


Abstract—Efficient text processing is increasingly crucial
as data volumes grow exponentially across industries.
This paper presents a novel text compression framework,
LLM-Distil, that efficiently reduces computational
demands while preserving crucial semantic information.
The method utilizes template-based preprocessing and
knowledge distillation to compress lengthy text sequences,
maintaining essential details. Experiments on three
benchmark log datasets (HDFS, BGL, and Thunderbird)
show that our approach achieves comparable anomaly
detection accuracy to existing models, while significantly
improving computational efficiency and reducing latency.
On average, the framework reduces text length by over
90%, resulting in faster inference times and reduced
resource consumption, making it ideal for large-scale
applications. Furthermore, our analysis indicates that the
Information Retention Rate (IRR) remains above 85%
after compression, ensuring the preservation of critical
data features. Future work will explore extending this
approach to other domains, assessing the impact of data
characteristics on compression effectiveness, and
optimizing the model for a broader range of anomaly
detection tasks. Overall, our results indicate that
LLM-Distil has the potential to transform how large
language models manage extensive textual inputs in
resource-limited environments.

Index Terms—LLMs, log sequences, anomaly detection, text
compression

Manuscript received Jan. 24, 2025; revised July. 1, 2025. This work was

supported by the National Natural Science Foundation of China (62272093),
the Economic and Social Development Research Topics of Liaoning
Province (2025-10146-244), and the Postgraduate Education and Teaching
Reform Research Project of Liaoning Province (LNYJG2024092).

Xiangyu Zhu is a Ph.D. candidate of School of Electronic and
Information Engineering, University of Science and Technology Liaoning,
Anshan, China. (e-mail: zhuxiangyu0213@163.com).

Wenhua Cui is a Professor of School of Computer Science and Software
Engineering, University of Science and Technology Liaoning, Anshan,
China. (Corresponding author to provide phone: +86-133-0422-4928;
e-mail: taibeijack@126.com).

Yuhao Chen is a Ph.D. candidate of School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
China. (e-mail: chenyuhao901113@163.com).

Ye Tao is an Associate Professor of School of Computer Science and
Software Engineering, University of Science and Technology Liaoning,
Anshan, China. (e-mail: taibeijack@163.com).

Xilong Wang is a Postgraduate of School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
China. (e-mail: wang_xl2024@163.com).

I. INTRODUCTION

he dynamic evolution of the digital economy is propelled
by the advancement of 5G technology alongside the

emergence of cutting-edge technologies such as cloud
computing, Blockchain, and artificial intelligence. As the
proliferation of devices and applications increases, the
volume of data, including events and alerts, essential for the
operation and maintenance of IT systems, undergoes
exponential growth [1]. The manual analysis of these complex
data becomes increasingly challenging. System logs, as the
predominant form of data in O&M operations, encompass
records generated by contemporary network equipment,
systems, and service programs during their operational cycles,
documenting system status and event information. Log
analysis enables the identification of aberrant log sequences,
which are crucial for troubleshooting and problem diagnosis.
Consequently, log files play a pivotal role in network
monitoring, system stability maintenance, performance issue
debugging, and software security safeguarding.

Recently, deep learning models, particularly recurrent
neural networks (RNNs), have been widely utilized to detect
log anomalies due to their ability to model sequential data
[2,3,4]. Log data is generated chronologically, with a time
dependency often existing between log records. RNNs can
capture sequential and time-dependent information to
understand the dynamics of log sequences. By training on
numerous normal log sequences, RNNs can identify potential
anomalies, such as irregular log entry frequency or changes in
content and structure. Additionally, RNNs can classify log
sequences, distinguishing between normal and abnormal
entries. The trained RNN model predicts the next log entry at
each time step and assesses its abnormality. However, RNNs
have limitations in log anomaly detection. Firstly, their
complex time dependencies and gradient propagation can
lead to longer training times. Secondly, RNNs may encounter
gradient vanishing or explosion problems when processing
very long sequences, affecting training effectiveness. Third,
while RNNs effectively capture local dependencies, they
struggle with global long-distance dependencies. Large
language models possess strong sequential modeling
capabilities, handle long-distance dependencies effectively,
and understand complex log patterns through pretraining and
fine-tuning. These models detect subtle anomalies and
provide more accurate predictions and classifications.
Leveraging the power of large language models improves the
accuracy and efficiency of log anomaly detection,
overcoming many limitations of traditional methods.

The advancement of artificial intelligence (AI) systems
has been propelled by the emergence of large language
models (LLMs) and fundamental models. LLMs, being
extensive pre-trained statistical language models rooted in
neural networks, mainly encompass Transformer-based
neural language models pre-trained in vast textual datasets [5].

Large Language Model Based on Semantic
Compression for Log Anomaly Detection

Xiangyu Zhu, Wenhua Cui, Yuhao Chen, Ye Tao, and Xilong Wang

T

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

LLMs, characterized by their expansive scale and pre-trained
statistical architectures rooted in neural networks, represent a
pivotal development in the AI landscape. These models
predominantly encompass Transformer-based neural
language models, which undergo extensive pretraining on
vast corpora of textual data. Beyond their formidable
language comprehension and generation capabilities, LLMs
exhibit robust analytical prowess, particularly evident in their
adept handling of zero-shot and few-shot data across diverse
domains. This attribute underscores the versatility and
adaptability of LLMs, positioning them as powerful tools to
tackle multifaceted challenges in AI applications. Large
language models demonstrate notable proficiency in
leveraging contextual information from unlabeled data to
infer potential patterns and relationships. This capability is
particularly evident in the context of zero-shot Log Anomaly
Detection based on Large Language Models and few-shot
training across diverse domains, where these models excel in
completing corresponding tasks effectively.

