote the sets of top t% hot blocks with
X-mean GC and with control group algorithm, i block endures
wi and w∗

t erase operations respectively.

C. SIMULATION

As we illustrated in Section II, there are three key factors
influencing the performance of a garbage collection scheme.
In this paper, we select Greedy, CB, CAT and WO GC as
competitors of X-mean GC. They take different number of
these factors into account respectively.

Before starting the experiment, the step two algorithm
of X-mean GC must be fixed, because neither Greedy nor
CB considers the erasure count information and they have
no conflict with the step one of X-mean GC. We can
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FIGURE 2. Erasure count distribution of different garbage collection schemes
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TABLE V: Lifetime improvements of different algorithms

GX-mean

GC

GX-mean

GC

CAX-mean

GC

WX-mean

GC

Financial 108.94% 99.44% 74.30% 52.74%

Pro 133.35% 47.78% 44.22% 6.83%

Systor 122.29% 76.03% 85.03% 6.54%

combine them with the step one of X-mean GC to form a
complete algorithm. As CAT and WO GC also take erasure
count information into account, they can’t be combined with
X-mean GC directly. We extract the other two factors in CAT
and WO GC to guide the step two of X-mean GC. After
combined with different algorithm, we called these newly
formed X-mean GC: GX-mean GC, CX-mean GC, CAX-mean
GC and WX-mean GC. Their algorithms of step two are shown
in Table IV.

Figure 2 shows the erasure count distribution of different
garbage collection schemes, the x-axis represents the erasure
count of block and the y-axis represents how many blocks
are holding the erasure count. The narrower the x-axis is,
the more concentrated distribution of erasure count is and the
better wear-leveling performance is. The diagrams in Figure
2 can be divided into four teams, Greedy vs GX-mean GC,
CB vs CX-mean GC, CAT vs CAX-mean GC and WO GC
vs WX-mean GC. The blue points represent the original
algorithms and the orange points represent the modified
algorithms. In all these four teams, we can obtain the modified
algorithms have obvious narrower x-axis. In the original
algorithms, there are several blocks have extremely high
erasure count which is very harmful to the stability of NAND
flash-based storage system. After the intervention of X-mean
GC, these unfavorable situations become much better.

We calculated the difference of the maximum erasure count
(Max.Nerase) and the minimum erasure count (Min.Nerase),
which is widely used to evaluate the performance of
wear-leveling [27]-[29], [39]. From Figure 3, we can obtain
that the modified algorithms can reduce the difference
obviously and the least decline still reaches 30.8%.

In order to quantify the wear-leveling performance of
X-mean GC, we also calculate the lifetime improvements of
All the different algorithms when they are combined with
X-mean GC. Lifetime improvements are computed according
to the lifetime model and the results are listed in Table V.

From Table V, we find the improvements of lifetime
are obvious in terms of GX-mean GC, CX-mean GC and
CAX-mean GC. This is because Greedy, CB and CAT do
not take erasure count information or the maximum erasure
count into account, which is just the advantage of X-mean GC.
For WX-mean GC, its original algorithm (WO GC) also takes
erasure count information and the maximum erasure count into
account. It doesn’t improve the lifetime as much as the other
three. But it still shows a good performance on wear-leveling
and achieves a big lifetime improvement for financial trace.

D. THE INFLUENCE OF THE X VALUE

In this section, we will explain why we set X value to 10.
As we discussed in Section III-B, big X value will reduce the
performance of wear-leveling and small X value will bring
in more page copies. Two experiments were evaluated. The
first one was used to study the relation between the lifetime
improvement and the X value whereas the second one was
used to study the relation between the number of pages copied
out and the X value.

Figure 4 shows the relation between the lifetime
improvement of WX-mean GC and X value, different colors
mean different traces. In Figure 4, all three polylines of
relative lifetime are approximately straight lines and their
degree of linearity are 0.0080, 0.0035 and 0.0099 respectively.
Therefore, we can regard that the wear-leveling performance
and the X value have an opposite linear relationship.

