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Abstract—The security of the AGC systems, as they funda-

mentally contribute to the stability of the power grid. FDI at-

tacks have a tremendous impact on AGC since they can serious-

ly spoil the performance of the latter by corrupting its data. 

Despite several previous works employing complex methods 

like deep learning (DL) for attack detection, this paper intro-

duces a novel approach by incorporating the K-Nearest Neigh-

bors algorithm. The model puts in pieces like GDB, GRC, and 

TTD, which are bumpy parts of AGC systems, so they’re all in 

there. Then, KNN pops up to check if the data’s real or messed 

with. Next up, it’s tried out on an AGC with two areas, seeing if 

it’s got the stuff to find the bad data and stay cool even with the 

AGC’s odd wists. Plus, ways to fix things after catching bad 

data get looked at so AGC keeps working. Finally, KNN turns 

out to be useful and not too heavy like some DL methods, mak-

ing it a fair choice for detect cyberattacks. 

 
Index Terms—Detection Mechanism, K-Nearest Neighbors 

(KNN), Automatic Generation Control, False Data Injection 

(FDI), Power System 

 

I. INTRODUCTION 

HE technologies aid in maintaining stable electricity 

networks by coordinating generator output with 

consumer demand [1], [2]. But they leave the door open for 

cyber dangers like foreign direct investment (FDI) attacks 

[3], [4]. Those cases include inaccurate data fooling AGC 
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into destroying control of the whole power grid [5]. And for 

what reason. Because dealing with these dangers is essential; 

an FDI hit might cause minor disruptions or, worse, a 

complete grid meltdown. Cyber-attacks on AGC systems are 

becoming more common as power systems incorporate more 

communication and technological components [6]. These 

attacks evade common detection methods, highlighting the 

need for improved detection techniques [7]. Keeping power 

grids robust and consistent without overwhelming computer 

resources to counteract these cyber tactics is the main focus 

of this effort. There has been a lot of focus over the past 

decade on ways to identify FDI attacks in power systems, 

particularly in the AGC's area. Due to their ease in managing 

complicated, high-dimensional data, DL approaches have 

emerged as favorites among researchers who have attempted 

a variety of procedures for the same problem, including 

standard statistical techniques and advanced machine 

learning models [8]. Convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) are among the DL 

constructions that have been tested on this issue.  In the 

electricity system, for example, CNNs have found 

application due to their ability to understand the spatial 

correlations between measurements and interpret spatial 

data, allowing them to spot irregularities [9]. We like RNNs 

for AGC systems where time is a key aspect because they 

are able to understand the temporal connections that are 

inherent in time-series data [10]. Nevertheless, the majority 

of DL-based methods are computationally costly and often 

necessitate massive volumes of tagged data, which could 

pose challenges when dealing with power systems. 

 To address the issues with pure DL models, hybrid ap-

proaches have recently evolved.These methods integrate 

classical signal processing with machine learning techniques. 

The idea behind these hybrid models is to take advantage of 

both the pattern recognition power of machine learning 

methods and the resilience of statistical approaches [11]. For 

more accurate and computationally efficient detection of 

foreign direct investment (FDI) attacks, some studies have 

combined the Kalman filter with neural networks [12]. To 

improve the detection technique, other ideas include Support 

Vector Machines (SVM) and Principal Component Analysis 

(PCA) for data preparation [13]. Although these approaches 

strike a decent compromise between efficiency and accura-

cy, they encounter difficulties when applied in real-time 

since different systems require fine-tuning of different strat-

egies [14]. 
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 Despite the availability of more effective detection meth-

ods, there have been few real-world applications of these 

techniques to AGC systems. The fact that different grids 

have varied configurations and operational features of their 

power systems is actually one of the major obstacles to im-

plementing these strategies. Because of the high expense of 

retraining or recalibration, these models are designed to 

work with particular system configurations, which makes it 

difficult to apply them to other systems [15]. Inherent non-

linearities in AGC systems (such as GDB, GRC, and TTD) 

further increase the complexity [16]. The detection method 

becomes more challenging due to these nonlinearities, which 

conceal the characteristics of FDI attacks [17]. There is a 

growing need for better adaptable and robust detection algo-

rithms because most current schemes become ineffective due 

to these reasons [18]. 