Recent advances have focused on compressing long
prompt contexts into concise soft prompts to assist LLMs in
processing lengthy contextual knowledge more effectively.
This approach effectively transforms the original lengthy
prompt into a series of manageable short-length soft prompt
tokens. Compression-based soft prompts are designed to
preserve semantic integrity through self-information [6],
instruction fine-tuning [7,8], and performance alignment via
knowledge distillation [9,10]. One of the key challenges faced
by large language models when processing time-series data is
the significant decrease in processing speed as text length
increases. Specifically, the attention mechanism in these
models exhibits quadratic computational complexity, O(n²),
where n is the text length. As text length grows, both
computational demands and processing time increase at a
quadratic rate. Additionally, handling long texts exacerbates
computational complexity, raises memory and storage
demands, and reduces efficiency, which can hinder practical
applicability [11,12]. Addressing these issues is essential to
optimizing model performance and resource utilization in
time-series data processing.

Building on the success of the logPrompt method in
online log parsing [13], this paper introduces LLM-Distil, an
innovative architecture designed to tackle the performance
bottlenecks and computational challenges in processing
lengthy text sequences with large language models. The
architecture incorporates advanced text compression
techniques to improve processing efficiency without
compromising anomaly detection accuracy. The process
begins with log text preprocessing, where a templating
method effectively eliminates redundant information while
preserving essential structures, significantly reducing input
length. Fine-tuned large language models then further
compress the templated text, isolating critical information
needed for precise anomaly detection. This two-step
compression strategy mitigates the quadratic complexity O(n²)
inherent in the attention mechanism and substantially reduces
memory usage and computational demands. Experimental
results demonstrate that LLM-Distil achieves anomaly
detection accuracy comparable to that of uncompressed text,
while significantly reducing processing time and resource
consumption. The LLM-Distil framework offers a
groundbreaking approach handling large-scale log data,
providing significant potential for real-time, resource
efficient applications.

II. RELATED WORK

Currently, deep learning-based approaches dominate log
anomaly detection, taking advantage of the capacity to discern
internal relationships within log event sequences. Supervised
approaches, such as LogRobust [14] and SwissLog [15],
effectively leverage historical log data but require large
annotated datasets. This dependency presents significant
challenges due to the diverse and dynamic nature of log data.
In contrast, unsupervised techniques, such as DeepLog [2]
and LogAnomaly [4], which are trained on normal logs, face
difficulties in detecting anomalies involving previously
unseen log events. Although self-supervised methods like
LogBert [16] outperform DeepLog and LogAnomaly, their
focus on individual log events often neglects broader
contextual relationships, which may lead to missed anomalies.
The LogPrompt method utilizes large language models for
anomaly detection and demonstrates strong performance in
online log analysis. However, its reliance on ChatGPT-4
entails high computational costs, limiting its practicality for
widespread use. This paper evaluates the advantages and
limitations of these log anomaly detection methods,
highlighting the need for innovative research to overcome
current challenges and develop more efficient solutions.

In the domain of prompt compression for large language
models (LLMs), current research primarily focuses on
transforming prompts into soft prompts. These soft prompts
are trainable vectors, fine-tuned alongside a specific LLM,
effectively encoding the content of lengthy hard prompts into
compact, low-dimensional representations.

The first method applies knowledge distillation to
generate soft prompts from hard prompts [27,28]. This
approach aims to preserve high-level concepts while ensuring
that the generated soft prompts maintain the fluency of the
original hard prompts. The second method utilizes the
summarization capabilities of LLMs to compress long and
complex prompts into concise soft prompts [29]. This process
involves segmenting the input prompts into smaller units,
sequentially condensing their information, and combining the
compressed outputs to form the final soft prompt. Another
approach, Gist Token [10], condenses instruction prompts
into custom prefix soft prompts by training a virtual soft
prompt predictor.

However, the transferability of soft prompt-based
compression across various LLMs is limited, requiring the
retraining of soft prompts for each change in the specified
LLMs. This means that the soft prompts generated are
specifically tailored to work only with that particular LLM,
which limits their transferability across different LLMs,
especially when applied to API-based LLMs.

Prompt compression methods can be categorized into
task-aware and task-agnostic approaches based on the use of
task information for compression. Task-aware compression
reduces context based on the downstream task or current
query. For instance, LongLLM Lingua [17] uses a
coarse-to-fine compression approach to that is aware of the
question to estimate the entropy of the token information,
adjusting the estimation based on the question. Reinforcement
Learning (RL) methods [18,19] train a model for prompt
compression with reward signals from downstream tasks. Soft
prompt tuning methods [9,10] typically require fine-tuning
for specific tasks. Xu et al. [20] train a summarization model
to compress the context based on the question. Task-aware
compression approaches are tailored for specific tasks and
compression ratios, which may limit their generalizability in
real-world applications.

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

In addition to directly compressing hard prompts into
soft prompt vectors, recent advancements [21,22] involve
computing the self-information scores or perplexity of the
given input context prompt to shorten its length. This process
involves filtering out words with lower scores from the input
prompt, resulting in a more concise input during inference.
The main difference between our work and these recent
studies is that they perform prompt compression without
considering information from downstream tasks. This leads to
inferior performance when directly applied to downstream
tasks or transferred between similar but unseen downstream
datasets.

III. METHOD

This paper introduces LLM-Distil, a method for
compressing long log texts, consisting of two main steps: log
templating, distillation compression. During the training
phase, the raw log undergoes preprocessing and templating
based on established rules. The processed text, called log
messages, is then further compressed through distillation.
After obtaining the compressed text, it is essential to maintain
a high level of information retention and task performance to
ensure that anomaly detection remains comparable to the
performance before compression. The overall process
framework of LLM-Distil is shown in Fig. 1.