Figure 5 shows the relation between the number of pages
copied out of WX-mean GC and the X value. different colors
mean different traces. All the three polylines do not show good
linearity and this phenomenon is especially evident in the first
half of these polylines.

In order to find the best balance point of performance and
overhead, we calculate the relative change rate of the number
of pages copied out. The expression of relative change rate
represents the intensity of y’s response to x’s change. In Figure
6, the x-axis represents X value and the y-axis represents the
relative change rate of the number of pages copied out. We
find the relative change rate decreases with X value increasing
for financial trace and prn trace, but the situation becomes
different when it comes to systor trace. For systor trace, the
relative change rate increases when the X value equals to 10,
and it goes down as the other two polylines. That means the
relative change rate is unstable when X value is smaller than
10. As we know, the wear-leveling performance declines with
X value increasing. Therefore, the best balance point appears
when X value equal to 10. We need to emphasize that 10 is
really a small number comparing to the P/E cycles of NAND
flash. It’s just 0.4% of short-lived TLC’s lifetime. Therefore,
X-mean GC is able to ensure most memory cells to be worn
out at the same time which is important for the stability of
NAND flash-based storage system.

The reason why we select WX-mean GC as a reference is
that the wear-leveling performance improvements of GX-mean
GC, CX-mean GC and CAX-mean GC are much bigger than
WX-mean GC, so they have more endurance on overhead.

E. OVERHEAD OF X-MEAN GC

In X-mean GC, a threshold is added to erasure count. As a
result, more copy operation will be brought in when comparing
to the original algorithm. We have reason to believe there is
a growth of the total erasure count. In this section, we select
the total erasure count to be the indicator of the overhead of
X-mean GC.

Table VI shows the total erasure counts of different
algorithms running under three different traces. The total
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FIGURE 3. Difference of Max.Nerase and Min.Neraseand

FIGURE 4. Relative lifetime comparing to original algorithms

TABLE VI: TOTAL ERASURE COUNT OF FAGC+

Financial Prn Systor

12-1 169727 319305 92955
12-2 170163 318918 93559
12-3 170082 319772 92979
128-1 170265 319605 93477
128-2 174622 325468 96374
128-3 174627 325128 92643
256-1 174546 326260 96443
256-2 174717 324944 97965
256-3 174603 325468 96781

FIGURE 5. Number of pages copied out

erasure count change rates between X-mean GC and original
algorithms are also shown in Table VI.

From Table VI, we find that the total erasure count
change rate is small. The biggest total erasure count change
rate is 4.90% and this value will not cause big change
in the performance of NAND flash-based storage system.
However, these acceptable overheads contribute to big lifetime
improvements.

Besides Greedy, CB, CAT and WO GC, FaGC+ is also
studied in this section. FaGC+ divides all pages into four kind
according to the parameter “h”. Its purpose is to collect pages
with similar access frequency to the same block and reduce
overhead. It works good under Zipf distribution. However,
thegarbage collection strategy doesn’t work well all the time.
For example, if there is a page hasn’t been updated for a long

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3207-3217

 
______________________________________________________________________________________ 



FIGURE 6. Relative change rate of pages copied out

TABLE VII: TOTAL ERASURE COUNTS AND CHANGE
RATES OF DIFFERENT ALGORITHMS

(a) Total erasure count of Greedy and GX-mean GC

Financial Prn Systor

Greedy 177505 281181 86324
GX-mean GC 177869 285610 88112
Change rate 0.21% 1.58% 2.07%

(b) Total erasure count of CB and CX-mean GC

Financial Prn Systor

CB 171600 271988 84478
CX-mean GC 172314 272382 84894
Change rate 0.42% 0.14% 0.49%

(c) Total erasure count of CAT and CAX-mean GC

Financial Prn Systor

CAT 145473 269332 70086
CAX-mean GC 151766 282530 72884

Change rate 4.33% 4.90% 3.99%

(d) Total erasure count of WO GC and WX-mean GC

Financial Prn Systor

WO GC 150296 273534 69534
WX-mean GC 150621 273684 69648

Change rate 0.22% 0.05% 0.16%

time when it becomes invalid and of course its “d” becomes
very big. Several this kind of pages may result in a big “CPS”
even if there are a lot of valid pages in the same block. As
a consequence, a large number of copy operations will be
generated if this block is recycled. Because of the key roles
“h” and “c” play in FaGC+, we conduct serval experiments
with different “h” values and “c” values to study the total
erasure count under different access patterns. In Table VII, the
vertical axis title means different “h” values and “c” values.
For example, 128-2 means “h” equals 128 and “c” equals 2.

