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Abstract—Indonesia, as a tropical country, is rich in biodi-
versity. To ensure the sustainability of its natural resources, the
government enforces regulations for the protection of plants
and animals, particularly those classified as endemic species,
which are organisms found only in specific regions. One such
species is Anaphalis javanica, an endemic edelweiss species in
Indonesia. Various conservation efforts have been implemented,
including the establishment of laws, regulations, and designated
conservation areas. Edelweiss flowers exhibit significant diver-
sity in color and shape, with additional variations arising from
differences in the treatment of wild and cultivated flowers. This
diversity presents a challenge in accurately identifying edelweiss
species, which requires high precision to avoid legal violations.
To address this issue, this study employs a Convolutional
Neural Network (CNN) with the Adaptive Moment Estimation
(Adam) optimizer for the classification of edelweiss flower
species. The research utilizes a dataset comprising 3498 training
images, which are further divided into training and validation
sets, and 1050 test images, categorized into three classes:
Anaphalis javanica, Leontopodium alpinum, and Leucogenes
grandiceps. The primary objective of this study is to develop
a CNN architecture and program code optimized with Adam
to classify edelweiss flower species and evaluate the model’s
performance across different learning rates. Additionally, the
study compares the performance of the custom CNN model
with pre-trained models, including MobileNetV2, ResNet50,
and VGG19, to assess the effectiveness of transfer learning in
improving classification accuracy.

Index Terms—Adam optimizer, CNN, Edelweiss flower, Im-
age Classification

I. INTRODUCTION

NDONESIA is a tropical country renowned for its rich

biodiversity. To preserve its diverse natural resources,
the government has established various conservation areas,
including national parks, botanical forest parks, and nature
tourism parks. According to UU No.5 of 1990, national parks
are designated as nature conservation areas with original
ecosystems, managed through a zoning system for purposes
such as research, education, tourism, and recreation. Each na-
tional park has unique characteristics based on its geographi-

Manuscript received September 27,2024; revised May 18, 2025. This
work was supported in part by Universitas Padjadjaran through DRPM
Unpad.

Wibi Anto is a bachelor’s graduate from the Department of Mathematics,
Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, West
Java, Indonesia (e-mail:wibi20001 @mail.unpad.ac.id).

Herlina Napitupulu is a lecturer in Department of Mathematics, Fac-
ulty of Mathematics and Natural Sciences, Universitas Padjadjaran, West
Java, Indonesia (corresponding author, phone: +6281313315135; e-mail:
herlina@unpad.ac.id).

Nurul Gusriani is a lecturer in Department of Mathematics, Faculty
of Mathematics and Natural Sciences, Universitas Padjadjaran, West Java,
Indonesia (e-mail: nurul.gusriani@unpad.ac.id)

cal location, resulting in biodiversity that is often exclusive to
specific regions. One such example is the Edelweiss flower.

The Directorate General of Natural Resources
and Ecosystem Conservation has identified that
Edelweiss flowers thrive exclusively in mountainous

regions with full sunlight. Through Permen LHK No.
P.106/Menlhk/Setjen/Kum.1/12/2018, the  government
declared Anaphalis javanica, an endemic Edelweiss species,
as a protected plant species.

Accurate classification of Edelweiss flowers is essential to
determine whether a flower belongs to a protected species,
thereby avoiding legal violations and severe penalties. How-
ever, the diversity in Edelweiss species, influenced by vari-
ations in color, shape, and cultivation practices, poses a
significant challenge for accurate identification. This chal-
lenge can be addressed through advancements in Machine
Learning, particularly in the field of Computer Vision. Image
Classification using Convolutional Neural Networks (CNNs)
has proven effective in recognizing complex visual patterns
and features, enabling precise differentiation of Edelweiss
flower species.

