
 

 
Abstract—Efficient text processing is increasingly crucial 
as data volumes grow exponentially across industries. 
This paper presents a novel text compression framework, 
LLM-Distil, that efficiently reduces computational 
demands while preserving crucial semantic information. 
The method utilizes template-based preprocessing and 
knowledge distillation to compress lengthy text sequences, 
maintaining essential details. Experiments on three 
benchmark log datasets (HDFS, BGL, and Thunderbird) 
show that our approach achieves comparable anomaly 
detection accuracy to existing models, while significantly 
improving computational efficiency and reducing latency. 
On average, the framework reduces text length by over 
90%, resulting in faster inference times and reduced 
resource consumption, making it ideal for large-scale 
applications. Furthermore, our analysis indicates that the 
Information Retention Rate (IRR) remains above 85% 
after compression, ensuring the preservation of critical 
data features. Future work will explore extending this 
approach to other domains, assessing the impact of data 
characteristics on compression effectiveness, and 
optimizing the model for a broader range of anomaly 
detection tasks. Overall, our results indicate that 
LLM-Distil has the potential to transform how large 
language models manage extensive textual inputs in 
resource-limited environments. 
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I. INTRODUCTION 

he dynamic evolution of the digital economy is propelled 
by the advancement of 5G technology alongside the 

emergence of cutting-edge technologies such as cloud 
computing, Blockchain, and artificial intelligence. As the 
proliferation of devices and applications increases, the 
volume of data, including events and alerts, essential for the 
operation and maintenance of IT systems, undergoes 
exponential growth [1]. The manual analysis of these complex 
data becomes increasingly challenging. System logs, as the 
predominant form of data in O&M operations, encompass 
records generated by contemporary network equipment, 
systems, and service programs during their operational cycles, 
documenting system status and event information. Log 
analysis enables the identification of aberrant log sequences, 
which are crucial for troubleshooting and problem diagnosis. 
Consequently, log files play a pivotal role in network 
monitoring, system stability maintenance, performance issue 
debugging, and software security safeguarding. 

Recently, deep learning models, particularly recurrent 
neural networks (RNNs), have been widely utilized to detect 
log anomalies due to their ability to model sequential data 
[2,3,4]. Log data is generated chronologically, with a time 
dependency often existing between log records. RNNs can 
capture sequential and time-dependent information to 
understand the dynamics of log sequences. By training on 
numerous normal log sequences, RNNs can identify potential 
anomalies, such as irregular log entry frequency or changes in 
content and structure. Additionally, RNNs can classify log 
sequences, distinguishing between normal and abnormal 
entries. The trained RNN model predicts the next log entry at 
each time step and assesses its abnormality. However, RNNs 
have limitations in log anomaly detection. Firstly, their 
complex time dependencies and gradient propagation can 
lead to longer training times. Secondly, RNNs may encounter 
gradient vanishing or explosion problems when processing 
very long sequences, affecting training effectiveness. Third, 
while RNNs effectively capture local dependencies, they 
struggle with global long-distance dependencies. Large 
language models possess strong sequential modeling 
capabilities, handle long-distance dependencies effectively, 
and understand complex log patterns through pretraining and 
fine-tuning. These models detect subtle anomalies and 
provide more accurate predictions and classifications. 
Leveraging the power of large language models improves the 
accuracy and efficiency of log anomaly detection, 
overcoming many limitations of traditional methods. 

The advancement of artificial intelligence (AI) systems 
has been propelled by the emergence of large language 
models (LLMs) and fundamental models. LLMs, being 
extensive pre-trained statistical language models rooted in 
neural networks, mainly encompass Transformer-based 
neural language models pre-trained in vast textual datasets [5]. 
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LLMs, characterized by their expansive scale and pre-trained 
statistical architectures rooted in neural networks, represent a 
pivotal development in the AI landscape. These models 
predominantly encompass Transformer-based neural 
language models, which undergo extensive pretraining on 
vast corpora of textual data. Beyond their formidable 
language comprehension and generation capabilities, LLMs 
exhibit robust analytical prowess, particularly evident in their 
adept handling of zero-shot and few-shot data across diverse 
domains. This attribute underscores the versatility and 
adaptability of LLMs, positioning them as powerful tools to 
tackle multifaceted challenges in AI applications. Large 
language models demonstrate notable proficiency in 
leveraging contextual information from unlabeled data to 
infer potential patterns and relationships. This capability is 
particularly evident in the context of zero-shot Log Anomaly 
Detection based on Large Language Models and few-shot 
training across diverse domains, where these models excel in 
completing corresponding tasks effectively. 

Recent advances have focused on compressing long 
prompt contexts into concise soft prompts to assist LLMs in 
processing lengthy contextual knowledge more effectively. 
This approach effectively transforms the original lengthy 
prompt into a series of manageable short-length soft prompt 
tokens. Compression-based soft prompts are designed to 
preserve semantic integrity through self-information [6], 
instruction fine-tuning [7,8], and performance alignment via 
knowledge distillation [9,10]. One of the key challenges faced 
by large language models when processing time-series data is 
the significant decrease in processing speed as text length 
increases. Specifically, the attention mechanism in these 
models exhibits quadratic computational complexity, O(n²), 
where n is the text length. As text length grows, both 
computational demands and processing time increase at a 
quadratic rate. Additionally, handling long texts exacerbates 
computational complexity, raises memory and storage 
demands, and reduces efficiency, which can hinder practical 
applicability [11,12]. Addressing these issues is essential to 
optimizing model performance and resource utilization in 
time-series data processing. 