 Finding foreign direct investment (FDI) attacks in AGC 

systems has come a long way, but there are still some unan-

swered questions. Despite the excellent detection accuracy 

guaranteed by most contemporary detection techniques, es-

pecially those based on DL, they usually come with substan-

tial computational costs [19]. For real-time applications in 

AGC systems that demand quick and sure responses to likely 

threats, these approaches are impractical due to their high 

computer resource requirements and large training dataset 

requirements. Additionally, these models show little to no 

flexibility when applied to different power system designs 

[20]. The application of DL-based models trained on specif-

ic datasets and system features to grid situations with shift-

ing operating dynamics or configurations presents various 

obstacles. One of the major obstacles to their broad applica-

tion across different AGC systems is, obviously, this. 

 Intrinsic nonlinearities inside AGC systems, such as 

GDB, GRC, and TTD, also provide significant difficulties in 

FDI attack detection. The attack detection procedure is made 

more difficult by these nonlinearities, which introduce varia-

bility in system behavior and may conceal or reproduce the 

impacts of the FDI attack. When it comes to reliability and 

accuracy in real-world applications, most of the current de-

tection systems fall short. This is because they typically 

struggle to deal with a lot of non-linearity. As a result, there 

is a pressing need to create detection methods that can man-

age complicated jobs with little computing load and great 

system configuration flexibility. 

 In order to fill these gaps, this study introduces the K-

nearest neighbors’ algorithm, a new way to identify FDI 

assaults in AGC systems. The present work primarily con-

tributes to the development and implementation of KNN, a 

strong machine learning methodology that is both simple and 

effective. KNN has many advantages over more complicated 

DL-based methods. For real-time applications in AGC sys-

tems, KNN is a great choice since, unlike deep learning 

models, it doesn't need costly computing or vast data sets to 

be taught. Without complex training or tuning, KNN can 

classify data as normal or incorrect using a distance-based 

method. This makes it suitable for a wide variety of applica-

tions and makes it straightforward to utilize with various 

AGC configurations. To address concerns with complex 

AGC data that other setups struggle with, this research inte-

grates KNN with a model that includes nonlinear AGC com-

ponents such as GDB, GRC, and TTD. 

 The AGC system with two areas is used as the test model.  

It turns out that KNN outperforms heavy DL-based methods 

because it detects issues quickly and avoids getting tripped 

up by AGC's nonlinear components. The study begins by 

discussing the increasing threat of FDI assaults and the im-

portance of AGC in power systems. We go down these at-

tacks and show how they disrupt system stability with num-

bers. In Section II, the model of the attack on AGC by FDI 

is examined in detail.  Part III details the setup, detection 

and fixing methods of KNN, and its live attack performance.  

Results are discussed in Section IV, where we compare the 

KNN method against SVM and deep learning, looking at 

metrics like speed, false alarms, and catch rates. In Section 

V, we wrap up with a review of the material, some sugges-

tions for making AGC safer, and a look at the future of de-

tection tools in power systems. 

 

II. FALSE DATA INJECTION ATTACK MODEL ON AUTOMATIC 

GENERATION CONTROL 

FDI attacks bring big risks, shaking up the AGC system's 

balance and making power and load matching harder. Here, 

we look deep into modeling AGC, picking apart key nonlin-

ear parts, setting up math for the FDI attack, and checking 

what happens with AGC's tricky behaviors. 

 

A. AGC Nonlinearities and System Model 

Automatic Generation Control (AGC) design makes sure 

frequency stays stable, and tie-line power stays where it 

should, keeping up when loads or power-making changes. 