To ensure the novelty of this study, a Systematic Literature
Review (SLR) was conducted using the PRISMA method.
The Publish or Perish tool was employed to search for meta-
data with the keywords: ‘edelweiss’ AND (CNN OR “con-
volutional neural networks”). The search yielded 169 results,
which were filtered for duplicates and relevance using Python
programming. After screening titles and abstracts, 17 articles
were shortlisted, and further evaluation revealed only two
articles with partial relevance. However, a detailed review
of their full content indicated limited applicability to this
study. Previous research on Edelweiss flower classification,
such as the study on classification using Data Augmentation
and Linear Discriminant Analysis [1], highlights the scarcity
of studies in this domain. This underscores the need for
further exploration into the classification of Edelweiss flower
images.

II. LITERATURE REVIEW

A. Species Classification in Biology

Species classification in biological science considers sev-
eral things including naming and identification, morpholog-
ical and genetic characteristics, to using special techniques
such as DNA analysis [2] . Classification techniques based
on morphological characteristics are very likely to be carried
out using only images with certain techniques.
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B. Image Classification

Image classification is the process of categorizing and
labeling a set of pixels or vectors of an image based on
certain rules [3]. Some methods that are often used in
image classification include Support Vector Machine (SVM),
Convolutional Neural Network (CNN), faster RCNN [4], to
transfer learning methods using pre-trained models [5].

C. Tensor

A tensor is an array of numbers arranged on a regular
grid with an adjustable number of axes (dimensions) [6]. A
tensor in programming is an array with dimensions which
also means it is an extension of a matrix which is an array
with two dimensions [7]. Suppose X is a tensor with three
axes/dimensions then the element of X at coordinates m, n, p
iS Ty n,p- Mathematically, the tensor is expressed as follows.

[T1,r121,0,2 - - T1 5]
[T2,1%2,52 - 2,0,5]

[Triazie. 1] [Tr2aT122 T2 L
[zo,1 122,12 216] [T221%002. . 222 ...

X = X e Rmmp

[#g,11%0,1,2+ - Tq1s]  [Tg21Tg22. - Tg2s] o [TeraTer2. . Tars]

ey

D. Image Processing

Image preprocessing is a method to transform raw image
data into a clean image data, as most of the raw image data
contain noise and contain some missing values or incomplete
values, inconsistent values, and false [8]. Raw data can
be overcome in several ways e.g. image correction, image
enhancement, image restoration, and image compression
[9]. The following are some of the image preprocessing
techniques used in this research:

1) Image compression is used to reduce the size of an
image either by reducing the dimensions or the quality
of the image. Image compression can be done using
the PIL library in Python.

2) Normalization to normalize pixel value from range of
0-255 to O-1.

3) Mini batch division with TensorFlow.

Suppose X is a dataset with m data, X; is the i*" data from
dataset X in the form of a tensor and bs is the batch size, then
the number of iteration processes can be calculated using the

following equation.
m

bs ]
The mini batch is denoted by X {*} and can be expressed
as follows

T=] 2)

XU = (X psr(t-1) 1) Xps (t-1)42)s - - Xpsty ) (3)

were t =1,2,3,...T

E. Convolutional Neural Network

Convolutional Neural Network (CNN) is an artificial neu-
ral network with a convolution process that emerged from the
study of the visual cortex of the brain and has been used since
the 1980s [10]. The convolution process is a mathematical
calculation used to perform feature extraction on images [11].
CNN architecture generally consists of three types of layers:
convolution layer, pooling layer, and fully connected layer.

There are two types of propagation in CNN which are for-
ward propagation and backpropagation. Forward propagation
aims to forward the predicted output from the input layer by
performing certain calculations from the input to the next
layer while backpropagation aims to update the parameter
values (weights and biases) by calculating the error of the
predicted output [12].

F. Transfer Learning

Transfer learning is a concept where we train a model
on one problem and then we can fine-tune and apply it
on another similar kind of problem [13]. We compare the
performance of the model using transfer learning with the
CNN custom model that we built ourselves. In this research,
we use transfer learning to improve the performance of the
model by using a pre-trained model such as MobileNetV2
[14], ResNet50 [15], and VGG19 [16].

The transfer learning models are used as feature extractors
by retaining the weights from the pre-trained models. The
pre-trained models extract features from the input images,
and the extracted features are then passed to custom dense
layers for classification. This approach leverages the knowl-
edge learned by the pre-trained models on large datasets,
improving the performance of the classification task on the
edelweiss flower species dataset.