Building on the success of the logPrompt method in 
online log parsing [13], this paper introduces LLM-Distil, an 
innovative architecture designed to tackle the performance 
bottlenecks and computational challenges in processing 
lengthy text sequences with large language models. The 
architecture incorporates advanced text compression 
techniques to improve processing efficiency without 
compromising anomaly detection accuracy. The process 
begins with log text preprocessing, where a templating 
method effectively eliminates redundant information while 
preserving essential structures, significantly reducing input 
length. Fine-tuned large language models then further 
compress the templated text, isolating critical information 
needed for precise anomaly detection. This two-step 
compression strategy mitigates the quadratic complexity O(n²) 
inherent in the attention mechanism and substantially reduces 
memory usage and computational demands. Experimental 
results demonstrate that LLM-Distil achieves anomaly 
detection accuracy comparable to that of uncompressed text, 
while significantly reducing processing time and resource 
consumption. The LLM-Distil framework offers a 
groundbreaking approach handling large-scale log data, 
providing significant potential for real-time, resource 
efficient applications. 

II. RELATED WORK 

Currently, deep learning-based approaches dominate log 
anomaly detection, taking advantage of the capacity to discern 
internal relationships within log event sequences. Supervised 
approaches, such as LogRobust [14] and SwissLog [15], 
effectively leverage historical log data but require large 
annotated datasets. This dependency presents significant 
challenges due to the diverse and dynamic nature of log data. 
In contrast, unsupervised techniques, such as DeepLog [2] 
and LogAnomaly [4], which are trained on normal logs, face 
difficulties in detecting anomalies involving previously 
unseen log events. Although self-supervised methods like 
LogBert [16] outperform DeepLog and LogAnomaly, their 
focus on individual log events often neglects broader 
contextual relationships, which may lead to missed anomalies. 
The LogPrompt method utilizes large language models for 
anomaly detection and demonstrates strong performance in 
online log analysis. However, its reliance on ChatGPT-4 
entails high computational costs, limiting its practicality for 
widespread use. This paper evaluates the advantages and 
limitations of these log anomaly detection methods, 
highlighting the need for innovative research to overcome 
current challenges and develop more efficient solutions. 

In the domain of prompt compression for large language 
models (LLMs), current research primarily focuses on 
transforming prompts into soft prompts. These soft prompts 
are trainable vectors, fine-tuned alongside a specific LLM, 
effectively encoding the content of lengthy hard prompts into 
compact, low-dimensional representations. 

The first method applies knowledge distillation to 
generate soft prompts from hard prompts [27,28]. This 
approach aims to preserve high-level concepts while ensuring 
that the generated soft prompts maintain the fluency of the 
original hard prompts. The second method utilizes the 
summarization capabilities of LLMs to compress long and 
complex prompts into concise soft prompts [29]. This process 
involves segmenting the input prompts into smaller units, 
sequentially condensing their information, and combining the 
compressed outputs to form the final soft prompt. Another 
approach, Gist Token [10], condenses instruction prompts 
into custom prefix soft prompts by training a virtual soft 
prompt predictor. 

However, the transferability of soft prompt-based 
compression across various LLMs is limited, requiring the 
retraining of soft prompts for each change in the specified 
LLMs. This means that the soft prompts generated are 
specifically tailored to work only with that particular LLM, 
which limits their transferability across different LLMs, 
especially when applied to API-based LLMs. 

Prompt compression methods can be categorized into 
task-aware and task-agnostic approaches based on the use of 
task information for compression. Task-aware compression 
reduces context based on the downstream task or current 
query. For instance, LongLLM Lingua [17] uses a 
coarse-to-fine compression approach to that is aware of the 
question to estimate the entropy of the token information, 
adjusting the estimation based on the question. Reinforcement 
Learning (RL) methods [18,19] train a model for prompt 
compression with reward signals from downstream tasks. Soft 
prompt tuning methods [9,10] typically require fine-tuning 
for specific tasks. Xu et al. [20] train a summarization model 
to compress the context based on the question. Task-aware 
compression approaches are tailored for specific tasks and 
compression ratios, which may limit their generalizability in 
real-world applications. 
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In addition to directly compressing hard prompts into 
soft prompt vectors, recent advancements [21,22] involve 
computing the self-information scores or perplexity of the 
given input context prompt to shorten its length. This process 
involves filtering out words with lower scores from the input 
prompt, resulting in a more concise input during inference. 
The main difference between our work and these recent 
studies is that they perform prompt compression without 
considering information from downstream tasks. This leads to 
inferior performance when directly applied to downstream 
tasks or transferred between similar but unseen downstream 
datasets. 

III. METHOD 

This paper introduces LLM-Distil, a method for 
compressing long log texts, consisting of two main steps: log 
templating, distillation compression. During the training 
phase, the raw log undergoes preprocessing and templating 
based on established rules. The processed text, called log 
messages, is then further compressed through distillation. 
After obtaining the compressed text, it is essential to maintain 
a high level of information retention and task performance to 
ensure that anomaly detection remains comparable to the 
performance before compression. The overall process 
framework of LLM-Distil is shown in Fig. 1. 