Some big nonlinear parts in AGC are the governor dead-

band, generation rate limits, and the power delay time, which 

depends on valve spots. For AGC, these need to be modeled 

well to understand how it acts, especially if cyber-attacks 

show up. GDB represents a non-linearity that builds up a 

dead-band range of frequency deviations inside which the 

governor does not move. The idea behind this mechanism is 

to avoid unnecessary movements of the governor for minor 

variations in frequency that may cause wear and tear in its 

mechanical elements. You can represent GDB mathematical-

ly as follows: 

 (1) 

To prevent the governor from responding to minor fre-

quency variations, the dead-band is intentionally set to a 

small value. This introduces a zone of insensitivity where 

small fluctuations are ignored, as illustrated in Figure 1. 

While this helps avoid unnecessary mechanical wear, it also 

delays corrective actions, potentially allowing disturbances 

to persist before the system responds. Generation Rate Con-

straint (GRC), on the other hand, limits the rate at which the 

generator’s output can change. This restriction is essential 

because rapid or large power changes can cause mechanical 

stress and damage to generator components. GRC helps in 

maintaining operational safety and equipment longevity.  
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Fig. 1. Effect of the Governor's Dead-band on the Response Time to Frequency 

 

 
 

Fig. 2. Impact of Generation Rate Constraints on Power Output 
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Fig. 3. Influence of Travel Delay on Control Signal 

 

It is typically implemented by defining a maximum allow-

able rate of change, denoted as Fmax, which ensures that 

output changes occur gradually within safe limits. Together, 

the GDB and GRC nonlinearities significantly influence the 

dynamic behavior of Automatic Generation Control (AGC) 

systems, particularly under abnormal conditions such as 

cyberattacks or load disturbances. 

 

 (2) 

Here, Pg is the generator power output, and Rmax is the 

maximum allowable ramp rate. The GRC thereby constrains 

the generated power output variations within a specified 

value and prevents sudden, potentially destabilizing varia-

tion in generation. 

 

In response to a possible attack by foreign direct invest-

ment (FDI), the power output of a generator is depicted in 

Figure 2. Another way to put it is that GRCs that restrict the 

rate at which the system responds extend the amount of time 

that the system is in a vulnerable state. Transportation time 

delay: There is an inherent time delay in communication, 

particularly between the various components of the AGC 

system (essentially, between the control centers and genera-

tors). This delay, which is caused by transportation, is most 

noticeable. In all likelihood, the transmission and processing 

of data takes a certain amount of time, which in turn influ-

ences the timing of the control actions as well as their effec-

tiveness. In terms of TTD, we are able to model this mathe-

matically: 

𝛥𝑃𝑔(𝑡) = 𝛥𝑃𝑐 (𝑡 − 𝜏)   (3) 

 

where τ is the delay time; Δ𝑃𝑐(𝑡) is the control signal 

from the AGC system. In this manner, the TTD will intro-

duce a delay in detecting a frequency deviation or tie-line 

power flow error, thereby enabling the appropriate control 

action. Figure 3 depicts the effect of the TTD in the control 

signal and system response, especially during an FDI attack. 

In the event that an FDI assault is carried out, this will 

demonstrate how TTD has the potential to significantly im-

pact both the control signal and the system frequency. The 

vulnerability of the system is increased as a result of this 

change since the attacker has more time to carry out their 

strategy before control actions take effect. When dealing 

with nonlinear things, it is more difficult for AGC to react 

appropriately during an attack. In order to construct models 

that are robust enough to observe how systems behave, both 

in their normal state and while they are being attacked, it is 

essential to figure out these nonlinear aspects. 

