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Abstract—Traditional SLAM systems often suffer from drift
accumulation and environmental ambiguity in outdoor settings,
where varying lighting conditions and weather can severely
degrade performance. To address these challenges, this paper
introduces a novel GPS-enhanced visual-inertial SLAM frame-
work that tightly integrates GPS with visual and inertial sensors
at the front end while employing pose graph optimization at
the back end for improved positioning accuracy and robustness.
The proposed approach utilizes an Error-State Kalman Filter
(ESKF) to fuse GPS, IMU, and visual data, significantly
enhancing odometry precision. Furthermore, a sliding-window
pose graph optimization technique is implemented in the back
end to boost computational efficiency and maintain real-time
performance. Experimental results on KITTI Sequences 07 and
06 demonstrate that our system achieves remarkable error
reduction of 56.3% and 73.2%, respectively, compared to VIN-
Fusion.

Index Terms—GPS-aided, outdoor localization, ESKF, Pose
Graph Optimization.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) is
a fundamental technique in the field of robotics and

autonomous systems, enabling a robot to simultaneously
build a map of an unknown environment while estimating its
own position within it, without relying on prior knowledge
[1, 2]. Traditional SLAM methods, which predominantly rely
on visual cues and inertial measurements, often encounter
significant challenges in outdoor environments due to the
dynamic and unpredictable nature of such settings. Variations
in lighting, adverse weather conditions, and the absence of
salient visual features can severely degrade the performance
and robustness of visual SLAM systems [3–5]. In recent
years, the integration of Global Positioning System (GPS)
data into SLAM frameworks has emerged as a promising
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approach to enhance the robustness and accuracy of outdoor
localization. GPS offers a global reference frame that helps
mitigate drift and cumulative errors typically associated with
traditional SLAM algorithms [6]. However, GPS signals
are often unreliable or entirely unavailable in challenging
environments such as urban canyons, tunnels, or areas with
dense vegetation. To address these limitations, a hybrid
localization strategy that fuses information from GPS, visual,
and inertial sensors is essential for achieving reliable and
precise positioning in complex outdoor scenarios.

In the domain of sensor integration, Xia et al. employed
a visual–inertial sensor fusion framework augmented with
global positioning observations from GNSS. These measure-
ments were jointly optimized within a factor graph alongside
local VIO poses. This multimodal and complementary ap-
proach demonstrated strong scalability and performed well in
substation inspection tasks. However, the system was loosely
coupled, leading to suboptimal utilization of sensor data.
Similarly, R3live++ implemented separate LiDAR and VIO
subsystems for geometric and photometric reconstruction,
with integration achieved through back-end optimization.
While effective, this architecture may result in information
redundancy and feature-matching inconsistencies due to the
absence of tightly-coupled, low-level joint optimization.

Factor graph optimization algorithms have been main-
stream in the optimization process of the Visual-Inertial
Odometry (VIO) back end in recent years. Factor graphs can
flexibly express various constraints, such as sensor measure-
ment constraints and motion model constraints [7]. However,
factor graphs involve many factors. They need to handle
multi-variable joint optimization and complex marginaliza-
tion. This significantly increases computational complexity
and poses challenges for real-time performance. Moreover,
the approximation errors introduced during marginalization
may degrade the overall robustness of the system. There-
fore, it is essential to appropriately reduce the number of
constraints in the factor graph to enhance computational
efficiency and real-time capability.

In back-end factor graph optimization, Qin et al. pro-
posed VIN-FUSION, which combines GPS measurements
with VIO relative poses in a second optimization thread,
integrating them into a general state estimation framework
via graph optimization [8, 9]. Despite good practical results,
it lacks online sensor calibration optimization. Similarly,
Yao et al. introduced an adaptive fusion-based ground ve-
hicle positioning method. It handles front-end data errors
by merging residuals into the factor graph for nonlinear
optimization. However, the complex factor graph-solving
process consumes significant computational resources and
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Fig. 1. Coordinate system diagram.

struggles to ensure real-time performance [10].
This paper proposes a novel GPS-aided visual-inertial