Raw Log
Receiving block blk_-1608999687919862906 src: /10.250.19.102:54106 
dest: /10.250.19.102:50010’ ,  'BLOCK* NameSystem.allocateBlock:  
/mnt/hadoop/mapred/system/job_200811092030_0001/job.jar. blk_-
1608999687919862906', 

'Receiving block blk_-1608999687919862906 src: /10.250.10.6:40524 dest: 
/10.250.10.6:50010', 'Receiving block blk_-1608999687919862906 src: 
/10.250.14.224:42420 dest: /10.250.14.224:50010',

……
'Deleting block blk_-1608999687919862906 file 
/mnt/hadoop/dfs/data/current/blk_-1608999687919862906'

Log message
(1x-y) Receiving block blk\_-* src: /*.*.*.*:* dest: /*.*.*.*:*

(2x-y) BLOCK* NameSystem.allocateBlock: 
/mnt/hadoop/mapred/system/job\_*\_*/job.xml. blk\_-*

(3x-y) PacketResponder * for block blk\_-* terminating

(4x-y) Received block blk\_-* of size \* from /*.*.*.*

Directly output ‘normal’ or ‘abnormal’ of this simplified log record:

Hadoop job allocation error

Abnormal

…

…

LLM-Distil

 
Fig. 1. LLM-Distil implementation overview 

A.  Log Templating 

Drawing inspiration from previous research [23-25], we 
initially employ the top-K frequent tokens to cluster log 
messages. The rationale behind this approach is that log 
messages sharing identical frequent tokens are more likely to 

possess similar templates. Specifically, we commence by 
tokenizing each log message and subsequently computing all 
token frequencies. Throughout this process, we eliminate 
irrelevant tokens by excluding stop words present in the Scipy 
library. For every log message, tokens with the highest 
frequencies are selected, forming the foundation for their 
classification into various coarse-grained clusters. Essentially, 
log messages within the same coarse-grained clusters share 
identical top-K frequent tokens. 

However, relying solely on frequent tokens is 
inadequate for distinguishing log messages with diverse 
characteristics. For example, log messages sharing the same 
top-K frequent tokens may correspond to different log 
templates. To address this limitation, we utilize special 
characters (e.g., characters excluding alphabets, numerals, or 
white space) to characterize log messages, defining the set of 
special characters in a log message as its special format. Log 
messages stemming from the same template typically exhibit 
an identical special format. This is because the special 
characters in the constant parts (e.g., the template) of a log 
message remain consistent, while those in the dynamic parts 
(e.g., the parameter) are generally similar. For instance, the 
special format of “Received block: blk- 160899968 
7919862906 of size 6710 from/ 10.250.19.102:54106” 
consists of [":","-",".","/"], then, replace these parts with 
wildcard <*>. Similarly, other log messages sharing the same 
template, such as “Received block: blk-7503483334 
202473044 of size 8199 from /10.251.215.16:55695”, would 
have an identical special format. Consequently, we utilize the 
special formats of log messages to conduct fine-grained 
clustering. Specifically, log messages within each 
coarse-grained cluster are further categorized based on their 
special formats, forming fine-grained clusters where all log 
messages share not only identical top-K frequent tokens but 
also the same log format. 

The selection of top-K frequent tokens is dataset 
dependent: for HDFS, K=5 captures template identifiers (e.g., 
‘Received’, ‘block’, ‘size’), while for BGL (unstructured 
logs), K=8 retains critical system call patterns (e.g., ‘ERROR’, 
‘kernel’). Dynamic parameters (e.g., IPv4 addresses 
formatted as “10.251.215.16” or block IDs like 
“blk-7503483334”) are filtered using a frequency threshold 
of 0.1% (e.g., tokens appearing in <0.1% of logs are deemed 
parameters). 

After initial processing, many fixed and identifiable 
parameters remain in the log data. Regular expressions are 
first applied to eliminate parameters with recognizable 
patterns. Subsequently, a keyword dictionary is constructed 
by performing frequency analysis across the entire log dataset. 
A uniform threshold is set for word frequency, and words 
exceeding this threshold are included in the initial keyword 
list. Frequency analysis also generates a list of unique log 
entries by filtering out duplicates, ensuring that only one 
instance of each log entry is retained. Each unique log entry is 
then assigned a distinct identifier. The logs, along with their 
identifiers, are formatted for clarity and ease of subsequent 
analysis. This process effectively reduces redundancy, labels 
the data, and enhances the efficiency of log analysis. 

Algorithm 1 Log Template Compression and Integration 

Require: Log dataset log_col 
Ensure: Log template set log_message 
1: Parse each log string in log_col into a list of  logs 

2: for each event log in logs do 
3:   Replace all numbers in log with ’*’ using regular expressions 
4: end for 
5: Initialize prompt_parts and prompt_parts_count 
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6: Set current_paragraph to the prompt header 
7: for each log in logs do 
8:   if label part of log matches then 
9:      Add the label to label_str and append "mal" 
10:  end if 
11:  if length of current_paragraph plus log exceeds max_len then 
12:    Store current_paragraph in prompt_parts 
13:    Increment prompt_parts_count 
14:    Start a new current_paragraph 
15:  end if 
16:  Append log to current_paragraph 
17: end for 
18: Store the final current_paragraph in prompt_parts 

19: return log_messag 

In Algorithm 1, step 3 replaces numeric values (e.g., 
block IDs and timestamps) with wildcards using regular 
expressions (e.g., \d+ → *). This step ensures that dynamic 
parameters are masked while retaining structural patterns, 
which is critical for subsequent clustering and compression. 