 

B. Attack Model 

FDI attacks mess with AGC’s control by putting wrong 

data into the measurements it depends on. When these meas-

urements get messed up, the AGC might send out wrong 

commands, which could shake up the whole power grid. The 

attacker can play around with main AGC measurements like 

frequency Δ𝑓(𝑡) and tie-line flow Δ𝑃 (𝑡) to cause trouble. In 

this setup, AGC shows how the false data messes up the 

readings like this: 

 

  (4) 
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Fig. 4. FDI Attack Model on AGC System 

 

 
 

Fig. 5. Responding to an FDI Attack with Governor Dead-band 

 

 

In this case, 𝑎𝑓(𝑡) and 𝑎𝑡(𝑡) are the extra bad data slipped 

into the frequency and tie-line power flow measurements. 

These fake numbers lead the AGC to make a messed-up 

control signal, called Δ𝑃˜𝑐(𝑡), calculated like this: 

 
𝛥𝑃𝑐(𝑡) = 𝐾𝑝 (𝛥𝑃𝑡(𝑡) + 1/s 𝛥𝑓(𝑡))  (5) 

 

Substituting the false data into this control law gives: 

 

𝛥˜𝑃𝑐(𝑡) = 𝐾𝑝 (𝛥𝑃𝑡(𝑡) + 𝑎𝑡(𝑡) +1/s (𝛥𝑓(𝑡) + 𝑎𝑓(𝑡))) (6) 

 

  When the attack hits, AGC either over or under its task, 

and that makes errors stick around or even start a back-and-

forth swing in the system. A streamlined representation of an 

FDI attack is depicted in Figure 4. It demonstrates the loca-

tions where the attacker adds data as well as the manner in 

which the fabricated measurements affect the stability of the 

system as they go through the AGC control loop. 
 

C. AGC Nonlinearities During Cyber Attacks 

These nonlinearities significantly impact the system's re-

sponse to an FDI attack. Such nonlinearities serve to either 

magnify the effects of an attack or mask its detection, mak-

ing the system more susceptible to sustained disruptions. 

The GDB might make it take longer for the AGC system to 
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respond to an FDI attack because it doesn't pay attention to 

small changes in frequency that happen in the dead-band 

range. This causes the attack to last longer before AGC even 

starts to react. So, when the fake data eventually pushes fre-

quency past the dead-band limit, AGC might respond too 

late, or it just doesn’t fix things right. Here, the governor’s 

reaction to an FDI attack with GDB in play can be shown 

like this: 

 

 (7) 

Figure 5 illustrates the characteristics of the AGC fre-

quency response in the event of an FDI attack, contrasting 

the response with and without the presence of GDB. The 

evidence demonstrates how an attacker could make use of 

the dead band in order to continue the attack. 

III. PREVENTION AND DETECTION OF ATTACKS THROUGH 

THE USE OF K-NEAREST NEIGHBORS (KNN) 

To maintain stable power grids, it is critical to protect 

AGC systems from FDI attacks. Although they are computa-

tionally expensive, standard methods such as deep learning 

provide good accuracy. To address the need for both effi-

cient detection and straightforward calculation, this section 

presents a KNN-based approach to attack detection and re-

pair. 

 

A. Detection Mechanism 

KNN learns from instances; it is a type of "non-

parametric" learning method.  It doesn't rely on formulae or 

predetermined procedures; instead, it finds the nearest dots, 

checks their labels, and makes a decision based on that.  The 

goal of AGC is to maintain stability.  Deploying KNN for 

FDI attack detection will be done in stages.  Feature acquisi-

tion, distance measurement, and labeling should be done in 

that order.  The set of feature vectors derived from the AGC 

system data is represented by X = [x, x2, …, x𝑛]. Each fea-

ture vector x𝑖 = [𝑥𝑖1, 𝑥𝑖2, …, 𝑥𝑖𝑑] comprises 𝑑 features like: 

 

𝒙𝑖 = [𝑓𝑖, 𝑢𝑖, 𝑝𝑖, 𝐺𝐷𝐵, 𝐺𝑅𝐶, 𝑇𝑇𝐷] (8) 

 

Two nonlinear AGC system parameters are GRC (Genera-

tion Rate Constraints) and TTD (Transport Time De-lay). 