Raw Log
Receiving block blk_-1608999687919862906 src: /10.250.19.102:54106
dest: /10.250.19.102:50010’ , 'BLOCK* NameSystem.allocateBlock:
/mnt/hadoop/mapred/system/job_200811092030_0001/job.jar. blk_-
1608999687919862906',

'Receiving block blk_-1608999687919862906 src: /10.250.10.6:40524 dest:
/10.250.10.6:50010', 'Receiving block blk_-1608999687919862906 src:
/10.250.14.224:42420 dest: /10.250.14.224:50010',

……
'Deleting block blk_-1608999687919862906 file
/mnt/hadoop/dfs/data/current/blk_-1608999687919862906'

Log message
(1x-y) Receiving block blk_-* src: /*.*.*.*:* dest: /*.*.*.*:*

(2x-y) BLOCK* NameSystem.allocateBlock:
/mnt/hadoop/mapred/system/job_*_*/job.xml. blk_-*

(3x-y) PacketResponder * for block blk_-* terminating

(4x-y) Received block blk_-* of size * from /*.*.*.*

Directly output ‘normal’ or ‘abnormal’ of this simplified log record:

Hadoop job allocation error

Abnormal

…

…

LLM-Distil

Fig. 1. LLM-Distil implementation overview

A. Log Templating

Drawing inspiration from previous research [23-25], we
initially employ the top-K frequent tokens to cluster log
messages. The rationale behind this approach is that log
messages sharing identical frequent tokens are more likely to

possess similar templates. Specifically, we commence by
tokenizing each log message and subsequently computing all
token frequencies. Throughout this process, we eliminate
irrelevant tokens by excluding stop words present in the Scipy
library. For every log message, tokens with the highest
frequencies are selected, forming the foundation for their
classification into various coarse-grained clusters. Essentially,
log messages within the same coarse-grained clusters share
identical top-K frequent tokens.

However, relying solely on frequent tokens is
inadequate for distinguishing log messages with diverse
characteristics. For example, log messages sharing the same
top-K frequent tokens may correspond to different log
templates. To address this limitation, we utilize special
characters (e.g., characters excluding alphabets, numerals, or
white space) to characterize log messages, defining the set of
special characters in a log message as its special format. Log
messages stemming from the same template typically exhibit
an identical special format. This is because the special
characters in the constant parts (e.g., the template) of a log
message remain consistent, while those in the dynamic parts
(e.g., the parameter) are generally similar. For instance, the
special format of “Received block: blk- 160899968
7919862906 of size 6710 from/ 10.250.19.102:54106”
consists of [":","-",".","/"], then, replace these parts with
wildcard <*>. Similarly, other log messages sharing the same
template, such as “Received block: blk-7503483334
202473044 of size 8199 from /10.251.215.16:55695”, would
have an identical special format. Consequently, we utilize the
special formats of log messages to conduct fine-grained
clustering. Specifically, log messages within each
coarse-grained cluster are further categorized based on their
special formats, forming fine-grained clusters where all log
messages share not only identical top-K frequent tokens but
also the same log format.

The selection of top-K frequent tokens is dataset
dependent: for HDFS, K=5 captures template identifiers (e.g.,
‘Received’, ‘block’, ‘size’), while for BGL (unstructured
logs), K=8 retains critical system call patterns (e.g., ‘ERROR’,
‘kernel’). Dynamic parameters (e.g., IPv4 addresses
formatted as “10.251.215.16” or block IDs like
“blk-7503483334”) are filtered using a frequency threshold
of 0.1% (e.g., tokens appearing in <0.1% of logs are deemed
parameters).

After initial processing, many fixed and identifiable
parameters remain in the log data. Regular expressions are
first applied to eliminate parameters with recognizable
patterns. Subsequently, a keyword dictionary is constructed
by performing frequency analysis across the entire log dataset.
A uniform threshold is set for word frequency, and words
exceeding this threshold are included in the initial keyword
list. Frequency analysis also generates a list of unique log
entries by filtering out duplicates, ensuring that only one
instance of each log entry is retained. Each unique log entry is
then assigned a distinct identifier. The logs, along with their
identifiers, are formatted for clarity and ease of subsequent
analysis. This process effectively reduces redundancy, labels
the data, and enhances the efficiency of log analysis.

Algorithm 1 Log Template Compression and Integration

Require: Log dataset log_col
Ensure: Log template set log_message
1: Parse each log string in log_col into a list of logs

2: for each event log in logs do
3: Replace all numbers in log with ’*’ using regular expressions
4: end for
5: Initialize prompt_parts and prompt_parts_count

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

6: Set current_paragraph to the prompt header
7: for each log in logs do
8: if label part of log matches then
9: Add the label to label_str and append "mal"
10: end if
11: if length of current_paragraph plus log exceeds max_len then
12: Store current_paragraph in prompt_parts
13: Increment prompt_parts_count
14: Start a new current_paragraph
15: end if
16: Append log to current_paragraph
17: end for
18: Store the final current_paragraph in prompt_parts

19: return log_messag

In Algorithm 1, step 3 replaces numeric values (e.g.,
block IDs and timestamps) with wildcards using regular
expressions (e.g., \d+ → *). This step ensures that dynamic
parameters are masked while retaining structural patterns,
which is critical for subsequent clustering and compression.

To distinguish static tokens (e.g., log template keywords)
from dynamic parameters (e.g., IP addresses, timestamps), we
define a frequency-based threshold. Let f(t) denote the
occurrence count of token t in the log corpus, and NN be the
total number of log entries. A token t is classified as dynamic
if its frequency satisfies:

 ()f t N  (1)

Here, f(t) is the occurrence count of token t in the log
corpus. N is the total number of log entries in the dataset. γ is
the threshold for dynamic parameter classification.