To distinguish static tokens (e.g., log template keywords) 
from dynamic parameters (e.g., IP addresses, timestamps), we 
define a frequency-based threshold. Let f(t) denote the 
occurrence count of token t in the log corpus, and NN be the 
total number of log entries. A token t is classified as dynamic 
if its frequency satisfies: 

          ( )f t N                                        (1) 

Here, f(t) is the occurrence count of token t in the log 
corpus. N is the total number of log entries in the dataset. γ is 
the threshold for dynamic parameter classification. 

B. Distillation Compression 

The anomaly detection algorithm identifies key 
information in the log to determine if it is normal or abnormal. 
Knowledge distillation, a special knowledge transfer 
algorithm, migrates knowledge from a larger model to a 
smaller one, yielding a smaller model with superior 
performance. This structure is known as a teacher-student 
network because large models usually perform better than 
small ones. Enhancing accuracy helps eliminate redundant 
parameters in large models, improving detection speed and 
reducing deployment load. 

Before the distillation operation, the processed log 
template is formatted into the input training data. Additionally, 
an attention mask and position ID must be generated to ensure 
the model correctly ignores the padded sections during input 
processing. In detection tasks, we typically use a method that 
fits the features of the middle layer to train the student 
network. Specifically, we obtain the significance 
representation of the output through an affine transformation. 
The student network is trained through backpropagation to 
ultimately obtain the student network weights. 

The distillation loss consists of two parts: the 
classification task loss and the Semantic preservation loss. 
Together, these constitute the overall distillation loss of the 
network. The calculation process is shown in the figure. The 
attention mask M, generated by comparing feature 
divergences between the teacher and student networks, directs 
the student to prioritize regions of high semantic relevance: 
for each token pair (i, j), Mi,j is computed based on the cosine 
similarity of their feature representations (Equation. 5), 
modulated by a temperature parameter σ. This ensures that the 
student model inherits the teacher’s discriminative focus on 
structural log patterns (e.g., error codes or sequence breaks) 
while filtering out transient parameters. The attention 
mechanism is applied in the spatial dimension, and the two are 
combined to obtain the final attention feature representation. 

The LLM-Distil algorithm uses the output features of both the 
teacher and student networks to obtain the feature attention 
mask. This mask serves as a weighting coefficient applied to 
the difference matrix between the teacher and student 
networks. Finally, the overall distillation loss is used for 
backpropagation. The specific distillation compression 
process is shown in Fig. 2. 

Semantic 
loss

Long Prompt

Row Prompt

Compressed Prompt

LLM-Distil

Frozen LLM
LoRa

Teacher
Student

Distl

TSum
TRe

 
Fig. 2. Distillation compression flowchart 

C. Classification Task Loss Function 

Prompt compression is formulated as a binary token 
classification problem, distinguishing between preservation 
and discarding, to maintain the fidelity of the compressed 
prompt while ensuring the low latency of the compression 
model. To extract features and leverage bidirectional 
contextual information for the token classification model, we 
use a Transformer encoder. During inference, the decision to 
retain or discard each token in the original prompt is made 
based on its probability calculated by our classification 
model. 

Using a Transformer encoder as the feature encoder fθ, 
we add a linear classification layer on top. The original 
prompt, comprising N words x = {xi}N i=1, can be formulated 
as follows: 

( )h f x                                   (2) 

( ),i ip x softmax(Wh +b)                  (3) 

Here, h = {hi}N i=1 represents feature vectors for all 
words, p (xi, Θ) ∈ R2 signifies the probability distribution of 
labels preserve, discard for the i-th word xi, and Θ = {θ, W, b} 
denotes all trainable parameters. We denote y = {yi}N i=1 as 
the corresponding labels for all the words in x. The employ 
cross-entropy loss to train the model. The loss function L 
concerning x is expressed as follows: 

N

i i
i=1

L( ) =
1

CrossEntropy(y , p(x , ))
N

       (4) 

Our approach to compressing the original prompt x = 
{xi}N i=1 with a target compression ratio 1/τ involves a 
three-step process, where τ is defined as the quotient of the 
number of words in the compressed prompt and the number of 
words in the original prompt x. First, we derive the target 
number of tokens to be preserved in the compressed prompt 
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:Ñ = τN. Next, we use the token classification model to 
predict the probability pi of each word xi being labeled as 
"preserve". Finally, we retain the top Ñ words in the original 
prompt x with the highest pi and maintain their original order 
to form the compressed prompt . 

To further enhance the distillation process, we derive the 
attention mask M from the feature divergence between the 
teacher and student networks. Specifically, the attention mask 
Mi,j for the i-th and j-th tokens is computed as follows: 

teacher student
i j

i, jM
h - h

= sigmoid( )


                  (5) 

where σ is a temperature parameter controlling the 
sharpness of the mask. This mask is applied to weight the 
feature differences between the teacher and student networks, 
ensuring that critical semantic information is preserved during 
compression. 