Identifying whether an operation is running normally (label 

0) or is under attack (label 1) is the goal of classifying each 

feature vector x.  The formula to get the Euclidean distance 

between a test vector xtest and a training vector x𝑏 is: 

 

𝑑(𝒙𝑡𝑒𝑠𝑡, 𝒙𝑗) = √∑ 𝑘=1(𝑥𝑡𝑒𝑠𝑡,𝑘− 𝑥𝑗,𝑘)2 (9) 

 

Alternatively, the Minkowski distance can be generalized 

as: 

𝑑(𝐱test𝑑, 𝐱𝑗) = (∑𝑘=1𝑝𝑝|𝑥test ,𝑘 − 𝑥𝑗,𝑘| ) (10) 

 

where the Manhat-tan distance is 1 and the Euclidean dis-

tance is 2.  To find the closest neighbors, the KNN algorithm 

chooses training vectors x𝑏1, x𝑏2, …, x𝑏𝑘 that reduce the 

distance metric 𝑑 (xtest, x𝑏).  The consensus among the la-

bels of the 𝑘 closest neighbors is used to decide the xtest 

label: 

 

𝑦ˆ = arg max𝑐∈{0,1}∑𝑚=1𝕀(𝑦𝑗𝑚= 𝑐) (11) 

 

𝑛𝑐𝑣 𝐸(𝑇) = ∑ 𝕀(|𝑦− 𝑦ˆ | > 𝑇) 𝑛 𝑖=1      (12) 

 

𝑦ˆ𝑖 = 1 and 𝑦ˆ𝑖 ≠ 𝑦𝑖         (13) 

 

In order to keep these vectors from impacting the control 

loop, the AGC system ignores them. To fix the outliers, we 

use linear interpolation to fill in the gaps between legitimate 

data points: 

 

𝒙corrected = 𝒙𝑖−1 𝒙𝑖+1 − 𝒙𝑖−1  (14) 

 

𝒖new (𝑡) = 𝒖(𝑡) + 𝛥𝒖(𝑡)     (15) 

 

𝐮verified (𝑡) = 𝛼𝐮(𝑡) + (1 − 𝛼) 𝐮redundant(𝑡)` (16) 

 

 where uredundant (𝑏) is the control signal that was col-

lected independently from the verification channel and α is a 

weighting factor.  On a regular basis, newly discovered at-

tack patterns, which are defined as: 

 

𝑿new = 𝑿old ∪ {𝒙𝑖: 𝑦ˆ𝑖 = 1} (17) 

In the long run, this will help the model detect more so-

phisticated threats.  According to the distribution of recent 

detection mistakes, the adaptive adjustment of the detection 

threshold 𝑇 is given by: 

 
𝑇𝑛𝑒𝑤 = 𝑇𝑜𝑙𝑑 + 𝜂 (𝑛𝑐𝑣∑𝕀(|𝑦𝑖 − 𝑦ˆ𝑖|)) 𝑛𝑐𝑣 𝑖=1 (18) 

 

B. Performance Evaluation 

This study assesses the effectiveness of a two-area AGC 

system's suggested KNN-based detection and mitigation 

approach. Which is more important. Accuracy, false positive 

rates, and how fast it operates. To determine accuracy, let's 

call it "A," we use the following formula: 

𝐴 =True Positives + True Negatives/ Total Samples 

The false positive rate 𝐹𝑃𝑅 is defined as: 

𝐹𝑃𝑅 = False Positives / False Positives + True Negatives 

 Although it has a fancy name, time complexity simply in-

dicates how quickly or slowly KNN operates.  𝑂(𝑛. 𝑘. 𝑑) is 

the appropriate notation, where n represents points, k repre-

sents neighbors, and d represents characteristics.  According 

to the findings of the tests, KNN is fast, doesn't produce 

many false alarms, and can detect these covert FDI attacks 

fairly well.  Thus, KNN is an excellent tool for real-time 

AGC system security. 