B. Distillation Compression

The anomaly detection algorithm identifies key
information in the log to determine if it is normal or abnormal.
Knowledge distillation, a special knowledge transfer
algorithm, migrates knowledge from a larger model to a
smaller one, yielding a smaller model with superior
performance. This structure is known as a teacher-student
network because large models usually perform better than
small ones. Enhancing accuracy helps eliminate redundant
parameters in large models, improving detection speed and
reducing deployment load.

Before the distillation operation, the processed log
template is formatted into the input training data. Additionally,
an attention mask and position ID must be generated to ensure
the model correctly ignores the padded sections during input
processing. In detection tasks, we typically use a method that
fits the features of the middle layer to train the student
network. Specifically, we obtain the significance
representation of the output through an affine transformation.
The student network is trained through backpropagation to
ultimately obtain the student network weights.

The distillation loss consists of two parts: the
classification task loss and the Semantic preservation loss.
Together, these constitute the overall distillation loss of the
network. The calculation process is shown in the figure. The
attention mask M, generated by comparing feature
divergences between the teacher and student networks, directs
the student to prioritize regions of high semantic relevance:
for each token pair (i, j), Mi,j is computed based on the cosine
similarity of their feature representations (Equation. 5),
modulated by a temperature parameter σ. This ensures that the
student model inherits the teacher’s discriminative focus on
structural log patterns (e.g., error codes or sequence breaks)
while filtering out transient parameters. The attention
mechanism is applied in the spatial dimension, and the two are
combined to obtain the final attention feature representation.

The LLM-Distil algorithm uses the output features of both the
teacher and student networks to obtain the feature attention
mask. This mask serves as a weighting coefficient applied to
the difference matrix between the teacher and student
networks. Finally, the overall distillation loss is used for
backpropagation. The specific distillation compression
process is shown in Fig. 2.

Semantic
loss

Long Prompt

Row Prompt

Compressed Prompt

LLM-Distil

Frozen LLM
LoRa

Teacher
Student

Distl

TSum
TRe

Fig. 2. Distillation compression flowchart

C. Classification Task Loss Function

Prompt compression is formulated as a binary token
classification problem, distinguishing between preservation
and discarding, to maintain the fidelity of the compressed
prompt while ensuring the low latency of the compression
model. To extract features and leverage bidirectional
contextual information for the token classification model, we
use a Transformer encoder. During inference, the decision to
retain or discard each token in the original prompt is made
based on its probability calculated by our classification
model.

Using a Transformer encoder as the feature encoder fθ,
we add a linear classification layer on top. The original
prompt, comprising N words x = {xi}N i=1, can be formulated
as follows:

()h f x (2)

(),i ip x softmax(Wh +b)  (3)

Here, h = {hi}N i=1 represents feature vectors for all
words, p (xi, Θ) ∈ R2 signifies the probability distribution of
labels preserve, discard for the i-th word xi, and Θ = {θ, W, b}
denotes all trainable parameters. We denote y = {yi}N i=1 as
the corresponding labels for all the words in x. The employ
cross-entropy loss to train the model. The loss function L
concerning x is expressed as follows:

N

i i
i=1

L() =
1

CrossEntropy(y , p(x ,))
N

  (4)

Our approach to compressing the original prompt x =
{xi}N i=1 with a target compression ratio 1/τ involves a
three-step process, where τ is defined as the quotient of the
number of words in the compressed prompt and the number of
words in the original prompt x. First, we derive the target
number of tokens to be preserved in the compressed prompt

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

:Ñ = τN. Next, we use the token classification model to
predict the probability pi of each word xi being labeled as
"preserve". Finally, we retain the top Ñ words in the original
prompt x with the highest pi and maintain their original order
to form the compressed prompt .

To further enhance the distillation process, we derive the
attention mask M from the feature divergence between the
teacher and student networks. Specifically, the attention mask
Mi,j for the i-th and j-th tokens is computed as follows:

teacher student
i j

i, jM
h - h

= sigmoid()


 (5)

where σ is a temperature parameter controlling the
sharpness of the mask. This mask is applied to weight the
feature differences between the teacher and student networks,
ensuring that critical semantic information is preserved during
compression.

D. Semantic Preservation Loss Function

We use an unsupervised training approach with
semantic preservation loss to compress contexts while
retaining their semantic content. We shorten long prompts by
summarizing their context and applying our language model
loss LSem to ensure maximal preservation of semantic
meaning.

Given the original prompt K = {k1, … kn} tokens, and the
Compressed Prompt S = {s1, … sm} with m tokens, where n ≥
m, our semantic loss aims to ensure maximal preservation of
semantics. We measure this by evaluating the similarity
between the hidden state embeddings of S and K. To obtain
the hidden state embedding of K, we instruct F (· | θs) to
replicate the input prompt K. This helps in better preserving
and embedding the semantic meanings of K. Specifically,
d-dimensional hidden state embeddings of K and S can be
generated by ek ∼ PF (K | θS, TRe) and es ∼ PF (S | θS, TSum),
where TRe and TSum denote a replicating instruction and a
summarizing instruction, respectively. With the aid of TRep,
we instruct F (· | θs) to replicate K under the model parameter
θs, ensuring that eK ∈ Rd accurately represents the embedding
of K.

The semantic preservation loss LSem is designed to retain
both global semantic alignment and local discriminative
power. First, we measure the global similarity between the
original prompt K and compressed prompt S using cosine
similarity:

K S
Sim S

K S

L E
e e

= 1-
e e

 
 
 

 (6)

In this model, we use cosine similarity as a distance
function to measure the similarity between ek and eS.