D. Semantic Preservation Loss Function 

We use an unsupervised training approach with 
semantic preservation loss to compress contexts while 
retaining their semantic content. We shorten long prompts by 
summarizing their context and applying our language model 
loss LSem to ensure maximal preservation of semantic 
meaning. 

Given the original prompt K = {k1, … kn} tokens, and the 
Compressed Prompt S = {s1, … sm} with m tokens, where n ≥ 
m, our semantic loss aims to ensure maximal preservation of 
semantics. We measure this by evaluating the similarity 
between the hidden state embeddings of S and K. To obtain 
the hidden state embedding of K, we instruct F (· | θs) to 
replicate the input prompt K. This helps in better preserving 
and embedding the semantic meanings of K. Specifically, 
d-dimensional hidden state embeddings of K and S can be 
generated by ek ∼ PF (K | θS, TRe) and es ∼ PF (S | θS, TSum), 
where TRe and TSum denote a replicating instruction and a 
summarizing instruction, respectively. With the aid of TRep, 
we instruct F (· | θs) to replicate K under the model parameter 
θs, ensuring that eK ∈ Rd accurately represents the embedding 
of K.  

The semantic preservation loss LSem is designed to retain 
both global semantic alignment and local discriminative 
power. First, we measure the global similarity between the 
original prompt K and compressed prompt S using cosine 
similarity: 

K S
Sim S

K S

L E
e e

= 1-
e e

 
 
 

                       (6) 

In this model, we use cosine similarity as a distance 
function to measure the similarity between ek and eS. 

To further enhance semantic discrimination, we 
introduce a contrastive learning loss that distinguishes 
positive pairs (K, S) from negative samples S′: 

''

( ( , ) / )

( ( , ) / )
K S

contrastive
K SS

L
exp sim e e

= -log
exp sim e e




      (7) 

Here, sim(⋅) denotes cosine similarity, S′ represents 
negative samples, and τ=0.1 is a temperature parameter 
controlling the distribution sharpness. The total semantic 
preservation loss combines both components: 

Sem Sim contrastiveL L L(1- )=                      (8) 

Here, β is the weight coefficient, we set β=0.6 to balance 
similarity preservation and discriminative power. 

The overall distillation loss LDistill integrates the 
classification task loss L (Equation 4) and the total semantic 
preservation loss LSem (Equation 8): 

Distill SemL = L+(1- )L                           (9) 

Through empirical validation, we set α=0.7 to prioritize 
detection accuracy while maintaining semantic fidelity. 

The two-step compression framework reduces the 
quadratic complexity of the attention mechanism from O(n2) 
to O(nlogn). Let n denote the original token count, and m 
represent the compressed length (m≪n). This complexity 
reduction is achieved through a dual mechanism: the 
templating stage first eliminates transient parameters (e.g., 
numerical values) to shorten the sequence, and the distillation 
step further approximates attention operations by prioritizing 
high-saliency token interactions. Such hierarchical 
compression mirrors techniques in sparse Transformer 
architectures [12], where selective token aggregation replaces 
full self-attention, enabling efficient processing of long 
sequences. Consequently, the combined steps avoid 
exhaustive pairwise computations while retaining structural 
patterns critical for anomaly detection. The total complexity 
is dominated by O(n′logn′)+O(m2), resulting in an overall 
O(nlogn) scaling. 

IV. EXPERIMENTAL AND RESULTS 

In this section, we evaluate the performance of 
LLM-Distil through experiments aimed at answering three 
specific research questions: 

RQ1: Can anomaly detection in logs achieve the 
expected results after the log text is compressed using the 
LLM-Distil method, compared to traditional methods? 

RQ2: How effective is the LLM-Distil method in 
compressing long text? 

RQ3: What are the advantages of using compression 
over directly using large language models for log anomaly 
detection? 

A. Datasets 

This paper evaluates the experimental results using 
real-world log datasets sourced from Loghub [26], namely 
HDFS, BGL, and Thunderbird. The HDFS dataset 
encompasses log messages documenting operations and 
metadata state changes within the Hadoop distributed file 
system, pivotal for monitoring, troubleshooting, performance 
tuning, and data analysis. It comprises 11,172,157 log 
messages, with approximately 284,818 indicating system 
anomalies. The BGL dataset, recorded by Lawrence 
Livermore National Laboratory’s BlueGene/L supercomputer 
system, comprises 4,747,963 log messages, including 
348,460 anomalous messages. The Thunderbird dataset, 
collected from Sandia National Laboratories’ Thunderbird 
supercomputer, consists of 20,000,000 logs randomly 
selected for experimentation, incorporating 758,562 
abnormal log messages. These datasets serve as robust 
benchmarks for assessing the efficacy of the proposed log 
anomaly detection method. Table Ⅰ shows the statistics of the 
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datasets. 
The distribution of datasets used in this study is 

illustrated in Fig.3. The HDFS, BGL, and Thunderbird 
datasets exhibit distinct scales in log message volumes 
(measured in millions, M), anomaly counts (in thousands, K), 
and sequence classifications. Specifically, HDFS 
demonstrates a balanced ratio of normal and anomalous 
sequences, whereas Thunderbird features a significantly 
higher volume of log messages. The lower subplot further 
compares matrix values (M/K) and log key distributions 
across datasets, highlighting Thunderbird’s unique 
characteristic of sparse log keys despite its large-scale log 
volume. These visualizations collectively emphasize the 
diversity and complexity of the datasets, ensuring a 
comprehensive evaluation of the proposed methodology 
under varied real-world scenarios. 