G. Two-Dimensional Convolution Layer

A two-dimensional convolution layer is a layer of neurons
with convolution operations. The TensorFlow library has a
Conv2D function to create a two-dimensional convolution
layer. There are hyperparameters in the Conv2D function
such as filters, kernel size, activation, and strides [17].

The Conv2D function has a strides parameter that indicates
the amount of pixel displacement after the convolution oper-
ation. A stride value of 1 means that every time a convolution
operation is performed, there is a displacement of one pixel
for the next convolution operation. The feature map resulting
from the convolution operation at the L** layer on a tensor
X and filter W with bias § at layer L is given as follows.

2" = Conv(X, W) 4+ g 4)

where the two-dimensional convolution operation with one
filter and C color channels is shown as follows.

K: Ky K
Conv(X7 W) = Yq,rs) = ZC:H Za:l b:21 T(g+a—1,74+b-1,54c—1) " W(a,b,c)

4)

where y(, - s is the convolution result of the ¢** row, r*

column, and st color channel, X is the input feature map,
and W is the filter with dimensions (K7, K3, K3).

The activation function often used in the convolution layer

is the Rectified Linear Unit (ReLU), which processes the z.

value by converting every negative value to zero [18]. It can
be mathematically expressed as f(x) = max(0, x)

A(q,r,s) = aReLU(ZC(L)) = max(0, ZC(L)) (6)

So, the output of the L!* Conv2D layer can be seen as
follows.
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H. Two-dimensional Pooling Layer

Pooling Layer is a layer of neurons with a merging
operation to reduce the dimension by combining values in
certain areas according to the filter size. There are two types
of pooling operations which are max pooling and average
pooling [18]. The max pooling operation is performed by
taking the maximum value from a set of pixel values in a
particular area. Let X be the input tensor in the pooling layer
then the output of the L*" pooling layer can be expressed as
follow.

P) = MaxPooling2D(X) (8)

1. Flatten Layer

Flatten layer is a layer of neurons that has the operation to
flatten the dimension of the tensor input that enters the layer.
Suppose there is a tensor X with dimensions (@), R, S), then
the output of the flatten layer can be expressed as follows.

FL(X) = Z} = [1‘1’1}1£C1’2’1£L'2’1’1 o Lgrs e ZEQ,R,S} (9)

J. Dense Layer

Dense layer is a layer of neurons that receive input from
all neurons in the previous layer [19]. The last dense layer
is used to classify between the classes in the dataset [20].
Mathematically, the output of each dense layer is expressed
as follows.

N

2d =N wl) e gl (10)
k=1

Where:

. zdgL) is the value of the j-th neuron in the L-th layer.

. wJ(I,;) is the weight between the j-th neuron in the L-th
layer and the k-th neuron in the previous layer.

. a:kal) is the input value for the dense layer of the
neuron in the previous layer.

e N is the number of neurons in the previous layer.

. B](.L) is the bias on the j-th neuron in the L-th layer.

In general, the activation function equation is expressed as

follows:

d; = a(zdgL)) (11)

So that the output of the L** dense layer with activation
function «, having as many as /N neurons, can be expressed
as the following row vector:

AP =[dydy ... d; ... dy]

There are two activation functions used, namely ReL.U and
Softmax. Respectively, the ReLU and Softmax functions are
expressed in the following equations.

QReLU (zdg»L)) = max (O, sz.L))

RE

(L) - e
n (2P) = —

(12)

13)

(14)

K. Optimizer

Optimizer is an algorithm used to minimize the loss
function or to improve model performance by changing
model parameters such as weights or learning rate [21].
Some optimizers include AdaGrad, RMSProp, SGDNesterov,
AdaDelta, and Adam. Adam is robust and suitable for a wide
variety of non-convex optimization problems in the machine
learning field [22].

1) Loss function The loss function used for multiclass

classification problems is Categorical crossentropy. Let
y be the prediction result of the model and y is the
value of the actual label in the train data, then the loss
function of categorical cross-entropy is expressed as

follows.
Loss(§,y) = — > _ y; - log(i};) (15)
j=1
where j = 1,2,...,n with n is the number of classes

of the dataset we used.