To further enhance semantic discrimination, we
introduce a contrastive learning loss that distinguishes
positive pairs (K, S) from negative samples S′:

''

((,) /)

((,) /)
K S

contrastive
K SS

L
exp sim e e

= -log
exp sim e e




 (7)

Here, sim(⋅) denotes cosine similarity, S′ represents
negative samples, and τ=0.1 is a temperature parameter
controlling the distribution sharpness. The total semantic
preservation loss combines both components:

Sem Sim contrastiveL L L(1-)=   (8)

Here, β is the weight coefficient, we set β=0.6 to balance
similarity preservation and discriminative power.

The overall distillation loss LDistill integrates the
classification task loss L (Equation 4) and the total semantic
preservation loss LSem (Equation 8):

Distill SemL = L+(1-)L  (9)

Through empirical validation, we set α=0.7 to prioritize
detection accuracy while maintaining semantic fidelity.

The two-step compression framework reduces the
quadratic complexity of the attention mechanism from O(n2)
to O(nlogn). Let n denote the original token count, and m
represent the compressed length (m≪n). This complexity
reduction is achieved through a dual mechanism: the
templating stage first eliminates transient parameters (e.g.,
numerical values) to shorten the sequence, and the distillation
step further approximates attention operations by prioritizing
high-saliency token interactions. Such hierarchical
compression mirrors techniques in sparse Transformer
architectures [12], where selective token aggregation replaces
full self-attention, enabling efficient processing of long
sequences. Consequently, the combined steps avoid
exhaustive pairwise computations while retaining structural
patterns critical for anomaly detection. The total complexity
is dominated by O(n′logn′)+O(m2), resulting in an overall
O(nlogn) scaling.

IV. EXPERIMENTAL AND RESULTS

In this section, we evaluate the performance of
LLM-Distil through experiments aimed at answering three
specific research questions:

RQ1: Can anomaly detection in logs achieve the
expected results after the log text is compressed using the
LLM-Distil method, compared to traditional methods?

RQ2: How effective is the LLM-Distil method in
compressing long text?

RQ3: What are the advantages of using compression
over directly using large language models for log anomaly
detection?

A. Datasets

This paper evaluates the experimental results using
real-world log datasets sourced from Loghub [26], namely
HDFS, BGL, and Thunderbird. The HDFS dataset
encompasses log messages documenting operations and
metadata state changes within the Hadoop distributed file
system, pivotal for monitoring, troubleshooting, performance
tuning, and data analysis. It comprises 11,172,157 log
messages, with approximately 284,818 indicating system
anomalies. The BGL dataset, recorded by Lawrence
Livermore National Laboratory’s BlueGene/L supercomputer
system, comprises 4,747,963 log messages, including
348,460 anomalous messages. The Thunderbird dataset,
collected from Sandia National Laboratories’ Thunderbird
supercomputer, consists of 20,000,000 logs randomly
selected for experimentation, incorporating 758,562
abnormal log messages. These datasets serve as robust
benchmarks for assessing the efficacy of the proposed log
anomaly detection method. Table Ⅰ shows the statistics of the

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

datasets.
The distribution of datasets used in this study is

illustrated in Fig.3. The HDFS, BGL, and Thunderbird
datasets exhibit distinct scales in log message volumes
(measured in millions, M), anomaly counts (in thousands, K),
and sequence classifications. Specifically, HDFS
demonstrates a balanced ratio of normal and anomalous
sequences, whereas Thunderbird features a significantly
higher volume of log messages. The lower subplot further
compares matrix values (M/K) and log key distributions
across datasets, highlighting Thunderbird’s unique
characteristic of sparse log keys despite its large-scale log
volume. These visualizations collectively emphasize the
diversity and complexity of the datasets, ensuring a
comprehensive evaluation of the proposed methodology
under varied real-world scenarios.

Fig. 3. Dataset distribution across HDFS, BGL, and Thunderbird: log
message volumes (M), anomalies (K), normal/anomalous sequences (K),
matrix values (M/K), and log key density (sparsity in Thunderbird despite
high log volume).

B. Evaluate Metrics

To evaluate the effectiveness of the method, precision,
recall and F1 values were used for experimental evaluation,
and the specific index calculation formula is as follows:

Precision: The percentage of anomaly log sequences that
the model correctly detected out of all detected anomaly log
sequences.

TP
Precision =

TP FP
 (10)

Recall: The percentage of log data that was correctly
detected as an anomaly out of the actual anomaly.

TP
Recall =

TP FN
 (11)

F1: A blended average of accuracy and recall to
comprehensively evaluate the overall performance of
anomaly detection.

2* Precision* Recall
F1 =

Precision + Recall
 (12)

In evaluation metrics, TP is the number of abnormal log
sequences correctly detected. FP is the number of normal
sequences misclassified as anomalies. FN is the number of
abnormal sequences misclassified as normal, indicating
undetected anomalies.

To verify the effectiveness of text compression,
Anomaly Detection Accuracy (ADA) and Information

Retention Rate (IRR), are used for evaluation:
TP +TN

Accuracy =
TP +TN + FP + FN

 (13)

original

compressed

Accuracy
ADA =

Accuracy
 (14)

Here, Accuracycompressed represents the anomaly
detection accuracy for the compressed text, while
Accuracyoriginal refers to the accuracy for the uncompressed
text. An ADA value close to 1 suggests that the compressed
text’s anomaly detection accuracy is comparable to that of the
uncompressed text, implying minimal impact from
compression. Conversely, an ADA value significantly lower
than 1 indicates that compression has substantially affected
detection performance.

IRR measures the proportion of critical information
retained in the compressed text compared to the original text.
Typically, it is calculated using the BLEU (Bilingual
Evaluation Understudy) score, which is a metric commonly
employed in machine translation and text generation tasks to
assess the similarity between two texts.