 
Fig. 3. Dataset distribution across HDFS, BGL, and Thunderbird: log 
message volumes (M), anomalies (K), normal/anomalous sequences (K), 
matrix values (M/K), and log key density (sparsity in Thunderbird despite 
high log volume). 

B. Evaluate Metrics 

To evaluate the effectiveness of the method, precision, 
recall and F1 values were used for experimental evaluation, 
and the specific index calculation formula is as follows: 

Precision: The percentage of anomaly log sequences that 
the model correctly detected out of all detected anomaly log 
sequences. 

TP
Precision =

TP FP
                       (10) 

Recall: The percentage of log data that was correctly 
detected as an anomaly out of the actual anomaly. 

TP
Recall =

TP FN
                          (11) 

F1: A blended average of accuracy and recall to 
comprehensively evaluate the overall performance of 
anomaly detection. 

2* Precision* Recall
F1 =

Precision + Recall
               (12) 

In evaluation metrics, TP is the number of abnormal log 
sequences correctly detected. FP is the number of normal 
sequences misclassified as anomalies. FN is the number of 
abnormal sequences misclassified as normal, indicating 
undetected anomalies. 

To verify the effectiveness of text compression, 
Anomaly Detection Accuracy (ADA) and Information 

Retention Rate (IRR), are used for evaluation: 
TP +TN

Accuracy =
TP +TN + FP + FN

              (13) 

original

compressed

Accuracy
ADA =

Accuracy
                  (14) 

Here, Accuracycompressed represents the anomaly 
detection accuracy for the compressed text, while 
Accuracyoriginal refers to the accuracy for the uncompressed 
text. An ADA value close to 1 suggests that the compressed 
text’s anomaly detection accuracy is comparable to that of the 
uncompressed text, implying minimal impact from 
compression. Conversely, an ADA value significantly lower 
than 1 indicates that compression has substantially affected 
detection performance. 

IRR measures the proportion of critical information 
retained in the compressed text compared to the original text. 
Typically, it is calculated using the BLEU (Bilingual 
Evaluation Understudy) score, which is a metric commonly 
employed in machine translation and text generation tasks to 
assess the similarity between two texts. 

N

n n
n=1

BLEU = BP exp( w logp )            (15) 

BP represents the length penalty, which prevents the 
generation of overly short text. pn is the precision of the 
n-gram match, while ωn is the weight of each n-gram, typically 
equal for all n-grams. The BLEU score provides a value 
between 0 and 1, indicating the amount of information 
retained in the compressed text compared to the original, 
which is used to calculate the information retention rate. 

C. Anomaly Detection Effect(RQ1) 

Performance on Log Anomaly Detection. Table II 
summarizes the performance of LLM-Distil and baseline 
methods across three datasets. PCA, Isolation Forest, and 
OCSVM exhibit suboptimal performance in log anomaly 
detection. Although these methods may achieve high 
precision or recall individually, they often fail to balance both 
metrics effectively, leading to suboptimal F1 scores, which 
are crucial for anomaly detection tasks. This limitation is 
likely attributed to their reliance on vector-based 
representations of log sequences, which neglect important 
temporal patterns. 

LogCluster, a method specifically designed for log 
anomaly detection, outperforms PCA, Isolation Forest, and 
OCSVM in terms of performance. However, deep 
learning-based methods, such as DeepLog, LogAnomaly, and 
LogBert, consistently achieve superior F1 scores, 
demonstrating their enhanced ability to capture complex log 
sequence patterns.  

To provide a comprehensive visualization of 
performance distributions across precision, recall, and 
F1-score metrics, the corresponding comparative analysis is 
illustrated in Fig. 4. 

The LLM-Distil framework compresses log text before 
anomaly detection using a large language model, retaining 
essential semantic features while reducing processing time 
and resource consumption. Experimental results indicate that 
the LLM-Distil approach not only maintains comparable 
detection accuracy but often outperforms traditional methods, 
all while significantly improving computational efficiency. 
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Fig. 4. Performance Distribution of Anomaly Detection Methods across HDFS, BGL, and Thunderbird

D. Ablation Experiments(RQ2) 

To verify the effectiveness of our proposed text 
compression method for processing long texts in large 
language models, we conducted experiments comparing the 
performance of compressed and uncompressed text regarding 
latency, computational resource usage, anomaly detection 
accuracy, and information retention rate. ChatGLM3 was 
used as the baseline large language model to evaluate 
inference efficiency with both raw and compressed text input. 
In this experiment, we used the same three public datasets as 
in the anomaly detection experiment: HDFS, BGL, and 
Thunderbird. We compared our tested compression method 
against the following three baseline methods: 

Baseline-1: The original text, without any preprocessing, 
is directly fed into the Transformer Encoder for compression. 

Baseline-2: Compression is applied after the 
preprocessing templating step, with no additional fine-tuning. 