SLAM system specifically designed to address the challenges
of outdoor environments. By integrating GPS for global
reference, visual sensors for local feature tracking, and
IMU for robust motion estimation, our framework achieves
superior performance through a synergistic fusion approach.
The system employs a tightly-coupled front-end for sensor
data fusion combined with an efficient back-end optimization
strategy, offering significant improvements over conventional
methods. The key contributions of this work include:

(1) A novel dual-optimization architecture that synergis-
tically combines front-end ESKF with back-end pose graph
optimization, overcoming the limitations of systems that rely
solely on one optimization approach. This hybrid strategy
provides more accurate and robust state estimation compared
to the existing methods [11].

(2) An automatic calibration framework using ESKF to
estimate and compensate for spatial-temporal offsets between
GPS, IMU, and camera sensors. This innovation significantly
enhances system robustness against sensor misalignment and
synchronization errors.

(3) An efficient pose graph optimization method that
simplifies traditional factor graph approaches by focusing on
camera pose estimation while treating IMU biases as optional
parameters. Combined with a sliding-window mechanism
and incremental optimization, this approach maintains real-
time performance without sacrificing accuracy.

The paper is organized as follows: Section II introduces
the coordinate systems and mathematical notation. Section
III details our algorithmic framework, including the ESKF-
based front-end fusion and sliding-window pose graph op-
timization. Section IV presents experimental validation on
real-world datasets, with comprehensive performance anal-
ysis. Finally, Section V concludes the paper and discusses
potential future research directions.

II. COORDINATE AND SYMBOL DESCRIPTION

The coordinates involved in this paper are shown in Fig.1.
The Earth-Centered, Earth-Fixed (ECEF) coordinate system
is a global Cartesian coordinate system that is fixed relative to

the Earth. The origin of the ECEF coordinate system is fixed
at the Earth’s center of mass. The X-Y plane coincides with
the Earth’s equatorial plane, with the X-axis pointing towards
the Prime Meridian. The Z-axis is chosen to be perpendicular
to the equatorial plane of the Earth, pointing towards the
geographic North Pole.

This paper uses Rb
a and pb

a to define the rotational
and translational components of the transformation from
coordinate system a to coordinate system b. The rotational
component is represented by the corresponding Hamilton
quaternion qb

a, where ⊗ denotes its multiplication operation.
Subscripts are used to denote specific time points of the mov-
ing coordinate systems. The constant quantity gW represents
the gravity vector in the local world coordinate system, c
is the speed of light in vacuum, ωE represents the Earth’s
angular velocity, latitude λ, longitude ϕ, and geodetic height
h. ⌊·⌋× represents the antisymmetric operator. ψ represents
the yaw angle offset between the local world coordinate sys-
tem(Local world) and the East-North-Up coordinate system
(ENU), receiver clock offset δt, and receiver clock drift rate
δṫ. ρ represents the inverse depth of each feature.

III. ALGORITHM FRAMEWORK

The system framework proposed in this paper is shown in
Fig. 2, consisting of data preprocessing, GPS-aided tightly-
coupled multi-sensor fusion measurement, and front-end
filtering processing. The proposed ESKF-VIO algorithm em-
ploys an Error State Kalman Filter (ESKF) framework to
achieve tight multi-sensor fusion through initial calibration.
By integrating GPS measurements, IMU data, and visual
observations within the ESKF, the system effectively com-
bines onboard and external perception sources. This approach
features continuous re-linearization of sensor constraints,
significantly enhancing both odometric precision and attitude
estimation accuracy in the front-end processing pipeline.
Pose graph optimization in the back-end only processes pose
nodes, with IMU bias as an optional element. A Sliding-
Window mechanism is added, optimizing keyframe poses
within the window while ignoring non-keyframe poses and
other variables. This boosts computational efficiency and
ensures real-time performance.
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Fig. 2. System framework.