N

n n
n=1

BLEU = BP exp(w logp)  (15)

BP represents the length penalty, which prevents the
generation of overly short text. pn is the precision of the
n-gram match, while ωn is the weight of each n-gram, typically
equal for all n-grams. The BLEU score provides a value
between 0 and 1, indicating the amount of information
retained in the compressed text compared to the original,
which is used to calculate the information retention rate.

C. Anomaly Detection Effect(RQ1)

Performance on Log Anomaly Detection. Table II
summarizes the performance of LLM-Distil and baseline
methods across three datasets. PCA, Isolation Forest, and
OCSVM exhibit suboptimal performance in log anomaly
detection. Although these methods may achieve high
precision or recall individually, they often fail to balance both
metrics effectively, leading to suboptimal F1 scores, which
are crucial for anomaly detection tasks. This limitation is
likely attributed to their reliance on vector-based
representations of log sequences, which neglect important
temporal patterns.

LogCluster, a method specifically designed for log
anomaly detection, outperforms PCA, Isolation Forest, and
OCSVM in terms of performance. However, deep
learning-based methods, such as DeepLog, LogAnomaly, and
LogBert, consistently achieve superior F1 scores,
demonstrating their enhanced ability to capture complex log
sequence patterns.

To provide a comprehensive visualization of
performance distributions across precision, recall, and
F1-score metrics, the corresponding comparative analysis is
illustrated in Fig. 4.

The LLM-Distil framework compresses log text before
anomaly detection using a large language model, retaining
essential semantic features while reducing processing time
and resource consumption. Experimental results indicate that
the LLM-Distil approach not only maintains comparable
detection accuracy but often outperforms traditional methods,
all while significantly improving computational efficiency.

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

Fig. 4. Performance Distribution of Anomaly Detection Methods across HDFS, BGL, and Thunderbird

D. Ablation Experiments(RQ2)

To verify the effectiveness of our proposed text
compression method for processing long texts in large
language models, we conducted experiments comparing the
performance of compressed and uncompressed text regarding
latency, computational resource usage, anomaly detection
accuracy, and information retention rate. ChatGLM3 was
used as the baseline large language model to evaluate
inference efficiency with both raw and compressed text input.
In this experiment, we used the same three public datasets as
in the anomaly detection experiment: HDFS, BGL, and
Thunderbird. We compared our tested compression method
against the following three baseline methods:

Baseline-1: The original text, without any preprocessing,
is directly fed into the Transformer Encoder for compression.

Baseline-2: Compression is applied after the
preprocessing templating step, with no additional fine-tuning.

Baseline-3: Replace the feature extractor from the
Transformer Encoder with the LSTM Encoder.

To ensure reproducibility, all experiments were
conducted with consistent hyperparameters: a learning rate of
1e-4, a batch size of 32, and 50 training epochs. The statistical
significance of performance differences was validated via
paired t-tests (α=0.05, df=4). For example, the improvement
over Gist Token on HDFS (τ=5%) yielded t=6.21 and
p=0.001, confirming the superiority of LLM-Distil under

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

strict compression ratios.
Table Ⅲ presents the impact of various components on

anomaly detection accuracy. Removing the initial templating
step (Baseline-1) resulted in a significant reduction in
accuracy to 90.3%, with the IRR dropping to 85.73%. This
highlights the importance of the templating step in retaining
essential information while eliminating redundancy. In the
absence of fine-tuning (Baseline-2), both the compression
ratio and IRR decreased, leading to a slight drop in anomaly
detection accuracy to 94.1%. This underscores the necessity
of fine-tuning for optimizing compression and maintaining
critical information. Replacing the Transformer Encoder with
an LSTM Encoder (Baseline-3) led to a significant decrease
in both ADA and IRR, demonstrating that the Transformer
Encoder is more effective in capturing global context and
retaining key information post-compression. To isolate the
impact of model architecture from parameter quantity, we
reconfigured the LSTM’s hidden layers to match the
Transformer’s parameter scale. Despite this adjustment, the
LSTM variant achieved an F1-score of 89.1% on HDFS,
lagging behind the Transformer’s 91.7%. This discrepancy
highlights the self-attention mechanism’s ability to link
distant log events. Such capability is vital for identifying
multi-step anomalies, which LSTMs struggle to capture due
to their limited local receptive field [5]. These findings
confirm that the performance drop arises from structural
constraints rather than parameter efficiency

In summary, these ablation studies highlight the critical
contributions of each component in enhancing the efficiency
of text compression and anomaly detection performance.
Through optimal integration of these components, the
LLM-Distil framework achieves reduced computational
overhead and latency while maintaining high information
retention.

E. Advantages of Compression(RQ3)

The LLM-Distil algorithm utilizes a large language
model for text compression, significantly reducing
computational resource consumption while maintaining
performance and accuracy.

The LLM-Distil algorithm compresses log text
effectively, reducing its length while preserving critical
semantic information. The framework’s interpretability is
further demonstrated through its retention of log templates:
for example, a raw log entry containing dynamic parameters
(e.g., ‘Received block: blk-7503483334202473044 of size
8199 from /10.251.215.16:55695’) is transformed into a
templated sequence (‘Received block: blk-<> of size <> from
<*>’). By abstracting transient values while highlighting
structural patterns, the compressed logs align with
human-readable anomaly taxonomies used in manual auditing
[14], ensuring that automated detection results remain
transparent and actionable.

To comprehensively evaluate the effectiveness of
LLM-Distil in log text compression, we compare it against
two state-of-the-art prompt compression methods: LongLLM
Lingua[17] and Gist Token[10]. The experiments are
conducted on the HDFS and Thunderbird datasets under three
compression ratios (τ=5%,10%,20%). All methods adopt
identical preprocessing steps and test splits to ensure fairness.
Key evaluation metrics include ADA (Equation 14), IRR
(Equation 15), and F1-score (Equation 12).