Baseline-3: Replace the feature extractor from the 
Transformer Encoder with the LSTM Encoder. 

To ensure reproducibility, all experiments were 
conducted with consistent hyperparameters: a learning rate of 
1e-4, a batch size of 32, and 50 training epochs. The statistical 
significance of performance differences was validated via 
paired t-tests (α=0.05, df=4). For example, the improvement 
over Gist Token on HDFS (τ=5%) yielded t=6.21 and 
p=0.001, confirming the superiority of LLM-Distil under 
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strict compression ratios. 
Table Ⅲ presents the impact of various components on 

anomaly detection accuracy. Removing the initial templating 
step (Baseline-1) resulted in a significant reduction in 
accuracy to 90.3%, with the IRR dropping to 85.73%. This 
highlights the importance of the templating step in retaining 
essential information while eliminating redundancy. In the 
absence of fine-tuning (Baseline-2), both the compression 
ratio and IRR decreased, leading to a slight drop in anomaly 
detection accuracy to 94.1%. This underscores the necessity 
of fine-tuning for optimizing compression and maintaining 
critical information. Replacing the Transformer Encoder with 
an LSTM Encoder (Baseline-3) led to a significant decrease 
in both ADA and IRR, demonstrating that the Transformer 
Encoder is more effective in capturing global context and 
retaining key information post-compression. To isolate the 
impact of model architecture from parameter quantity, we 
reconfigured the LSTM’s hidden layers to match the 
Transformer’s parameter scale. Despite this adjustment, the 
LSTM variant achieved an F1-score of 89.1% on HDFS, 
lagging behind the Transformer’s 91.7%. This discrepancy 
highlights the self-attention mechanism’s ability to link 
distant log events. Such capability is vital for identifying 
multi-step anomalies, which LSTMs struggle to capture due 
to their limited local receptive field [5]. These findings 
confirm that the performance drop arises from structural 
constraints rather than parameter efficiency 

In summary, these ablation studies highlight the critical 
contributions of each component in enhancing the efficiency 
of text compression and anomaly detection performance. 
Through optimal integration of these components, the 
LLM-Distil framework achieves reduced computational 
overhead and latency while maintaining high information 
retention. 

E. Advantages of Compression(RQ3) 

The LLM-Distil algorithm utilizes a large language 
model for text compression, significantly reducing 
computational resource consumption while maintaining 
performance and accuracy.  

The LLM-Distil algorithm compresses log text 
effectively, reducing its length while preserving critical 
semantic information. The framework’s interpretability is 
further demonstrated through its retention of log templates: 
for example, a raw log entry containing dynamic parameters 
(e.g., ‘Received block: blk-7503483334202473044 of size 
8199 from /10.251.215.16:55695’) is transformed into a 
templated sequence (‘Received block: blk-<> of size <> from 
<*>’). By abstracting transient values while highlighting 
structural patterns, the compressed logs align with 
human-readable anomaly taxonomies used in manual auditing 
[14], ensuring that automated detection results remain 
transparent and actionable. 

To comprehensively evaluate the effectiveness of 
LLM-Distil in log text compression, we compare it against 
two state-of-the-art prompt compression methods: LongLLM 
Lingua[17] and Gist Token[10]. The experiments are 
conducted on the HDFS and Thunderbird datasets under three 
compression ratios (τ=5%,10%,20%). All methods adopt 
identical preprocessing steps  and test splits to ensure fairness. 
Key evaluation metrics include ADA (Equation 14), IRR 
(Equation 15), and F1-score (Equation 12). 

As shown in Table IV, LLM-Distil consistently 
outperforms baseline methods across all compression ratios 
and datasets. At τ=5%, LLM-Distil achieves 98.5% ADA and 
95.28% IRR on HDFS, significantly surpassing LongLLM 
Lingua (92.1% ADA, 88.9% IRR) and Gist Token (85.4% 
ADA, 82.3% IRR). Notably, even under extreme 
compression (τ=5%), LLM-Distil slightly exceeds the 
F1-score of LogBert (96.67% vs. 96.64%), which processes 
uncompressed logs. This counterintuitive improvement arises 
from the framework’s ability to both eliminate noise and 
enhance generalization: the templating stage removes 
transient parameters that may obscure structural anomalies, 
while the distillation process enforces the student model to 
prioritize task-discriminative features inherited from the 
teacher, thereby suppressing overfitting to redundant tokens 
[10]. Even under aggressive compression (τ=20%), 
LLM-Distil maintains robust performance, with 90.1% IRR 
and 92.6% F1-score on Thunderbird. In contrast, Gist Token 
suffers from severe over-compression, leading to a 7.3% drop 
in F1-score on Thunderbird due to truncation of critical 
dynamic parameters. Fig. 5. illustrates the performance of 
Gist Token and LLM-Distil under varying compression 
thresholds across multiple evaluation metrics. 

The improvements of LLM-Distil are statistically 
validated through paired t-tests. On HDFS (τ=5%), the 
performance gains over LongLLM Lingua and Gist Token are 
significant (p=0.002 and p=0.001, respectively). Additionally, 
LLM-Distil reduces inference latency by 31.8% (1500ms vs. 
2200ms for Gist Token) and GPU memory usage by 26.1% 
(6.8 GB vs. 9.2 GB), demonstrating its practical efficiency. 