 

IV. RESULTS AND EVALUATION 

This section delves into the effectiveness of this KNN 

configuration in detecting FDI attacks that manage to pene-

trate inside AGC systems. It runs through a laundry list of 

tests to determine things like its accuracy in attack detection, 
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its robustness in the face of complex AGC systems, its speed 

of execution, and its ability to recover from attacks. The 

results of the KNN are later displayed side by side with 

those of other methods, such as those SVMs and a few deep 

learning models. 

 

A. Detection Accuracy and False Positive Rate 

Reliability and FPR in detection are crucial. Those are the 

major evaluations of the efficacy of this KNN concept. I 

looked at the strength of the attacks across different "k" 

(neighbors) and measured it. The relationship between the 

number of nearest neighbors, k, and the trend of change in 

detection accuracy is illustrated in Figure 6. With increasing 

values of k, the detection accuracy peaks at k=5 and then 

hits saturation. In fact, this exemplifies how the KNN algo-

rithm successfully distinguishes between legitimate and 

compromised data, especially when it comes to finding the 

ideal value of k. The fact that the aforementioned pattern of 

detection accuracy fluctuation holds true over a range of 

attack intensities is evidence of the method's strength. 

 Increasing the value of k for the nearest neighbor results 

in a decreasing false positive rate, as seen in Figure 7. The 

reason behind this is that the false positive rate (FPR) hits its 

lowest point at k = 5, which stops the KNN from incorrectly 

identifying normal input as an attack. Keeping the system 

stable by avoiding false warnings is of utmost importance, 

and this leads to an exceptionally low false positive rate in 

practice. 

B. Impact of AGC Nonlinearities 

The detection algorithms' performance could be affected 

by certain nonlinearities in AGC systems, such as GDB, 

GRC, and TTD. Under these circumstances, we evaluated 

the robustness of the KNN-based method. The effect of the 

GDB boost on the identified accuracy is illustrated in Figure 

8. An increase in GDB has the dual effect of making the 

system response less responsive from a control standpoint 

and marginally reducing the detection accuracy. Neverthe-

less, even for higher values of GDB, the KNN algorithm's 

resilience against such non-linearity keeps it relatively high. 

 As shown in Figure 9, the detection performance remains 

constant throughout a wide range of GRC values, suggesting 

that the KNN approach can withstand the changing limita-

tions caused by GRC. This stability is critical for dependable 

AGC system identification in real-world deployments where 

GRC significantly affects dynamics. Figure 10 displays the 

effect of the TTD on the performance of detection. The 

KNN method's performance is robust enough to withstand 

the increased complexity caused by time delays in practical 

AGC systems, even though accuracy drops as TTD grows. 

 
 

 
 

Fig. 6. Detection Accuracy vs. Number of Nearest Neighbors 
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Fig. 7. False Positive Rate vs. Number of Nearest Neighbors k 

 

 
Fig. 8. Detection Accuracy vs. Governor Dead-band (GDB) Across Different Attack Intensities 
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Fig. 9. Detection Accuracy vs. Generation Rate Constraints (GRC) 

 

 

 
 

Fig. 10. Detection Accuracy vs. Transportation Time Delay (TTD) 

 

 

C. Performance Comparison with Other Methods 

To establish the practical advantages of the proposed 

KNN-based detection mechanism, we compare it against 

Support Vector Machine (SVM) and a Deep Neural Net-

work (DNN) model. The comparison is based on three major 

performance indicators: detection accuracy, false positive 

rate (FPR), and computation time. 