From Table VII, we find the total erasure counts of FaGC+
have big differences comparing to other algorithms. The
differences are relatively small under financial trace, but the
differences are much bigger under the other two traces. FaGC+
doesn’t shown any obvious advantage under the traces we use,
even though it occupies extra storage space to store the relevant
information of “h”.

V. DISCUSSION

In this section, we perform some discussions about X-mean
GC, according to its design and evaluation results.

Application Scenarios. The proposed X-mean GC scheme
demonstrates significant potential for deployment in NAND
flash-based storage systems, particularly in environments
where endurance and reliability are critical. Its ability
to integrate seamlessly with existing garbage collection
algorithms (e.g., Greedy, CB, CAT, WO GC) makes it
applicable to a wide range of devices, including: (1) Consumer
electronics: Smartphones, SSDs, and USB drives, where
cost-effective wear-leveling is essential for prolonging device
lifespan. (2) Enterprise storage systems: High-capacity SSDs
in data centers, where uneven wear can lead to costly
failures and downtime. Embedded Systems: Automotive
and industrial IoT devices, which operate under harsh
conditions and require robust memory management. (3)
Cloud storage: Hybrid storage solutions combining NAND
flash with DRAM or emerging non-volatile memory (NVM),
where wear-leveling directly impacts system longevity and
energy efficiency. The minimal overhead of X-mean GC (e.g.,
tracking average erasure counts) ensures compatibility with
resource-constrained environments, such as edge computing
devices.

Deployment. Deploying X-mean GC in real-world
systems requires addressing several practical challenges:
(1) Parameter tuning: while the paper sets X=10 based
on simulations, real-world workloads (e.g., bursty writes,
varying data locality) may necessitate adaptive adjustment
of X. Future implementations could leverage runtime
profiling to dynamically optimize X for specific use cases.
(2) Hardware integration: the candidate pool mechanism
relies on maintaining an up-to-date average erasure count.
This can be implemented in firmware or embedded within
NAND flash controllers with minimal additional hardware.
(3) Compatibility with existing controllers: X-mean GC’s
two-step design allows integration with legacy systems.
For instance, existing garbage collection algorithms (e.g.,
WO GC) can adopt X-mean as a pre-filtering step without
overhauling their core logic. (4) Scalability: as NAND flash
scales to higher densities (e.g., 3D NAND), the candidate
pool’s size must balance wear-leveling effectiveness and
computational overhead. Techniques like hierarchical pooling
or machine learning-based block classification could enhance
scalability.

The proposed X-mean GC scheme represents a practical
and flexible approach to wear-leveling, offering substantial
endurance improvements with minimal overhead. Its
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adaptability to existing algorithms and hardware makes it a
strong candidate for near-term deployment in consumer and
enterprise storage systems. Future research should focus on
dynamic parameter optimization, cross-layer integration, and
addressing emerging memory technologies to ensure X-mean
GC remains relevant amid evolving storage landscapes.

VI. CONCLUSION

The endurance issue has been a persistent challenge since
the inception of NAND flash memory. Traditional garbage
collection schemes have struggled to impose strict limits on
erasure counts, and it is difficult to accurately assess the wear
state of each block. In contrast, we address these challenges by
introducing a dynamic threshold based on the average erasure
count of all blocks. This allows users to monitor the wear state
of the NAND flash-based storage system through the average
erasure count. Unlike traditional garbage collection schemes,
the proposed X-mean GC consists of two independent steps,
with step two being highly flexible and not bound by a rigid
limit. This flexibility allows step two to be adjusted as needed.
According to simulation results, the proposed scheme extends
the lifetime of NAND flash-based storage systems by 133.35%
with a reasonable overhead.
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