A. Feature tracking based on optical flow

At the core of our Visual-Inertial Odometry (VIO) front-
end lies the Lucas-Kanade optical flow method, which
provides efficient feature tracking across image sequences.
Optical flow, representing the perceived motion of intensity
patterns due to camera movement, captures both the direction
and speed of pixel-level displacements [12]. This motion es-
timation forms the basis for our feature tracking mechanism,
implemented through the following systematic approach:

Under the assumptions of brightness constancy, small
motion, and spatial coherence, the intensity I(x, y, t) of
a pixel (x, y) in the image remains constant over time.
Specifically, at time t, the pixel intensity is assumed to be a
constant c, which leads to the derivation of the fundamental
optical flow constraint equation.

I(x(t), y(t), t) = c (1)

Let the increments in spatial coordinates and time be
denoted by dx, dy , and dz , respectively. Then, we have:

I(x, y, t) = I (x+ dx, y + dy, t+ dt) (2)

Under the assumption of small motion, the position does
not change significantly over time. Therefore, the image
intensity function can be approximated by a first-order Taylor
expansion at the location I(x, y, t) as follows:

I(x, y, t) = I(x, y, t) + Ixdx + Iydy + Itdt
Ixu+ Iyv + It = 0

(3)

where Ix and Iy denote the spatial image gradients in
the horizontal and vertical directions, respectively, while
Iz represents the temporal image gradient. u = dx/dy
and v = dy/dx correspond to the horizontal and vertical
components of the Optical Flow.

After extracting features using the Optical Flow method,
feature matching and tracking are performed. The Optical
Flow equations are solved using the least squares method to
estimate the displacement of each pixel over a time interval
t. The formulation is as follows:

[
u
v

]
=


n∑

i=1

I2ix
n∑

i=1

IixIiy
n∑

i=1

IixIiy
n∑

i=1

I2iy


−1  −

n∑
i=1

IixIt

−
n∑

i=1

IiyIt


(4)

The results of the image tracking experiment are shown in
Fig.3. Feature points with fewer successful tracking instances

are marked with red solid dots, while those with more
frequent successful tracking are marked with blue solid
dots. Feature correspondences between the left and right
images that are successfully tracked using the optical flow
method are indicated by green solid dots. As illustrated in
the figure, both edge features and texture-rich corner points
are effectively tracked, with a low incidence of mismatches.
By employing the Lucas-Kanade (LK) Optical Flow method,
the stereo camera system successfully accomplishes robust
feature tracking across image sequences.

B. ESKF-VIO design

An Error-State Kalman Filter (ESKF) for front-end odom-
etry processing is employed to enable robust attitude estima-
tion through tight multi-sensor fusion. The ESKF’s funda-
mental innovation lies in its error-state formulation, which
offers three key advantages: (1) the small magnitude of
error states permits linear approximation while minimizing
precision loss, (2) it simplifies Jacobian matrix computation
by eliminating higher-order terms, and (3) it naturally sup-
ports rotation vector representation, effectively avoiding both
parameter redundancy and singularity problems [13–15].

In this paper, let M be the manifold where the system
state resides. The operations “⊞” and “⊟” on the manifold
M are used to simplify representation and derivation. Since
the manifold is locally homeomorphic to Rn, where n is the
dimension of M, a bijective relationship can be established
between the local neighborhood of M and the tangent space
M:

⊞ : M× Rn → M,⊟ : M×M → Rn (5)

For the composite manifold M = SO(3)× Rn, there is:[
R
a1

]
⊞

[
r
a2

]
≜

[
R · Exp(r)
a1 + a2

]
[
R1

a1

]
⊟

[
R2

a2

]
≜

[
Log(RT

2 R1)
a1 − a2

] (6)

where r ∈ R3,a1, a2 ∈ R3,Exp(·) and Log(·)denote the
Rodriguez transformation between rotation matrices and ro-
tation vectors. Besides, xk+1, x̃k+1, δxk respectively repre-
sents the true states, the nominal states, and the error states,
and the Lie group is denoted by the uppercase letter ‘G’.