2) Cost function The cost function is used to find the
average loss value by calculating each loss value
obtained from each prediction result and each label
y in the training data. Suppose there are as many as m
prediction results and y labels, then the cost function
can be expressed as follows:

m

_ 1 ~(p)  (P)
J = o Z;Loss (yj ' Y; )
p—

where p=1,2,...,m.

3) Adam Algorithm Suppose there is a function J which
is a cost function differentiable with respect to the
model parameter # and the initial values m; = v; = 0.
Then the Adam update rule is as follows:

(16)

0
= — 1
g:(0) 89J 17)
me =71 -me—1+ (1 —v) g (18)
ve =72 vm1 + (1 —72) - g7 (19)
N me
= 2
= (20)
N Ut
=" 21
Ut 1_75 ( )
my
0 =0;_1 —Ir; - —— 22
peet Vi + € @2)

4) Accuracy The metric used to measure model per-
formance is the accuracy metric with the following

formula. L
_ tlrue prediction

Ace (23)

" total prediction

L. Python

Python is a programming language created by Guido van
Rossum that was first released in 1991. It is a high-level
programming language that supports a variety of program-
ming paradigms, including object-oriented programming,
functional programming, and procedural programming and
is popular because it is easy to understand [23]. Some of
the modules and libraries used in this research include the
following.
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1) TensorFlow

2) Matplotlib

3) Python Imaging Library(PIL)
4) modul CSV

III. OBJECT AND RESEARCH METHOD
A. Object

The object of this research is an image dataset of edelweiss
flower species, consisting of 3498 training images and 1050
test images. The dataset is categorized into three species:
Anaphalis javanica, Leontopodium alpinum, and Leucogenes
grandiceps [24].

B. Research Method

Custom CNN Model

This study employs a Convolutional Neural Network
(CNN) with the Adaptive Moment Estimation (Adam) opti-
mizer to classify edelweiss flower species using image data.
The dataset is divided into three classes based on the species.
The research methodology is structured into several stages,
as outlined below:

1) Image Preprocessing Image preprocessing involves
compressing the images, resizing them, converting
them into tensors, and normalizing pixel values. The
compression process reduces the image size to a maxi-
mum width of 512 pixels while maintaining the aspect
ratio and reducing the image quality to 85% using the
PIL library. The images are then resized to 256 x 256,
normalized by dividing each pixel value by 255, and
converted into tensors. The training dataset is split into
training and validation sets with an 8:2 ratio. Finally,
the dataset is divided into mini-batches with a batch
size of 32.

2) Learning Rate Initialization The learning rate is
initialized as Ir = 10~%, where i = 1.

3) Model Training The architecture of the custom CNN
model consists of input layer, hidden layer: 12 convo-
lutional layers and 12 pooling layers, one flatten layer,
and two dense layers. The first convolutional layer uses
a filter size of 3 x 3 with a stride of 1, while subsequent
convolutional layers use a filter size of 2 x 2 with a
stride of 2. The pooling layers employ max pooling
with a pool size of 2 x 2 and a stride of 2. The
ReLU activation function is used in the convolutional
layers, while the final dense layer uses the Softmax
activation function. The model is compiled using the
Adam optimizer with the initialized learning rate. The
model architecture is illustrated in Fig. 1.

a) Forward Propagation Forward propagation be-
gins by inputting the first mini-batch tensor into
the first convolutional layer. The process involves
applying convolutional operations, pooling, and
activation functions sequentially across all layers
until the final dense layer produces a classifica-
tion result.

b) Backpropagation Backpropagation is performed
after obtaining the classification result. The loss
value is calculated using the categorical cross-
entropy loss function, and the model parameters

Input layer:
(None, 256, 256, 3)

Hidden Layer

Flatten Layer

Dense Layer
(None, 1024)

T —

Dense Layer
(None, 3)

Fig. 1: CNN custom model architecture

(weights and biases) are updated using the Adam
optimizer. This process is repeated for all mini-
batches in the training dataset across 20 epochs.