As shown in Table IV, LLM-Distil consistently
outperforms baseline methods across all compression ratios
and datasets. At τ=5%, LLM-Distil achieves 98.5% ADA and
95.28% IRR on HDFS, significantly surpassing LongLLM
Lingua (92.1% ADA, 88.9% IRR) and Gist Token (85.4%
ADA, 82.3% IRR). Notably, even under extreme
compression (τ=5%), LLM-Distil slightly exceeds the
F1-score of LogBert (96.67% vs. 96.64%), which processes
uncompressed logs. This counterintuitive improvement arises
from the framework’s ability to both eliminate noise and
enhance generalization: the templating stage removes
transient parameters that may obscure structural anomalies,
while the distillation process enforces the student model to
prioritize task-discriminative features inherited from the
teacher, thereby suppressing overfitting to redundant tokens
[10]. Even under aggressive compression (τ=20%),
LLM-Distil maintains robust performance, with 90.1% IRR
and 92.6% F1-score on Thunderbird. In contrast, Gist Token
suffers from severe over-compression, leading to a 7.3% drop
in F1-score on Thunderbird due to truncation of critical
dynamic parameters. Fig. 5. illustrates the performance of
Gist Token and LLM-Distil under varying compression
thresholds across multiple evaluation metrics.

The improvements of LLM-Distil are statistically
validated through paired t-tests. On HDFS (τ=5%), the
performance gains over LongLLM Lingua and Gist Token are
significant (p=0.002 and p=0.001, respectively). Additionally,
LLM-Distil reduces inference latency by 31.8% (1500ms vs.
2200ms for Gist Token) and GPU memory usage by 26.1%
(6.8 GB vs. 9.2 GB), demonstrating its practical efficiency.

These results highlight the substantial economic benefits
of the LLM-Distil algorithm in real-world applications. The
algorithm effectively reduces computational overhead,
offering significant advantages, particularly in large-scale and
high-frequency deployment scenarios.

V. RESULTS

Experimental results demonstrate that the LLM-Distil
method effectively retains key semantic information while
achieving significant prompt compression. This compression
alleviates the challenges posed by long prompts in large
language models, such as high computational demands and
memory usage, thereby improving processing efficiency and
reducing operational costs. The LLM-Distil method reduces
the prompt length by 97%, from an average of 1690 tokens to
just 50 tokens, and decreases inference delay by a factor of 30,
from 2 minutes and 50 seconds to only 10 seconds, while
maintaining comparable accuracy and relevance. These
results underscore the effectiveness of LLM-Distil for log
anomaly detection and further validate the efficiency of
compressing long text prompts in large language models.

VI. CONCLUSIONS

Effective log anomaly detection is crucial for identifying
and mitigating potential cyberattacks and system failures,
ensuring the stability and security of computer systems. This
paper introduces LLM-Distil, a novel log anomaly detection
framework based on distillation-based compression. The
framework first templates the original log sequence, then

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

compresses it to preserve key information. The compressed
text is then used for effective anomaly detection.
Experimental results on three log datasets show that
LLM-Distil achieves anomaly detection accuracy similar to
existing methods, while providing substantial improvements
in processing speed and computational cost. Compared to
conventional approaches, LLM-Distil uniquely integrates
template-based preprocessing with knowledge distillation,
enabling efficient semantic compression without sacrificing
detection accuracy. These findings highlight the potential of
LLM-Distil in enhancing the efficiency of large language

models for processing long input texts. Although this study
focused on log text compression, future work should extend
this framework to other sequential domains, particularly
investigating how data characteristics impact information
retention and model performance. Extending this framework
to sequential data domains such as network traffic logs, along
with domain-specific adaptations for optimal performance,
represents a promising direction. Additionally, further
investigation into the model’s applicability for anomaly
detection across diverse data types is essential for broadening
its real-world utility.

Fig. 5. Performance comparison of Gist Token and LLM-Distil under compression thresholds τ. LLM-Distil exhibits robustness across metrics, particularly at
higher compression (τ=20%)

TABLE I

STATISTICS OF EVALUATION DATASETS

Dataset
Log

Messages
Anomalies

Log
Keys

Log sequences
Normal Anomalous

HDFS 11,172,157 284,818 46 553,366 10,647
BGL 4,747,963 348,460 334 10,045 2,630

Thunderbird 20,000,000 758,562 1,165 71,155 45,385

TABLE Ⅱ
EXPERIMENTAL RESULTS ON HDFS, BGL, AND THUNDERBIRD DATASETS

Method
HDFS BGL Thunderbird

Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score
PCA 5.89 99.28 11.12 9.07 98.23 16.61 37.35 99.36 54.39

iForest 53.60 69.41 60.49 99.70 18.11 30.65 34.45 1.68 3.20
OCSVM 2.54 99.31 4.95 1.06 12.24 1.96 18.89 39.11 25.48

LogCluster 99.26 37.08 53.99 95.46 64.01 76.63 98.28 42.78 59.61
DeepLog 88.44 69.49 77.34 89.74 82.78 86.12 87.34 99.61 93.08

LogAnomaly 94.15 40.47 56.19 73.12 76.09 74.08 86.72 99.63 92.73
Logbert 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64

LLM-Distil 87.54 79.39 83.45 90.91 92.54 91.72 97.00 96.34 96.67

TABLE Ⅲ
 COMPARISON OF COMPRESSION EFFECT PARAMETERS

 ADA IRR Latency(ms) GPU memory usage(GB)
Baseline-1 90.3% 85.73% 1900 8.3
Baseline-2 94.1% 89.46% 1600 7.5
Baseline-3 92.7% 88.13% 1700 7.9
LLM-Distil 98.5% 95.28% 1500 6.8