a) Continuous time motion model: Assuming pre-
calibration of the time drift between the camera, IMU, and
GPS, factory-integrated calibration of the external parameters
of GPS and IMU, and online estimation of the external
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(a) left image (b) right image

Fig. 3. Optical flow-based feature tracking.

parameters between the camera and IMU, the continuous
motion model of Equation (7) is obtained using the IMU
as the body frame:

ṗEb = vEb

v̇Eb = RE
b (am − ba − na) + gE

ṘE
b = RE

b [ωm − bg − ng]

ḃg = nbg

ḃa = nba

(7)

where RE
b and pE

b
represent the orientation and position

of the IMU relative to the global coordinate system, gE

represents the gravity acceleration, and ωm and am repre-
sent the raw readings of the gyroscope and accelerometer.
Assuming the three sensors are rigidly connected, with the
extrinsic parameters between the camera and IMU denoted
as T i

c
= (Ri

c
, pi

c
), representing the raw readings of the

gyroscope and accelerometer, na and ng represent the white
noise of IMU measurements, ba and bg represent the biases
of the accelerometer and gyroscope, modeled with Gaussian
noise nbg and random walk nba .

b) Discrete IMU model: Discretize the continuous
model at the IMU frequency, and denote xi as the state
vector.

xi = [RE
bi

T

, pEbi

T

, Rb
ci

T

, pbci

T

, vEI
T

, bgi
T , bai

T ]
T

(8)

Using a zero-order hold to discretize, the discrete model is
obtained:

xt+1 = xi ⊞ (∆tf(xi, ui, wi)) (9)

Use the iterative ESKF to estimate the state vector, com-
pute the state estimation error in the tangent space of the
state manifold, and derive the propagation formula for the
linearized error dynamics in the error-state space:

δx̂i+1 = xi+1 ⊟ x̂i+1

= (xi ⊞ (∆t · f(xi, ui, wi)))

⊟ (x̂i ⊞ (∆t · f(x̂i, ui, 0))) ∼ N(021×1,Σδx̂i+1
)

(10)

where
Σδx̂i+1

= Fδx̂Σδx̂i
FT
δx̂ + FwQF

T
w

Fδx̂ =
∂(δx̂i+1)

∂δx̂i
|δx̂i=0,wi=0

Fw =
∂(δx̂i+1)

∂wi
|δx̂i=0,wi=0

(11)

Fig. 4. Illustration of state iterated kalman filter update.

c) Prior Distribution.: Let the two propagation meth-
ods mentioned above stop at the (k + 1)th GPS/Camera
measurement as shown in Fig.4.

Then the propagated state estimate x̂k+1 and covariance
Σδx̂k+1

essentially impose a prior distribution on the state
before fusing the (k + 1)-th measurement data, as follows:

xk+1 ⊟ x̂k+1 ∼ N(0,Σδx̂k+1
) (12)

d) Initialization of the iterative update.: The prior
distribution is fused with GPS or camera measurement data
to generate a maximum a posteriori (MAP) estimate xk+1

(denoted as x̃k+1). The MAP estimate x̃k+1) is initialized as
the prior estimate x̂k+1, and due to the nonlinear nature of
the problem, it is iteratively optimized. In each iteration, the
error between the true state xk+1 and the current estimate
x̃k+1 is defined as:

δx̃k+1 ≜ xk+1 ⊟ x̃k+1 (13)

The current state is obtained by minimizing the posterior
distribution, which combines the prior in Equation (5) and
the GPS/Camera measurement data. Therefore, the prior
distribution represented by the term involving xk+1 should
be transformed into an equivalent prior distribution involving
δx̃k+1:

xk+1 ⊟ x̂k+1 = (x̃k+1 ⊞ δx̃k+1)⊟ x̂k+1

≈ x̃k+1 ⊟ x̂k+1 +Hδx̃k+1

∼ N(0,Σδx̂k+1
)

(14)

where, H = (x̃k+1⊞δx̃k+1)⊞x̂k+1

∂δx̃k+1
|δx̃k+1=0,the final expression

for the prior distribution of δx̃k+1 is obtained. Equation (11)
is derived as follows:

δx̃k+1 ∼ N(−H−1(x̃k+1 ⊞ x̂k+1),H−1Σδx̂k+1
H−T ) (15)

e) GPS measurement.: Utilize Broadcast Ephemeris
Correction or compute Satellite Clock Bias and Orbit to
correct Ionospheric and Tropospheric effects[16]. Employ
PRN encoding to infer signal flight time offsets to obtain
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the expression for pseudo-range measurements:

P̃S
r =∥ pE

S − pE
r ∥ +c (∆t−∆ts) + TS

r + ISr +MS
r + ϵSr

(16)
In the equation, pE

S and pE
r represent the Earth-Centered

Inertial (ECI) coordinates of satellite S and receiver r, re-
spectively. δt denotes the clock bias of GPS time, and ∆ts

denotes the satellite clock offset, which can be obtained from
ephemeris data. TS

r and Isr represent the delay errors caused
by the ionosphere and troposphere, respectively. MS

r denotes
the delay caused by multipath effects, and ϵSr represents the
measurement noise, which follows a Gaussian distribution
with a mean of 0.

Through a series of coordinate transformations, model
the pseudo-range measurement error factors for artificial
satellites:

rP
(
z̃sjrk ,X

)
=

∥∥∥Rz (−ωetf )p
e′

sj −Re
nR

n
w (pw

b )− pe
anc

∥∥∥
+ c

(
ζTsjδtk −∆tsj

)
+ T sj

rk
+ Isjrk − P̃ sj

rk
(17)

f) Visual measurement.: Extract FAST Corner Features
from undistorted images and use the Lucas-Kanade (LK)
Optical Flow to track feature points visible in the current
sliding window by keyframes. If feature points are lost or
not tracked, triangulate new feature points in 3D space as
the best estimate of the camera pose. Update the current
state estimation using the reprojection error between visual
landmarks and tracked feature points, and derive the relevant
formulas considering measurement noise:

PE
s = PE

s

gt

+ nPs
, nPs

∼ N(0,ΣnPs
) (18)

pcs = pcs
gt

+ nps , nps ∼ N(0,Σnps
) (19)

where, PE
s

gt

and pcs
gt

represent the true values of PE
s and pcs,

respectively. The first-order Taylor expansion of the true zero
residual rc(xk+1, p

c
s

gt

) is given by equation above, which
forms another posterior distribution of δx̃k+1:

0 = rc(xk+1, p
c
s

gt

, PE
s

gt

)

≈ rc(x̃k+1
, pcs, P

E
s ) +Hc

sδx̃k+1
+ βs

(20)

g) The update of the Error-State Kalman Filter.:
Combining the prior distribution with the posterior distri-
butions from the Camera/GPS measurements, we obtain the
Maximum A Posteriori (MAP) estimate:

min(∥ x̃k+1 ⊟ x̂k+1 +Hδx̃k+1∥Σ−1
δx̂k+1

+

ml∑
j=1

∥ rE(x̃k+1,
Lpj) +HE

j δx̃k+1 ∥2
Σ−1

αj

+

mc∑
s=1

∥ rc(x̃k+1, p
c
x, P

E
s
) +Hc

sδx̃k+1 ∥2
Σ−1

βs

)

(21)

where ∥x∥2Σ = xΣxT .
Since GPS and Camera measurements may not occur at

the same time, mE (mc) may be zero during the optimization

process above, which indicates:

HT = [HE
1 , . . . ,H

E
mE

, Hc
1 , . . . ,H

c
mc

]
T

R = diag(Σα1
, . . . ,ΣαmE

,Σβ1
, . . . ,Σβmc

)

P = (H)
−1

Σδx̂k+1
(H)

−T

z̃Tk+1 = [rE(x̃k+1, p
E
1 ), . . . , rE(x̃k+1, p

E
mE

)

rc(x̃k+1, p
c
1, P

E
1 ), . . . , rc(x̃k+1, p

c
mc
, PE

mc
)]

(22)

The Kalman gain is obtained as follows:

K = (HTR−1H + P−1)
−1
HTR−1 (23)

To update the state estimate, Equation (24) is given as
follows:

x̃k+1 = x̃k+1⊞(−Kz̃k+1−(I−KH)(H)
−1

(x̃k+1⊟ x̂k+1))
(24)

The above process is iterated until convergence.

x̂k+1 = x̃k+1

Σ̂δx̄k+1
= (I −KH)Σ̃δxk+1

(25)

C. Pose graph optimization

The main computational burden of BA (Bundle Adjust-
ment) optimization comes from feature point optimization.
As feature points increase, computational efficiency de-
creases. In reality, after several observations, converged fea-
ture points’ spatial position estimates remain near a certain
value, while divergent outliers usually disappear.

Fig. 5. Principle of pose graph optimization.

Based on this, we assume that a feature point can be
ignored after a few optimizations, treating it only as a
constraint for pose estimation, without further optimizing
its position. The principle is shown in Fig.5. This creates
a graph optimization with only trajectories and no feature
points, where nodes are posed at different times, and edges
are initial values from feature matching between adjacent
frames [17, 18].

Unlike BA optimization, once initial estimates are done,
we no longer optimize feature point positions, focusing only
on connections between camera poses. This significantly
reduces the computation.

In pose graph problems, each node represents the camera’s
current pose using its Lie algebra. Edges represent the
estimated relative motion between adjacent frames’ pose
nodes, from either direct methods or feature point methods.
In SLAM frameworks, other constraints, such as loop closure
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Fig. 6. Simulation trajectory comparison.

detection, may also exist. This motion can be expressed in
terms of Lie groups:

T ij = T−1
i T j (26)

From a graph optimization perspective, this equation has
errors. So we can define a least squares error and use
optimization methods to find the optimal solution. The error
can be defined as follows:

eij = ln
(
∆T−1

ij T−1
i T j

)∨
= ln

(
exp

((
−ξij

)∧)
exp

(
(−ξi)

∧)
exp

(
ξ∧j

))∨ (27)

In the error definition equation, the relative pose can be
obtained using algorithms with IMU and camera sensors, so
they are known. Following the Lie algebra derivative method,
we apply a left perturbation, and the error becomes:

êij = ln
(
T−1

ij T−1
i exp

(
(−δξi)

∧)
exp

(
δξ∧j

)
T j

)∨
. (28)

In this formula, the two perturbation items are in the
middle. To use the BCH approximation, move and slightly
change the perturbation items to get the following equation:

exp
(
ξ∧

)
T = T exp

((
Ad

(
T−1

)
ξ
)∧)

(29)

Derive the Jacobian matrix in the right-multiplication form.

êij = ln
(
T−1

ij T−1
i exp

(
(−δξi)

∧)
exp

(
δξ∧j

)
T j

)∨
≈ eij +

∂eij
∂δξi

δξi +
∂eij
∂δξj

δξj
(30)

Then derive the Jacobian matrix and define the objective
function for solution with graph optimization. The overall
objective function is:

min
ξ

1

2

∑
i,j∈E

eTijΣ
−1
ij eij (31)

In short, all pose vertices and pose edges form a graph
optimization, with optimization variables as poses of respec-
tive vertices and edges from pose observation constraints.
It’s transformed into a least squares problem for a solu-
tion. A Sliding-Window mechanism is introduced to reduce
computation. The sliding window limits keyframes in the
optimization window, lowering computational complexity
for local real-time optimization. Pose graphs trigger global
optimization periodically in the background to correct accu-
mulated errors within the window. Together, they enhance
computational efficiency and algorithm accuracy through
marginalization and relocalization [16].

IV. SIMULATION VERIFICATION

Simulation experiments were conducted using the KITTI
dataset to verify the performance of the algorithm presented
in this paper. The KITTI dataset, sponsored jointly by the
Karlsruhe Institute of Technology and the Toyota Technolog-
ical Institute in Chicago, is a dataset used for autonomous
driving research. It contains various modalities of informa-
tion, such as calibrated and synchronized images, lidar scans,
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(a) Local trajectory at point 1. (b) Local trajectory at point 2.