4) Model Testing After training for 20 epochs, the model
is tested using the test dataset, which is divided into
mini-batches. The model’s performance, including ac-
curacy and cost, is recorded for each learning rate.

5) Learning Rate Update The learning rate is updated to
Ir = 10~%, where i := i + 1, and the training process
is repeated until 7 > 4.

Transfer Learning Model

The custom CNN model is compared with transfer learn-
ing models using pre-trained architectures such as Mo-
bileNetV2, ResNet50, and VGG19. The methodology for
building and training the transfer learning models is as
follows:

1) Image Preprocessing The image preprocessing steps
are identical to those used for the custom CNN model.

2) Learning Rate Initialization The learning rate is
initialized as Ir = 10~4.

3) Model Training The transfer learning model archi-
tecture is constructed by integrating the pre-trained
model as a feature extractor, followed by a flatten layer
and dense layers for classification. The architecture is
shown in Fig. 2.

Input layer:
(None, 224, 224, 3)

Pre-trained Model

Flatten Layer

Dense Layer
(None, 1024)

!

Dense Layer
(None, 3)

Fig. 2: Transfer learning model architecture

a) Forward Propagation The input tensor is passed
through the pre-trained model to extract features,
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which are then processed by the flatten and dense
layers to produce classification results.

b) Backpropagation The backpropagation process
is similar to that of the custom CNN model, with
the Adam optimizer used to update the model
parameters.

4) Model Testing After the model has been trained for
10 epochs or has achieved 100% accuracy on both
the training and testing datasets, the testing process
is conducted using the test dataset, which is divided
into mini-batches with a batch size of 32.

IV. RESULT AND DISCUSSION

A. Matematical Computation for Custom CNN Model

Image preprocessing

Image preprocessing is done by compressing the image,
resizing, transforming to tensor, and normalizing the pixel
value. Compress the image using the help of the PIL library
by reducing the size and quality of the image. The compari-
son of images before and after the compression process can
be seen in Fig. 3.

Fig. 3: Image compression comparison

Comparison of the image before compression (left) and
after compression (right). The original image size is 1600px
x 1200px with a memory size of 4.97MB, while the com-
pressed image is resized to 512px x 384px with a memory
size of 396KB.

Resize, transform image to tensor, and normalize the pixel
value using the ImageDataGenerator module. The compari-
son of images before and after resizing are shown in Fig. 4.

Fig. 4: Image resizing comparison

Comparison of the images before resizing (left) and after
resizing (right). Transform the image into tensor and normal-

ize the pixel values. Tensor before normalization:

[128 145 127]  [127 128 95] [137 107 76]]

X = | [94101 64]  [106 101 91] [116 98 74]
[155 167 134] [149 169 142] [44 46 45] |
(24)

Tensor after normalization:

[0.502 0.569 0.498] [0.498 0.502 0.373] [0.537 0.42 0298]]

X = {[0.369 0.396 0.251] [0.416 0.396 0.357] [0.455 0.384 029)]

[0.173 0.18 0176
25

Split the train dataset into train and validation datasets then
divide into mini batches. The train data consists of 2799 data
so that using equations (2) is obtained:

T = [42] = 88

so that each mini batch in the train dataset becomes:

0.608 0.655 0.525]  [0.584 0.663 0.557]

Xt{'rf,} = {X(32:(t=1)+1)> X(32:-(4=1)42)s - - - » X(32:) }

t=1,2,...,88

Let ¢ = 1, thus obtained:

XL ={X1,Xo,..., X3}

Training model

The model training process with the first learning rate
value is 10(~?) where i = 1 which is done for 20 epochs.
Each epoch processes the entire mini batch through the for-
ward propagation process and the backpropagation process
to obtain the cost value and update the model parameters.
Select thil} substitute to the first convolution with filter
W using equation (4) so that it is obtained:

2™ = Conv(Xtn{", W) 4 gM)

select the first filter of W) thus obtained:

[0.502 0.569 0.498] [0.498 0.502 0.373] [0.537 0.42 0.298]