 

TABLE I 

 PERFORMANCE COMPARISON OF DETECTION METHODS 

Method 
Detection Accu-

racy (%) 

False Positive 

Rate (%) 

Computation 

Time (ms) 

KNN 97.8 1.2 5.6 

SVM 94.1 3.7 14.2 

DNN 96.3 2.1 48.5 
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TABLE II  

CROSS-VALIDATION PERFORMANCE METRICS 

Method 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

KNN 
97.82 ± 

0.43 

97.91 ± 

0.39 

97.78 ± 

0.47 

97.84 ± 

0.42 

SVM 
94.26 ± 

0.88 

94.38 ± 

0.73 

93.89 ± 

0.91 

94.13 ± 

0.81 

DNN 
96.51 ± 

0.60 

96.73 ± 

0.55 

96.38 ± 

0.62 

96.55 ± 

0.58 

 

 

As shown in Table I, the KNN approach delivers the 

highest detection accuracy (97.8%) while also maintaining 

the lowest false positive rate (1.2%) and minimal computa-

tion time (5.6 ms). These results validate the efficiency of 

KNN in real-time FDI attack detection for AGC systems. 

While DNN provides competitive accuracy, it comes at the 

cost of significantly higher computational load, making it 

less practical for time-sensitive environments. SVM, though 

less resource-intensive than DNN, suffers from relatively 

lower accuracy and higher FPR compared to KNN. This 

comparison reinforces the suitability of the proposed KNN 

method as a lightweight yet effective tool for cyberattack 

detection in AGC environments. 

Table II presents the results of a 10-fold cross-validation 

procedure performed to validate the performance consisten-

cy of the KNN-based detection method, in comparison with 

SVM and DNN. The table shows the mean and standard 

deviation of four key metrics—Accuracy, Precision, Recall, 

and F1-Score—which collectively evaluate the detection 

effectiveness and reliability. 

The proposed KNN model achieved the highest average 

accuracy of 97.82%, with a low standard deviation of ±0.43, 

indicating a stable and reliable performance across all vali-

dation folds. In terms of precision, which measures the cor-

rectness of positive detections, KNN recorded 97.91%, out-

performing both SVM and DNN, and demonstrating its 

strong ability to avoid false positives. Similarly, KNN yield-

ed the highest recall of 97.78%, showing that it effectively 

detects the majority of attack instances with minimal false 

negatives. The F1-Score, a harmonic mean of precision and 

recall, further confirms KNN’s superior balance between 

detection sensitivity and accuracy, achieving 97.84%. 

 

Compared to KNN, the SVM model showed lower values 

across all metrics and higher standard deviations, suggesting 

reduced performance and consistency. Although the DNN 

model performed better than SVM, its results were still infe-

rior to KNN, and the standard deviations were slightly high-

er, reflecting more variability. These findings validate that 

the KNN model not only delivers the best overall detection 

performance but also maintains robustness and consistency, 

making it more suitable for real-time AGC security applica-

tions. 

V. CONCLUSION 

This research introduced a novel approach to detect For-

eign Direct Investment (FDI) assaults in AGC systems using 

K-Nearest Neighbors (KNN). It is more important than ever 

to have robust mechanisms to detect cyberattacks, as AGC 

plays a significant role in maintaining power stability and 

cyberattacks are constantly changing. The KNN-based 

method is exceptional among the developed methods since it 

combines low detection performance with computational 

efficiency and simplicity. By conducting thorough tests of 

the KNN algorithm's performance, we demonstrate that it 

effectively distinguishes between genuine and compromised 

data, particularly when considering the nonlinearities of the 

AGC system, including GDB, GRC, and TTD. Using the 

right optimization with the nearest neighbors' number k, the 

method has generally produced good detection accuracy 

with a low false positive rate. In addition, KNN was more 

accurate and computationally efficient than other traditional 

methods, such as support vector machines. Because of this, 

KNN is highly attractive for use in real-time applications. 

The robust-ness of the KNN algorithm is demonstrated by 

the fact that its performance remains unchanged regardless 

of the levels of AGC nonlinearities and attack intensities.  

Additionally, when contrasted with deep learning-based 

methodologies, KNN's lightning-fast data processing speeds 

demonstrate how proficient it is with computers. You may 

utilize it in an AGC system that operates in real-time be-

cause of this. By minimizing disruption and maximizing 

recovery time following an attack, these post-detection miti-

gation techniques substantially strengthened the attacked 

AGC system's resilience. 
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