(c) Local trajectory at point 3. (d) Local trajectory at point 4.

Fig. 7. Local trajectory at different points in KITTI 07.

high-precision GPS data, and IMU acceleration data, making
it suitable for the testing and simulation environment of this
paper. To validate the effectiveness of the method proposed in
this paper, algorithm evaluation tests were performed using
the KITTI 07 and 06 datasets as representative examples.
Each KITTI sequence is recorded at 10 Hz and includes
synchronized grayscale stereo and color images. All images
have a resolution of 1392×512 pixels, and rectified stereo
pairs are available.

Sequence 06 contains approximately 4541 frames, cover-
ing around 7.5 minutes of driving. The environment is mainly
rural, including winding mountain roads, open fields, and
some residential areas. Roads are narrow with dense veg-
etation on both sides. Tree occlusions and varying lighting
conditions are common.

Sequence 07 includes about 4661 frames, covering around
7.8 minutes. It mixes urban and suburban roads, including
intersections, roundabouts, pedestrian zones, and sections
of highway. The environment includes traffic signs, signal
lights, and moving vehicles. These scenes are suitable for
testing algorithm robustness in complex interactions. The

algorithm experimental environment is ROS Melodic; the
operating system is Ubuntu 18.04, with 16GB of memory.

In Fig.6 and Fig.7, the black dashed line represents the
actual ground trajectory generated by the KITTI 07 dataset.
The blue dotted line indicates the trajectory graph generated
by the VIN-Fusion algorithm, and the red solid line indicates
the global trajectory graph generated by the ESKF-VIO-PGO
algorithm proposed in this paper. The algorithm presented in
this paper provides more accurate localization with trajecto-
ries that better fit the true values.

To evaluate trajectory accuracy errors accurately, we use
the EVO tool to measure precisely and generate heat maps
of trajectory errors for different algorithms. The solid line
transitions from cold to warm colors, indicating increasing
errors between the estimated and true trajectories. The right-
side gradient bar shows the error sizes corresponding to the
line colors, with maximum, average, and minimum errors
provided on the right. The global trajectory error values for
each algorithm extracted by EVO are in Table 1.

According to the data in Table 1, the final proposed
GPS-aided visual-inertial odometry method improves posi-
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TABLE I
TRAJECTORY ERROR VALUES

Algorithm Max/m Min/m Mean/m RMSE/m STD/m

KITTI-07 VIN-FUSION 8.914 0.022 4.118 5.155 3.101
ESKF-VIO-PGO 4.821 0.135 1.801 2.231 1.316

KITTI-06 VIN-FUSION 4.576 0.194 2.652 3.009 1.421
ESKF-VIO-PGO 3.444 0.131 0.448 0.645 0.464

tioning accuracy by 56.3% on the KITTI 07 dataset and
73.2% on the KITTI 06 dataset compared to traditional
algorithms. The front-end ESKF-based tight-coupling algo-
rithm effectively improves the utilization of multi-sensor data
and enhances outdoor positioning accuracy. The back-end
pose graph optimization reduces accumulated errors, further
enhancing positioning accuracy and system robustness, and
also boosts system efficiency.

V. CONCLUSION

To address the challenges of outdoor localization, this
paper presents a tightly coupled GPS-aided visual-inertial
odometry (VIO) algorithm. The front-end processing em-
ploys an ESKF to tightly fuse multi-sensor data, effectively
mitigating odometric drift. Meanwhile, the back-end incorpo-
rates sliding-window pose graph optimization, ensuring both
computational efficiency and enhanced system accuracy and
robustness. Experimental results demonstrate that our method
significantly outperforms the conventional VIN-Fusion algo-
rithm in localization precision. By synergistically leveraging
GPS for global reference, IMU for motion estimation, and
visual data for feature tracking, our system delivers a highly
reliable solution for outdoor robotic navigation. Future re-
search will focus on algorithmic refinement and extending
the framework to diverse real-world outdoor applications.
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