2¢W = |]0.369 0.396 0.251]  [0.416 0.396 0.357] 0.455 0.384 0.29] | «

[0.608 0.655 0.525] [0.584 0.663 0.557] [0.173 0.18 0.176]

[-0.079 —0.075 —0.187]  [0.07 0.039 —0.137] . [0.169 —0.175 —0.155]

[0.112 0.025 0.007] [<0.164 —0.131 —0.11] ...  [0.151 0.142 —0.168] | +0

[0.04 0.038 0.025) [=0.15 0.135 — 0.039] [—0.095 0.067 0.130]

select the input feature map position 1 of thil}
perform the convolution operation using equation (5) to
obtain:

>

(1)

Aﬂ,l = (xgl))l,l,l'w1,1,1+($1 )

)1,2,1-w1 21+ (23

oo (@325 wazs + (@)s55 - w3ss
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A | =0.502 - (—0.079) + 0.498 - 0.07 + 0.482 - (—0.169)
+0.557 - (—0.039) + 0.71 - 0.130
A | = —0.018870000000000012
substitute the value of z¢(!) to the ReLU activation func-
tion using equation (6) to obtain:
A | = maz(0; —0,018870000000000012) = 0

Move the feature map th{ } by one pixel then repeat
the convolution operation until the feature map is located at
the last position and repeat the convolution process using the
next filter until it is obtained:

[00204 ... 0] [00.231 ... 0] [00.181 ... 0]
AW =] 0017 ... 0]  [00.177 ... 0] 00124 ... 0] +0
[00.059 ... 0.005] [00.093 ... 0] 00.02 ... 0]

Substitute A1) as input for the next layer, namely the
pooling layer using equation (8) so that it is obtained:

P® MaxPooling2D(AM)

[00.231 ... 0] [00.194 ... 0] [00.216 ... 0]
P® = [[00.198 ... 0.022] [00.172 ... 0] 00172 ... 0]
[00.072 ... 0.016] [00.059 ... 0.01] [00.093 ... 0]

Output pooling layer P(?) is used as input for the next layer,
namely the second convolution layer and so on with the same
calculation process until the 12th layer is obtained P(12),

[0.0412 0.0241 ... 0]
0.0368 0.0416. .. 0]

0.0592 0.0226.. ... 0]

P2 —
[0.0395 0.0406 . .. 0]

substitute P(12) to equation (9) to obtain:
) . zf [P 12) p12) p(i2) p(12)

12
1,2,1 £ 21,1 ~2,2,1 ** P2(2)2a6}
Zf =[0.0412 0.0241...0...

FL(P(
0.0395 0.0406 ... 0]

substitute z_fk with £ = 1,2,...,1024 to equation (10) thus

obtain:
1024

Zw(lél) Z“'fk+ﬂj(14)

1024

14) Zw(M Z_}k+ﬁ§l4)

2dM) =

(14) 14) 14)

14 — — N
Rd, = ( ( “2f1 +w§2 'Zf2+w§3 "Zf3
14
+eee w§ 1())24 Zf 1024) +0
P (0 0553 - 0.0412 + 0.0366 - 0.02407 + 0.0075 - 0
+---40.0186-0) +0
20 = 0.044526230544

substitute the value of zdgM) to equation (13) thus obtain:

d; = max(0, 25114))
= max(0, 0.044526230544)
= 0.044526230544

do the calculation until zd%‘? thus obtained dj;, j =
2,3,...128. By equation 12, it is obtained:

d = [dy dy ds dy ...dy28)

d') = [0.0445 0 0 0.01745 ...0.0633)

Substitute d_(14) to equation (11) thus obtain:

zd(ls) (w . ) + ﬁ (15)
128

d(15) ( (15) 14)) +,8(15
128

(15) (w 5) d(14)) +5§15)

128
At = 3 (uff9 ) 1 10
k=1

With an analogous calculation process to the previous
dense layer calculation, it is then obtained:

7" = [0.0835465 0.0114078 —0.0050581]

Substitute zd(15) to the Softmax activation function in equa-
tion (14) to obtain: The calculation of d; using the Softmax
activation function is as follows:

209

_ (15)y _ €
dj - asm(zdj ) - 3 ~(15)
Z] 1 € J
(15)
_ (15) e’
dy = asm(zdl ) - G + Z(15> Te Z(15>
el

() 083546534181

T £0.083546534181 | £0.011407849379 | —0.005058117211
= 0.35141861

Find the value of dy and ds with the same calculation
process to obtain:

dy = 0.32696053, ds = 0.32162088

Substitute the values of dy, ds, and ds to equation (13) to
obtain:
d = [dy dy ds)
= [0.35141861 0.32696053 0.32162088]
Based on the dataset, it is known that the image has the
label Anaphalis javanica, so the actual label is as follows:
g=[1 0 0]

Substitute 7 and d\1®) to equation (15) to obtain:
Loss(d"?), ) = =377, y; - log(d;)

= —(1-10g(0.351418614388) + 0 - log(0.32696053)

+0-1og(0.32162088))
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= —log(0.351418614388)
= 1.0457771325547065

Select the next tensor from the mini batch X¢n{}, which
is thl{)l} where p = 2,3,...,32. Then do the forward
propagation process from the beginning until getting the loss
function value of each tensor classification result in the mini
batch Xtn!'. Substitute Loss?(d'9), §) to equation (16) is
obtained:

32
1
J= o) ZLoss(d§p),y§p))
p=1

5g (104577 + 114437 4 + 1.1138)
=1.0998

Based on forward propagation, the weight and bias of the
CNN model are obtained as follows:

= [W(l), ﬁ(l), we) 5(3)’ W(5), 5(5)7 Wm, 5(7)’ w®) ﬁ(

W(H),ﬁ(ll),wj(}f), 5(14), w§i5)75(15)}
Select 116 = 8(1%), where:
315 =10,0,0]

Select 695), substitute Bils) to equation (17) to obtain the
gradient value of the bias parameter at the 15th layer in the
first mini-batch iteration as follows:

(15) 9
9 (B17) = —q577/
1 P ﬁ§15)
by using the tf.GradientTape() function, the obtained value
of g; is as follows:

a1 (8"

substitute g; to equation (18) and equation (19) to obtain:

) =1,28363121

my=71-mo+(1—7) g
=0.9-0+ (1—0.9)-(1.28363121)
= 0.128363118
v1=72-v0+ (1 =) g7
=0.999 -0+ (1 —0.999) - (1.28363121)2
= 0.00164770917

Substitute m; to equation (20) to obtain:
_0.128363118

=T 00
— 1.28363121

Substitute v1 to equation (21) to obtain:

5 _ 0:00164770917
LT 120999
= 1.64770913

Substitution 17 and 07 to equation (22) to obtain:

(1), (),
1 0

= —0.001

1.28363121
V1.64770913 + 108

Perform the parameter update process using equation (17)
to equation (22) repeatedly until all model parameters have
been updated. Continue the model training process to the
next iteration ¢ := t + 1 by using the next mini batch to
train the model. Test the model using the validation dataset.
Testing is done using the validation dataset to get the cost
and accuracy values. Training the model is done up to 20
epochs then save the model and model performance results.

Testing model

Model testing is done using the test dataset. Change the
dataset into mini batches as in the train dataset then find the
cost and accuracy by using each mini batch as input data for
the model.

B. Model Performance

The model training process is performed iteratively using
the same model architecture but with different learning rate

gyalues. Learning rate with a value of 10-9 where i <4

will be updated every time the model has been saved and
tested using the test dataset. Model performance is calculated
during training and testing.

1) Training Performance

Training Accuracy

1.0 A
0.9 1
0.8
- —— Learning rate: 1071
0 0.7 1 :
© Learning rate: 1072
g —— Learning rate: 1073
< 0.6 1 —— Learning rate: 107*
0.5 A
0.4 1
\vh\/\”\~ ——
0.3 A

25 50 7.5 10.0 125 15.0 17.5 20.0

Epoch

Fig. 5: Training accuracy graph for the training dataset

Based on Fig. 5, models with learning rates of
10! and 10~2 showed no improvement in accuracy,
whereas models with learning rates of 1073 and 10~4
demonstrated significant accuracy improvements.
Similar to the training phase, models with learning
rates of 107! and 1072 showed no improvement in
validation accuracy, with both models remaining at a
constant value of 0.3333, whereas models with learning
rates of 1072 and 10~ exhibited significant accuracy
improvements (See Fig. 6).