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

TABLE Ⅳ
PERFORMANCE COMPARISON WITH PROMPT COMPRESSION BASELINES

Method τ ADA IRR F1-score Latency(ms) GPU memory usage(GB)

LongLLM Lingua 5% 92.1% 88.9% 81.2% 1900 8.3
Gist Token 5% 85.4% 82.3% 76.5% 2200 9.2
LLM-Distil 5% 98.5% 95.28% 96.67% 1500 6.8

LongLLM Lingua 10% 89.7% 85.2% 79.8% 1700 7.5
Gist Token 10% 80.1% 78.6% 73.1% 2000 8.7
LLM-Distil 10% 95.2% 92.1% 93.4% 1300 6.2

LongLLM Lingua 20% 84.2% 80.5% 75.4% 1500 7.0
Gist Token 20% 72.8% 70.1% 68.9% 1800 8.1
LLM-Distil 20% 94.7% 90.1% 92.6% 1100 6.1

REFERENCES

[1] Shimin Tao, Yilun Liu, Weibin Meng, Jingyu Wang, Yanqing Zhao,
Chang Su, Weinan Tian, Min Zhang, Hao Yang, and Xun Chen.
Da-parser: A pre-trained domain-aware parsing framework for
heterogeneous log analysis. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC), IEEE, 2023, pp.
322–327.

[2] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep
learning, 2017 pp. 1285–1298.

[3] Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen,
and Jiliang Tang. Multi-scale one-class recurrent neural networks for
discrete event sequence anomaly detection, 2021, pp. 3726–3734.

[4] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei,
Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al.
Loganomaly: Unsupervised detection of sequential and quantitative
anomalies in unstructured logs.19(7) ,2019, pp. 4739–4745.

[5] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long
sequences with structured state spaces. arXiv preprint arXiv:
2111.00396, 2021.

[6] Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen.
Adapting language models to compress contexts. arXiv preprint
arXiv:2305.14788, 2023.

[7] Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. In-context
autoencoder for context compression in a large language model. arXiv
preprint arXiv:2307.06945, 2023.

[8] Siyu Ren, Qi Jia, and Kenny Q Zhu. Context compression for
auto-regressive transformers with sentinel tokens. arXiv preprint
arXiv:2310.08152, 2023.

[9] David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt
compression and contrastive conditioning for controllability and
toxicity reduction in language models. arXiv preprint arXiv:
2210.03162, 2022.

[10] Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress
prompts with gist tokens. Advances in Neural Information Processing
Systems, 36, 2024.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Nee- lakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:
1877–1901, 2020.

[12] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu,
Chia-Yuan Chang, Huiyuan Chen, and Xia Hu. Llm maybe longlm:
Self-extend llm context window without tuning. arXiv preprint
arXiv:2401.01325, 2024.

[13] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma,
Yanqing Zhao, Yuhang Chen, Hao Yang, Yanfei Jiang, and Xun Chen.
Logprompt: Prompt engineering towards zero-shot and interpretable
log analysis. arXiv preprint arXiv:2308.07610,2023.

[14] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong
Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. Robust
log-based anomaly detection on unstable log data, 2019, pp.
807–817.

[15] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu.
Swisslog: Robust anomaly detection and localization for interleaved
unstructured logs. IEEE Transactions on Dependable and Secure
Computing, 2022.

[16] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly
detection via bert. pages 1–8,2021.

[17] Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew
Lin, Yuqing Yang, and Lili Qiu. Longllm-lingua: Accelerating and
enhancing llms in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839, 2023.

[18] .Hoyoun Jung and Kyung-Joong Kim. Discrete prompt compression
with reinforcement learning. IEEE Access, 2024.

[19] Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, and Mao Yang.
Boosting llm reasoning: Push the limits of few-shot learning with
reinforced in-context pruning. arXiv preprint arXiv: 2312.08901,
2023.

[20] Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving
retrieval-augmented lms with context compression and selective
augmentation. In The Twelfth International Conference on Learning
Representations, 2023.

[21] Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing
context to enhance inference efficiency of large language models.
arXiv preprint arXiv:2310.06201,2023.

[22] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Llmlingua: Compressing prompts for accelerated inference of
large language models. arXiv preprint arXiv:2310.05736,2023.

[23] Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo,
Jiazhen Gu, Zhuangbin Chen, Jieming Zhu, and Michael R Lyu. A
large-scale benchmark for log parsing. arXiv preprint arXiv:
2308.10828,2023.

[24] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and
Michael R Lyu. Logzip: Extracting hidden structures via iterative
clustering for log compression, 2019, pp. 863–873.

[25] Meiyappan Nagappan and Mladen A Vouk. Abstracting log lines to
log event types for mining software system logs, 2010, pp. 114–117.

[26] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu.
Loghub: A large collection of system log datasets for ai-driven log
analytics. In 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2023, pp. 355–366.

[27] Wei W, Tang J, Xia L, et al. Promptmm: Multi-modal knowledge
distillation for recommendation with prompt-tuning, Proceedings of
the ACM Web Conference 2024. 2024: 3217-3228.

[28] Zhong Q, Ding L, Liu J, et al. Panda: Prompt transfer meets
knowledge distillation for efficient model adaptation. IEEE
Transactions on Knowledge and Data Engineering, 2024.

[29] Zhang Y, Jin H, Meng D, et al. A comprehensive survey on
process-oriented automatic text summarization with exploration of
llm-based methods. arXiv preprint arXiv:2403.02901, 2024.

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3227-3236

__