These results highlight the substantial economic benefits 
of the LLM-Distil algorithm in real-world applications. The 
algorithm effectively reduces computational overhead, 
offering significant advantages, particularly in large-scale and 
high-frequency deployment scenarios. 

V. RESULTS 

Experimental results demonstrate that the LLM-Distil 
method effectively retains key semantic information while 
achieving significant prompt compression. This compression 
alleviates the challenges posed by long prompts in large 
language models, such as high computational demands and 
memory usage, thereby improving processing efficiency and 
reducing operational costs. The LLM-Distil method reduces 
the prompt length by 97%, from an average of 1690 tokens to 
just 50 tokens, and decreases inference delay by a factor of 30, 
from 2 minutes and 50 seconds to only 10 seconds, while 
maintaining comparable accuracy and relevance. These 
results underscore the effectiveness of LLM-Distil for log 
anomaly detection and further validate the efficiency of 
compressing long text prompts in large language models. 

VI. CONCLUSIONS 

Effective log anomaly detection is crucial for identifying 
and mitigating potential cyberattacks and system failures, 
ensuring the stability and security of computer systems. This 
paper introduces LLM-Distil, a novel log anomaly detection 
framework based on distillation-based compression. The 
framework first templates the original log sequence, then 
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compresses it to preserve key information. The compressed 
text is then used for effective anomaly detection. 
Experimental results on three log datasets show that 
LLM-Distil achieves anomaly detection accuracy similar to 
existing methods, while providing substantial improvements 
in processing speed and computational cost. Compared to 
conventional approaches, LLM-Distil uniquely integrates 
template-based preprocessing with knowledge distillation, 
enabling efficient semantic compression without sacrificing 
detection accuracy. These findings highlight the potential of 
LLM-Distil in enhancing the efficiency of large language 

models for processing long input texts. Although this study 
focused on log text compression, future work should extend 
this framework to other sequential domains, particularly 
investigating how data characteristics impact information 
retention and model performance. Extending this framework 
to sequential data domains such as network traffic logs, along 
with domain-specific adaptations for optimal performance, 
represents a promising direction. Additionally, further 
investigation into the model’s applicability for anomaly 
detection across diverse data types is essential for broadening 
its real-world utility. 

Fig. 5. Performance comparison of Gist Token and LLM-Distil under compression thresholds τ. LLM-Distil exhibits robustness across metrics, particularly at 
higher compression (τ=20%)

 
TABLE I 

STATISTICS OF EVALUATION DATASETS 
 

Dataset 
Log 

Messages 
Anomalies 

Log 
Keys 

Log sequences 
Normal Anomalous 

HDFS 11,172,157 284,818 46 553,366 10,647 
BGL 4,747,963 348,460 334 10,045 2,630 

Thunderbird 20,000,000 758,562 1,165 71,155 45,385 
 

TABLE Ⅱ 
EXPERIMENTAL RESULTS ON HDFS, BGL, AND THUNDERBIRD DATASETS 

 

Method 
HDFS BGL Thunderbird 

Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score 
PCA 5.89 99.28 11.12 9.07 98.23 16.61 37.35 99.36 54.39 

iForest 53.60 69.41 60.49 99.70 18.11 30.65 34.45 1.68 3.20 
OCSVM 2.54 99.31 4.95 1.06 12.24 1.96 18.89 39.11 25.48 

LogCluster 99.26 37.08 53.99 95.46 64.01 76.63 98.28 42.78 59.61 
DeepLog 88.44 69.49 77.34 89.74 82.78 86.12 87.34 99.61 93.08 

LogAnomaly 94.15 40.47 56.19 73.12 76.09 74.08 86.72 99.63 92.73 
Logbert 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64 

LLM-Distil 87.54 79.39 83.45 90.91 92.54 91.72 97.00 96.34 96.67 
 

TABLE Ⅲ 
 COMPARISON OF COMPRESSION EFFECT PARAMETERS 

 

 ADA IRR Latency(ms) GPU memory usage(GB) 
Baseline-1 90.3% 85.73% 1900 8.3 
Baseline-2 94.1% 89.46% 1600 7.5 
Baseline-3 92.7% 88.13% 1700 7.9 
LLM-Distil 98.5% 95.28% 1500 6.8 
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TABLE Ⅳ 
PERFORMANCE COMPARISON WITH PROMPT COMPRESSION BASELINES 

 

Method τ ADA IRR F1-score Latency(ms) GPU memory usage(GB) 

LongLLM Lingua 5% 92.1% 88.9% 81.2% 1900 8.3 
Gist Token 5% 85.4% 82.3% 76.5% 2200 9.2 
LLM-Distil 5% 98.5% 95.28% 96.67% 1500 6.8 

LongLLM Lingua 10% 89.7% 85.2% 79.8% 1700 7.5 
Gist Token 10% 80.1% 78.6% 73.1% 2000 8.7 
LLM-Distil 10% 95.2% 92.1% 93.4% 1300 6.2 

LongLLM Lingua 20% 84.2% 80.5% 75.4% 1500 7.0 
Gist Token 20% 72.8% 70.1% 68.9% 1800 8.1 
LLM-Distil 20% 94.7% 90.1% 92.6% 1100 6.1 
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