2) Testing Performance After the model is trained up to
20 epochs and stored, the last step is to test the model
using data that is not used during the training process,
namely the test dataset. After testing the model with
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Fig. 6: Validation accuracy comparisons for different learning
rates

a learning rate of 10(-") where i = 1,2,3,4 The
classification results can be seen in TABLE 1.

TABLE I: Classification results using the test dataset

Classification Result (Ir)

the model with 10™2 and can classify the test dataset
into three different classes. The accuracy performance
of the classification results on the test dataset can be
seen in TABLE II.

TABLE II: Model performance on the test dataset

Classification Result (Ir)

Species

10-1 1072 1073 104
True prediction 350 350 811 851
False prediction 700 700 239 199
Total prediction 1050 1050 1050 1050
Accuracy 333% 333% 77,238%  81,048%

Species Actual Data

10-! 1072 107® 107*
Anaphalis javanica 350 0 0 392 290
Leontopodium alpinum 350 0 1050 245 322
Leucogenes grandiceps 350 1050 0 413 438
Total 1050 1050 1050 1050 1050

Based on TABLE I, the model with learning rate 101
and 102 cannot perform classification well and the
entire test dataset is classified in only one class while

Based on TABLE 11, it is obtained that the best accu-
racy value is obtained by the model with ir = 10~
Model with Ir = 10~* successfully classified 851
image data from 1050 test dataset images or 81.043%.

C. Comparison with Transfer Learning Model

The model performance of custom CNN Model is com-
pared with transfer learning using pre-trained models such
as MobileNetV2, ResNet50, and VGG19. The results of the
classification accuracy of the three models can be seen in
TABLE III.

TABLE III: Comparison of model performance

Model Epoch Test Accuracy  Trainable Params
(Training Acc 100%)

Custom CNN Model 7 81.048% 15.2M

MobileNetV2 5 82.952% 64.3M

ResNet50 > 10 75.714% 102.7M

VGG19 2 98.000% 25.7M

Based on TABLE III, VGG19 achieved the highest test
accuracy of 98.000% and was the fastest to reach 100%
accuracy on both the training and validation datasets, requir-
ing only 2 epochs. However, it also had the longest training
time per epoch, taking up to 2830 seconds. In contrast, the
Custom CNN model had the smallest number of trainable
parameters (15.2M), making it the most lightweight model
in terms of complexity, while still achieving a respectable test
accuracy of 81.048%. The MobileNetV2 model achieved a
test accuracy of 82.952% with a relatively small number of
trainable parameters (64.3M) and reached 100% accuracy on
both the training and validation datasets in just 5 epochs,
compared to the custom CNN model, which required 7
epochs. The ResNet50 model, while having the highest
number of trainable parameters (102.7M), achieved a test
accuracy of 75.714% but required more than 10 epochs to
reach 100% accuracy on the training dataset.

V. CONCLUSION

Based on the research conducted, the following conclu-
sions can be drawn:

1) The custom CNN model was successfully developed
using the Adaptive Moment Estimation (Adam) opti-
mizer. It featured a lightweight architecture with only
15.2M trainable parameters, making it computationally
efficient while achieving a respectable test accuracy of
81.048%.
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[2]

[3]
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[6]
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[13]

[14]

[15]

(16]

[17]

[18]

Among the tested learning rates, 10~* provided the
best performance for the custom CNN model, achiev-
ing the highest accuracy of 81.048% on the test dataset.
Compared to pre-trained models, the custom CNN
model demonstrated lower accuracy but excelled in
simplicity and efficiency. While VGG19 achieved the
highest test accuracy (98.000%) and MobileNetV2
reached 100% accuracy faster (5 epochs), the custom
CNN model remains a viable option for resource-
constrained environments due to its minimal compu-
tational requirements.
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